Excercise Sheet 9 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 18.01.2013 in the exercise classes

1. Change of Light Propagation Time by a Gravitational Wave

The metric for a "plus-polarized" gravitational wave of frequency ω and amplitude h propagating in the z-direction can be written as

$$
d s^{2}=d t^{2}-\left[1+h \cos \left(\omega(t-z)+\phi_{0}\right)\right] d x^{2}-\left[1-h \cos \left(\omega(t-z)+\phi_{0}\right)\right] d y^{2}-d z^{2}
$$

where ϕ_{0} is a phase.
(a) Assuming that $h \ll 1$ calculate the travel time of a light ray over a distance $\mathbf{L}=L \mathbf{n}$, where \mathbf{n} is a unit vector as a function of L, \mathbf{n}, ω and ϕ_{0} to first order in the amplitude h. Assume the condition $\omega L \ll 1$ for the first order approximation to be good that we derived in the lecture.
(b) Determine the orientations of \mathbf{n} for which the change $\Delta t / t$ of the light travel time relative to the light travel time t in the absence of the gravitational wave is maximal and minimal. For which orientations does Δt vanish?
please turn over

2. Linearized Gravity from a Variational Principle

To first order in $h_{\mu \nu}$ the Ricci tensor is given by

$$
\begin{equation*}
R_{\mu \nu}^{(1)}=\frac{1}{2}\left(-\square h_{\mu \nu}+\partial_{\sigma} \partial_{\mu} h_{\nu}^{\sigma}+\partial_{\sigma} \partial_{\nu} h_{\mu}^{\sigma}-\partial_{\mu} \partial_{\nu} h_{\sigma}^{\sigma}\right), \tag{1}
\end{equation*}
$$

where all indices are raised and lowered with the Lorentz metric $\eta_{\mu \nu}$.
(a) Compute the Einstein tensor to first order $G_{\mu \nu}^{(1)}=R_{\mu \nu}^{(1)}-\frac{1}{2} \eta_{\mu \nu} R^{(1)}$.
(b) Show that $G_{\mu \nu}^{(1)}$ can be obtained by varying the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2}\left[\left(\partial_{\mu} h^{\mu \nu}\right)\left(\partial_{\nu} h\right)-\left(\partial_{\mu} h^{\rho \sigma}\right)\left(\partial_{\rho} h^{\mu}{ }_{\sigma}\right)+\frac{1}{2}\left(\partial_{\mu} h^{\rho \sigma}\right)\left(\partial_{\nu} h_{\rho \sigma}\right)-\frac{1}{2} \eta^{\mu \nu}\left(\partial_{\mu} h\right)\left(\partial_{\nu} h\right)\right], \tag{2}
\end{equation*}
$$

with respect to $h_{\mu \nu}$, where $h \equiv h_{\sigma}^{\sigma}$.

3. Fermat's Principle for Light Rays Propagating in a Newtonian Potential

According to Fermat's principle the trajectories of light rays in a medium with refractive index $n(\mathbf{r})$ extremize the time

$$
\begin{equation*}
t=\int\left(d \mathbf{r}^{2}\right)^{1 / 2} n(\mathbf{r}), \tag{3}
\end{equation*}
$$

with $d \mathbf{r}^{2}=d x^{2}+d y^{2}+d z^{2}$. Show that for the refractive index $n(\mathbf{r})=1-2 \Phi(\mathbf{r})$ this principle leads to the correct geodesic equation for photons in a Newtonian potential $\Phi(\mathbf{r})$.

