Excercise Sheet 8 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 11.01.2013 in the exercise classes

1. Movement within the Schwarzschild Horizon

Consider a particle inside the event horizon $R_{S}=2 G_{\mathrm{N}} M$ of a Schwarzschild black hole, $r \leq R_{S}$.
(a) Show that independently of whether or not the particle moves on a geodesic the minimal rate with which the radius has to decrease is given by

$$
\begin{equation*}
\left|\frac{d r}{d \tau}\right| \geq\left(\frac{2 G_{\mathrm{N}} M}{r}-1\right)^{1 / 2} \tag{1}
\end{equation*}
$$

where τ is the proper time of the particle.
(b) Using this compute the maximal proper time it takes the particle to fall from $r=R_{S}$ to the singularity at $r=0$. Express this in terms of seconds for a black hole mass measured in solar masses.
(c) Show that this maximal proper lifetime is realized when falling freely along a geodesic with the constant of motion

$$
\begin{equation*}
E \equiv\left(1-\frac{2 G_{\mathrm{N}} M}{r}\right) \frac{d t}{d \tau}=0 . \tag{2}
\end{equation*}
$$

please turn over

2. Movement within the Schwarzschild Horizon

Consider an observer located at fixed Schwarzschild coordinates ($r_{0}, \theta_{0}, \phi_{0}$) dropping a beacon into a Schwarzschild black hole along a radial direction. The beacon emits photons with a constant frequency ω_{em} in the beacon rest frame.
(a) Calculate the Schwarzschild coordinate speed $d r / d t$ of the beacon as a function of r.
(b) Calculate the speed of the beacon as it passes an observer that is held at a fixed coordinate $r<r_{0}$ in the rest frame of that observer. What is that speed when r approches $R_{S}=2 G_{\mathrm{N}} M$?
(c) Calculate the frequency $\omega_{\text {obs }}$ of the radiation arriving at the observer at r_{0} as a function of radial coordinate r at which the radiation was emitted by the beacon.
(d) Calculate the coordinate time elapsing between emission of the photons at r and detection at r_{0}.
(e) Show that at late times, $t \gg G_{\mathrm{N}} M$, the frequency decreases exponentially, $\omega_{\mathrm{obs}} \propto$ $\omega_{\mathrm{em}} \exp (-t / T)$. Express the suppression time scale T in terms of the black hole mass M.

