Excercise Sheet 7 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 14.12.2012 in the exercise classes

1. The Generators of $S O(3)$

In cartesian coordinates (x, y, z) on \mathbb{R}^{3} the components of the Killing vector field generators of $S O(3)$ are given by

$$
\begin{align*}
R^{\mu} & =(-y, x, 0), \\
S^{\mu} & =(z, 0,-x), \tag{1}\\
R^{\mu} & =(0,-z, y) .
\end{align*}
$$

(a) Show that in polar coordinates (r, θ, ϕ)

$$
\begin{align*}
R^{\mu} & =\partial_{\phi}, \\
S^{\mu} & =\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}, \tag{2}\\
R^{\mu} & =-\sin \phi \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi} .
\end{align*}
$$

(b) Show that these three Killing vector fields satisfy the following algebra

$$
\begin{align*}
{[R, S] } & =T \\
{[S, T] } & =R \tag{3}\\
{[T, R] } & =S
\end{align*}
$$

please turn over

2. Kruskal Coordinates for the Schwarzschild Metric

In terms of the standard Schwarzschild coordinates t, r the Kruskal coordinates are defined by

$$
\begin{align*}
T & =\left(\frac{r}{2 G_{\mathrm{N}} M}-1\right)^{1 / 2} \exp \left(\frac{r}{4 G_{\mathrm{N}} M}\right) \sinh \left(\frac{t}{4 G_{\mathrm{N}} M}\right) \\
R & =\left(\frac{r}{2 G_{\mathrm{N}} M}-1\right)^{1 / 2} \exp \left(\frac{r}{4 G_{\mathrm{N}} M}\right) \cosh \left(\frac{t}{4 G_{\mathrm{N}} M}\right) \tag{4}
\end{align*}
$$

(a) Show that expressed in terms of the Kruskal coordinates the Schwarzschild metric reads

$$
\begin{equation*}
d s^{2}=\frac{32 G_{\mathrm{N}}^{3} M^{3}}{r} \exp \left(-\frac{r}{2 G_{\mathrm{N}} M}\right)\left(d T^{2}-d R^{2}\right)-r^{2} d \Omega^{2} \tag{5}
\end{equation*}
$$

where r is defined implicitly by

$$
\begin{equation*}
T^{2}-R^{2}=\left(1-\frac{r}{2 G_{\mathrm{N}} M}\right) \exp \left(\frac{r}{2 G_{\mathrm{N}} M}\right) . \tag{6}
\end{equation*}
$$

(b) Determine the range of values that T and R can take.
(c) Determine the curves of constant r in terms of T and R.
(d) Determine the curves of constant t in terms of T and R.
(e) Determine the location of the Schwarzschild radius, $r=2 G_{\mathrm{N}} M$, in terms of T and R.
(f) What happens at $r<2 G_{\mathrm{N}} M$?

