Excercise Sheet 5 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 23.11.2012 in the exercise classes

1. Geodesic Equation and Extremal Action

Show that the geodesic equation of motion in a gravitational field,

$$
\frac{D}{d \tau} \frac{d x^{\mu}}{d \tau}=\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\rho \sigma}^{\mu} \frac{d x^{\rho}}{d \tau} \frac{d x^{\rho}}{d \tau}=0
$$

can also be derived from extremizing the action

$$
\begin{equation*}
S_{\text {particle }}=\frac{1}{c_{0}} \int d s=\int d \tau=\int d \lambda \mathcal{L}_{\text {particle }}=\int d \lambda\left(\frac{d \tau}{d \lambda}\right)=\int d \lambda\left(g_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}\right)^{1 / 2} . \tag{1}
\end{equation*}
$$

under small variations $x^{\mu}(\lambda) \rightarrow x^{\mu}(\lambda)+\delta x^{\mu}(\lambda)$ of the path connecting two space-time points such that the variations δx^{μ} vanish at the end points. Hint: Transform to proper time as integration variable, using

$$
d \lambda=\left(g_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}\right)^{-1 / 2} d \tau
$$

such that

$$
g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}=g_{\mu \nu} u^{\mu} u^{\nu}=1
$$

and thus the variation of Eq. (1) has the form

$$
\delta S_{\mathrm{particle}}=\frac{1}{2} \int d \tau \delta\left(g_{\mu \nu} \frac{d x^{\mu}}{d \tau} \frac{d x^{\nu}}{d \tau}\right)
$$

and leads to the equation of motion

$$
\frac{d}{d \tau} \frac{\partial \mathcal{L}_{\text {particle }}}{\partial\left(d x^{\mu} / d \tau\right)}=2 \frac{d}{d \tau}\left(g_{\mu \nu} \frac{d x^{\nu}}{d \tau}\right)=\frac{\partial \mathcal{L}_{\text {particle }}}{\partial x^{\mu}}=\left(\partial_{\mu} g_{\rho \sigma}\right) \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau} .
$$

please turn over

2. Torsion and Riemann Tensor as Multi-Linear Maps

The covariant derivative with respect to a vector field X is defined by

$$
\nabla_{X} \equiv X^{\mu} \nabla_{\mu}
$$

and defines a linear map from second vector field Y to a third vector field $\nabla_{X} Y$. Using this notation show the following:
(a) The torsion tensor with the components $T_{\mu \nu}^{\lambda} \equiv \Gamma_{\mu \nu}^{\lambda}-\Gamma_{\nu \mu}^{\lambda}$ for an arbitrary connection $\Gamma_{\mu \nu}^{\lambda}$ defines a bilinear map from two vector fields $X=X^{\mu} \partial_{\mu}$ and $Y=Y^{\nu} \partial_{\nu}$ to a third vector field whose components are given by

$$
T_{\mu \nu}^{\lambda} X^{\mu} Y^{\nu} .
$$

Show that this bilinear map can be written as

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] .
$$

(b) The Riemann tensor defines a trilinear map from three vector fields $X=X^{\mu} \partial_{\mu}, Y=Y^{\nu} \partial_{\nu}$, and $Z=Z^{\sigma} \partial_{\sigma}$ to a forth vector field whose components are given by

$$
R_{\sigma \mu \nu}^{\rho} X^{\mu} Y^{\nu} Z^{\sigma} .
$$

Show that this trilinear map can be written as

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z .
$$

To demonstrate this express the components $R^{\rho}{ }_{\sigma \mu \nu}$ of the Riemann tensor in terms of general connection coefficients $\Gamma_{\mu \nu}^{\lambda}$ as derived in the lecture.

3. Properties of the Riemann Tensor

(a) Show that the sum over cyclic permutations of the last three indices of the Riemann tensor vanishes,

$$
R_{\rho \sigma \mu \nu}+R_{\rho \mu \nu \sigma}+R_{\rho \nu \sigma \mu}=0 .
$$

(b) Show that this is equivalent to

$$
R_{\rho[\sigma \mu \nu]}=0
$$

Hint: Use the expression for the Riemann tensor in a locally inertial frame.

