Excercise Sheet 4 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 16.11.2012 in the exercise classes

1. Maxwell's Equations in Terms of Differential Forms
(a) Show that the homogeneous Maxwell equations

$$
\partial_{\rho} F_{\mu \nu}+\partial_{\mu} F_{\nu \rho}+\partial_{\nu} F_{\rho \mu}=0
$$

can be written as

$$
\partial_{[\mu} F_{\nu \sigma]}=0,
$$

or simply as

$$
d F=0
$$

in terms of the field strength tensor two form $F_{\mu \nu}$.
(b) Show that the inhomogeneous Maxwell equations

$$
\partial_{\mu} F^{\mu \nu}=j^{\nu},
$$

with $j^{\nu}=\left(\rho_{e}, \mathbf{j}\right)$ the electric current density four-vector, can be written as

$$
d(* F)=* J,
$$

with the definition of the Hodge star operator given in the lectures and the current density one-form $J_{\nu} \equiv \eta_{\nu \rho} j^{\rho}$. Hints: Show in a first step that

$$
[d(* F)]_{\mu_{1} \mu_{2} \mu_{3}}=\frac{3}{2} \partial_{\left[\mu_{1}\right.} \epsilon_{\left.\mu_{2} \mu_{3}\right]}^{\nu_{1} \nu_{2}} F_{\nu_{1} \nu_{2}}
$$

and figure out over which values the indices ν_{1} and ν_{2} run for given mutually different indices $\mu_{1}, \mu_{2}, \mu_{3}$. Finally, express the result in terms of the unique index $\nu \neq\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ and keep track of all the numerical pre-factors.
please turn over

2. Cross Product and Hodge Dual in 3 Dimensions

Show that the cross product $\mathbf{A} \times \mathbf{B}$ of two vectors \mathbf{A} and \mathbf{B} in three-dimensional Euclidean space can be understood as the Hodge product of the two corresponding one-forms $A_{i} d x^{i}$ and $B_{i} d x^{i}$, where A_{i} and B_{i} are the Euclidean components of \mathbf{A} and \mathbf{B}, respectively.

3. The Divergence of Vector Fields

(a) Show that the Christoffel symbols satisfy

$$
\begin{equation*}
\Gamma_{\mu \lambda}^{\mu}=\frac{1}{\sqrt{|g|}} \partial_{\lambda} \sqrt{|g|}, \tag{1}
\end{equation*}
$$

where $g=\operatorname{det} g_{\mu \nu}$. Hint: First show that for an infinitesimal variation δM of an invertible $n \times n$ matrix M one has

$$
\begin{equation*}
\delta \ln \operatorname{det} M=\operatorname{Tr}\left(M^{-1} \delta M\right) . \tag{2}
\end{equation*}
$$

(b) Using this result show that the divergence of a vector field V^{μ} can be written as

$$
\begin{equation*}
\nabla_{\mu} V^{\mu}=\frac{1}{\sqrt{|g|}} \partial_{\mu}\left(\sqrt{|g|} V^{\mu}\right) \tag{3}
\end{equation*}
$$

4. Paraboloidal Coordinates

In Euclidean three-space, paraboloidal coordinates (u, v, ϕ) are defined by

$$
\begin{equation*}
x=u v \cos \phi, \quad y=u v \sin \phi, \quad z=\frac{1}{2}\left(u^{2}-v^{2}\right) . \tag{4}
\end{equation*}
$$

(a) Calculate the metric $g_{\mu \nu}$ and the inverse metric $g^{\mu \nu}$ in paraboloidal coordinates.
(b) Calculate the Christoffel symbols for the paraboloidal coordinates.

