Excercise Sheet 3 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 9.11.2012 in the exercise classes

1. Coordinate Transformations on the Sphere

Consider the sphere S^{2} as a two dimensional differentiable manifold

$$
S^{2} \equiv\left\{\left(x^{1}, x^{2}, x^{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

(a) Show that the charts $\left(U_{ \pm}, \psi_{ \pm}\right)$given by

$$
\begin{aligned}
& U_{+} \equiv S^{2} \backslash\{(0,0,1)\} ; \quad \psi_{+}: U_{+} \rightarrow \mathbb{R}^{2},\left(x^{1}, x^{2}, x^{3}\right) \mapsto\left(y^{1}, y^{2}\right)=\left(\frac{2 x^{1}}{1-x^{3}}, \frac{2 x^{2}}{1-x^{3}}\right), \\
& U_{-} \equiv S^{2} \backslash\{(0,0,-1)\} ; \quad \psi_{-}: U_{-} \rightarrow \mathbb{R}^{2},\left(x^{1}, x^{2}, x^{3}\right) \mapsto\left(z^{1}, z^{2}\right)=\left(\frac{2 x^{1}}{1+x^{3}}, \frac{2 x^{2}}{1+x^{3}}\right),
\end{aligned}
$$

represent the Mercator projection from the North and the South pole of the sphere, respectively. Show that they form a differentiable atlas for S^{2}.
(b) Show that the coordinate transformation $\psi_{-} \circ \psi_{+}^{-1}$ is given by

$$
z^{i}=\frac{4 y^{i}}{\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}}, \quad i=1,2, \quad 0<\left(y^{1}\right)^{2}+\left(y^{2}\right)^{2}<\infty .
$$

please turn over

2. Transformation Properties of various Tensors

(a) Show that the symmetry and antisymmetry, $T_{\mu \nu}= \pm T_{\nu \mu}$, of an arbitrary (0,2)-tensor $T_{\mu \nu}$ is invariant under change of coordinates.
(b) Let $y^{\mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$ be the Lorentz transformation between two inertial observers in special relativity. How do the components $F_{\mu \nu}$ of the electromagnetic field strength tensor change under this transformation?

3. Curves and Tangent Vectors

Given is the parametrized curve $\gamma(t)$ in $M=\mathbb{R}^{3}$

$$
\gamma(t)=[x(t), y(t), z(t)]=(\cos t, \sin t, t) .
$$

(a) Derive the parametrization of the curve in spherical coordinates

$$
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta
$$

(b) What are the components of its tangent vector in cartesian and spherical coordinates?

