Excercise Sheet 2 to General Relativity

Prof. Günter Sigl
II. Institut für Theoretische Physik der Universität Hamburg
Luruper Chaussee 149
D-22761 Hamburg
Germany
email: sigl@mail.desy.de
tel: 040-8998-2224

Discussion on 2.11.2012 in the exercise classes

1. Contravariant and Covariant Vectors

The components a^{μ} of a contravariant vector transform as

$$
a^{\prime \mu}=\Lambda_{\nu}^{\mu} a^{\nu}
$$

under a Lorentz transformation Λ_{ν}^{μ}.
(a) Show that the components

$$
a_{\mu} \equiv \eta_{\mu \nu} a^{\nu}
$$

of the corresponding covariant vector (often also called dual vector) transforms as

$$
a_{\mu}^{\prime}=\Lambda_{\mu}^{\nu} a_{\nu}
$$

where we introduced the notation

$$
\Lambda_{\mu}^{\nu} \equiv\left(\Lambda^{-1}\right)_{\mu}^{\nu} .
$$

(b) By introducing a set of basis vectors $e_{(\mu)}$ a (contravariant) vector can also by defined in an abstract way as a quantity

$$
a \equiv a^{\mu} e_{(\mu)}
$$

which is independent of the coordinate system. Show that the set of basis vectors then transforms as

$$
e_{(\mu)}^{\prime}=\Lambda_{\mu}^{\nu} e_{(\nu)} .
$$

please turn over

2. Commutators of Vector Fields

For two smooth vector fields v and w the commutator is defined by

$$
\begin{equation*}
[v, w](f) \equiv v[w(f)]-w[v(f)], \tag{1}
\end{equation*}
$$

for all smooth $\left(C^{\infty}\right)$ functions $f: M \rightarrow \mathbb{R}$.
(a) Show that the definition Eq. (1) satisfies the linearity and Leibnitz properties and thus defines a vector field.
(b) Show that the components of the commutator of two smooth vector fields v and w are given by

$$
\begin{equation*}
[v, w]^{\mu}=v^{\nu} \frac{\partial w^{\mu}}{\partial x^{\nu}}-w^{\nu} \frac{\partial v^{\mu}}{\partial x^{\nu}} \tag{2}
\end{equation*}
$$

in any coordinate system.
(c) Show that any three smooth vector fields X, Y, Z satisfy the Jacobi identity,

$$
\begin{equation*}
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0 . \tag{3}
\end{equation*}
$$

3. Coordinate Transformations of the Metric Tensor

The metric of special relativity is given by the Lorentz metric

$$
\begin{equation*}
d s^{2}=d t^{2}-d x^{2}-d y^{2}-d z^{2} \tag{4}
\end{equation*}
$$

Derive the components of the metric $g_{\mu \nu}$ and the inverse metric $g^{\mu \nu}$ in the rotating coordinate frame given by

$$
\begin{aligned}
t^{\prime} & =t \\
x^{\prime} & =\left(x^{2}+y^{2}\right)^{1 / 2} \cos (\phi-\omega t) \\
y^{\prime} & =\left(x^{2}+y^{2}\right)^{1 / 2} \sin (\phi-\omega t) \\
z^{\prime} & =z
\end{aligned}
$$

where $\phi=\arctan y / x$.

