# Excercise Sheet 10 to General Relativity 

Prof. Günter Sigl<br>II. Institut für Theoretische Physik der Universität Hamburg<br>Luruper Chaussee 149<br>D-22761 Hamburg<br>Germany<br>email: sigl@mail.desy.de<br>tel: 040-8998-2224

Discussion on 25.01.2013 in the exercise classes

## 1. The Harmonic Gauge

Show that the harmonic gauge condition on the metric perturbation,

$$
\begin{equation*}
\partial_{\nu} h^{\nu \mu}=\frac{1}{2} \partial^{\mu} h_{\nu}^{\nu} \tag{1}
\end{equation*}
$$

is equivalent to the condition

$$
\begin{equation*}
\square x^{\mu}=\nabla^{\nu} \nabla_{\nu} x^{\mu}=0, \tag{2}
\end{equation*}
$$

where $x^{\mu}$ is considered as a scalar function on the manifold.

## 2. Gravitational Waves from a Head-On Collision

Two identical point particles of mass $M$ undergo a head-on collision at the origin of the coordinate system, $x^{\mu}=(t, x, y, z)=(0,0,0,0)$. In the distant past, $t \rightarrow-\infty$, the two masses started at $x^{\mu} \rightarrow(-\infty, \pm \infty, 0,0)$ and at rest.
(a) Show that $x(t)= \pm\left(9 G_{\mathrm{N}} M t^{2} / 8\right)^{1 / 3}$ in Newtonian approximation.
(b) Determine the range of validity of the Newtonian approximation.
(c) Calculate the quadrupole moment $Q_{i j}(t)$.
(d) Using the result in (b) compute $h_{i j}(t)$ at the position $(x, y, z)=(0, R, 0)$. please turn over

## 3. de Sitter Space

Consider the metric

$$
\begin{equation*}
d s^{2}=d t^{2}-e^{2 H t}\left(d x^{2}+d y^{2}+d z^{2}\right) \tag{3}
\end{equation*}
$$

Solve the geodesic equation for observers moving with respect to the spatial coordinates, i.e. $x$ is not constant (so called non-comoving observers) and determine the affine parameter as a function of $t$. From this show that the geodesics reach $t=-\infty$ within a finite interval of the affine parameter. This demonstrates that the coordinates in Eq. (3) are incomplete and only describe part of what is known as de Sitter space in cosmology.

