# Excercise Sheet 1 to General Relativity 

Prof. Günter Sigl<br>II. Institut für Theoretische Physik der Universität Hamburg<br>Luruper Chaussee 149<br>D-22761 Hamburg<br>Germany<br>email: sigl@mail.desy.de<br>tel: 040-8998-2224

Discussion on 26.10.2012 in the exercise classes

1. Properties of Lorentz Transformations in the Theory of Special Relativity Consider a general Lorentz transformation

$$
x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

with the matrix $\Lambda^{\mu}{ }_{\nu}$ satisfying

$$
\eta_{\mu \nu} \Lambda^{\mu}{ }_{\rho} \Lambda^{\nu}{ }_{\sigma}=\eta_{\rho \sigma}
$$

in terms of the Lorentz metric tensor

$$
\eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1) .
$$

(a) Show explicitly that the four dimensional scalar product

$$
a \cdot b \equiv \eta_{\mu \nu} a^{\mu} b^{\nu}=a_{\mu} b^{\mu}
$$

is invariant under such Lorentz transformations.
(b) Show that the inverse Lorentz transformation is given by

$$
\left(\Lambda^{-1}\right)_{\nu}^{\mu}=\eta^{\mu \rho} \eta_{\nu \sigma} \Lambda_{\rho}^{\sigma} .
$$

please turn over

## 2. Four Dimensional Acceleration in Special Relativity

(a) Derive the relation

$$
\begin{equation*}
a^{\mu}=\frac{d^{2} x^{\mu}}{d \tau^{2}}=\Gamma^{2}\left[\Gamma^{2} \mathbf{v} \cdot \mathbf{a}, \mathbf{a}+\Gamma^{2}(\mathbf{v} \cdot \mathbf{a}) \mathbf{v}\right] \tag{1}
\end{equation*}
$$

between the four acceleration $a^{\mu}$ and the ordinary three dimensional acceleration $\mathbf{a} \equiv d^{2} \mathbf{r} / d t^{2}$ and velocity $\mathbf{v} \equiv d \mathbf{r} / d t$.
(b) Show that the proper acceleration $\mathbf{a}_{0}^{2} \equiv-a_{\mu} a^{\mu}$ is given by

$$
\begin{equation*}
\mathbf{a}_{0}^{2} \equiv-a_{\mu} a^{\mu}=\Gamma^{4}\left[\mathbf{a}^{2}+\Gamma^{2}(\mathbf{v} \cdot \mathbf{a})^{2}\right] . \tag{2}
\end{equation*}
$$

## 3. Constant Force in Special Relativity

Consider a relativistic point particle with non-vanishing rest mass $m_{0}$ which is subject to a constant force $\mathbf{F}=(d \mathbf{p} / d t)=F \mathbf{e}_{z}=$ const in the $z$-direction. The initial conditions are given by $z(0)=z_{0}, v(0)=0$. Derive the world line $z(t)$ and sketch it on a Minkowski space-time diagram.

