3rd Organising Committee Meeting

DESY,, February 11, 2019

Felix Sefkow

Action Items

IAC

Lecture program

Next meetings

Action Items

Follow-up

From LOC Meeting Dec 10:

- Interaction with IAC: FS, now: done, see next slide
- Lecture topics: GE, January: today
- Web site specs: GE, January: on-going, see minutes GE Jan 28

From GE Meeting Jan 28:

- Budget request (informal) (Felix, asap)
- Budget, formal (Isabelle, Felix, March)
- Summer student selection tools (Isabelle, March)
- Sponsors (Marcel, March)
- all pending

International Advisory Committee

Complete

Was upon us to compose
Iterated in ET and with J.Mnich
All contacted, all accepted

Tasks:

- advise on lecture program
- advise on course program
- possibly: support student selection

Consequences:

School concept has to be in presentable form end of April

- course program: 1 page flyers
- lecture program
- web site

IAC Members

- Phil Burrows (Oxford)
- Ariella Cattai (CERN, ICFA Instrumentation)
- Lutz Feld (Aachen, Terascale Detector Chair)
- Joe Incandela (UCSB)
- Peter Krizan (JSI, Ljubljana; ICFA)
- Joachim Mnich (DESY)
- Wataru Ootani (Tokyo)
- Eric Ramberg (FNAL, EDIT2018 Organiser)
- Hans-Christian Schultz-Coulon (Heidelberg)

Lecture Program

Starting Point

1 hour each, 16 in total

- 4 on first and 4 on last day
- 1 on the others

DESY and invited speakers

Topics

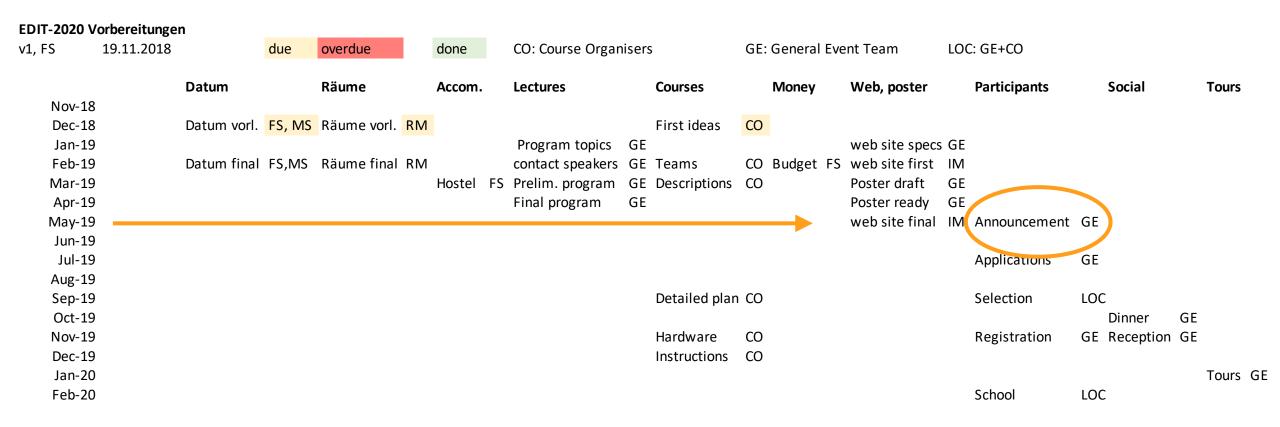
- 1. Welcome DESY, Organisation matters J Mnich, F Sefkow
- 2. Detector Development at DESY T.Behnke, IM Gregor, FS, DE, MS
- 3. Tracking: Basic principles C.Kleinwort, M.Elsing, N. Styles
- 4. Calorimetry I: Basic principles K.Krüger, F.Simon, E.Garutti
- 5. Particle Identification *P.Krizan*
- 6. Silicon Detectors I: Basic principles, sensor types and radiation damage D. Eckstein, IMG
- 7. Silicon Detectors II: Monolithic and hybrid concepts N. Wermes, S. Spannagel, P. Riedler
- 8. Silicon Detectors III: Readout architectures, mechanics and system aspects L.Feld, P.Riedler
- 9. Photodetectors E. Garutti, W. Ootani
- 10. Calorimetry II: Systems and architectures K. Krüger, F. Simon, M. Aleksa
- 11. Calorimetry III: High granularity concepts K. Krüger, F. Simon,
- 12.Gaseous Detectors C.Rembser, J.Timmermans, D.Nygren
- 13.Cryogenic Noble Gas Detectors S. S-Remboldt
- 14. Electronics and Signal Processing C. DLTaille, L. Musa
- 15. Trigger and DAQ M. Wing, HC Schultz-Coulon
- 16.Detectors: great concepts and glorious failures *I-M Gregor*

Summary

and next steps

New action items:

- Course program proposal for web site launch: due in March
- Suggestions for poster pictures
- Logo


Next Meetings: Monday 1000

- March 18
- April 15
- both full?

Back-up

Timeline

Defined.

EDIT-2020 | Felix Sefkow | February 11, 2019

In a nutshell

Excellence in Detector and Instrumentation Technologies

Attendance: PhD Students and young postdocs

about 50

plus lecturers and supervisors

Format: Lectures ans practical courses

including test beam experiments

Duration: 2 weeks

Previous editions:

CERN 2011

Fermilab 2012

KEK 2013

INFN Frascati 2015

Fermilab 2018

International Advisory Committee

- Carla Bonifazi (C.T. Rio)
- Ariella Catai, (CERN)
- Junji Haba (KEK)
- Joachim Mnich (DESY)
- Joe Lykken, (FNAL)
- Felix Sefkow (DESY)
- Yifang Wang (IHEP)
- Marcello Pavan (TRIUMF)

Latest example: Fermilab

March 5-16, 2018

Monday: Introduction, first lectures, safety training etc

Tue-Fri and Mon-Thu (8 days): Lectures and Courses

Friday: Lab tours, final lectures and close-out

Lectures: 3 + 8x1 + 3 = 14

internal and (mostly) external speakers

Courses: 4 "tracks" = courses

- held in parallel
- students form 4 groups and rotate
 - sub-groups within a track
- each course 2 days, held 4 times

Social program

reception and dinner

Group:	1	2	3	
Mar 6 (Tue)	Test Beam Day 1	Neutrinos Day 1	Photodetection Day 1	Silicon Da
Mar 7 (Wed)	Test Beam Day 2	Neutrinos Day 2	Photodetection Day 2	Silicon Da
Mar 8 (Thu)	Neutrinos Day 1	Photodetection Day 1	Silicon Day 1	Test Beam
Mar 9 (Fri)	Neutrinos Day 2	Photodetection Day 2	Silicon Day 2	Test Beam
Mar 10 (Sat)	Free Day			
Mar 11 (Sun)	Free Day			
Mar 12 (Mon)	Photodetection Day 1	Silicon Day 1	Test Beam Day 1	Neutrinos
Mar 13 (Tue)	Photodetection Day 2	Silicon Day 2	Test Beam Day 2	Neutrinos
Mar 14 (Wed)	Silicon Day 1	Test Beam Day 1	Neutrinos Day 1	Photodete
Mar 15 (Thu)	Silicon Day 2	Test Beam Day 2	Neutrinos Day 2	Photodete
Mar 16 (Fri)		Industry	& Tours	

Latest example: Fermilab

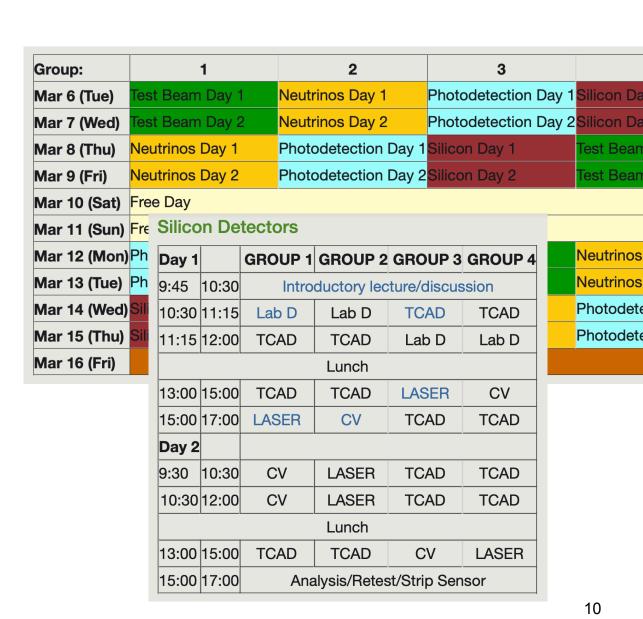
March 5-16, 2018

Monday: Introduction, first lectures, safety training etc

Tue-Fri and Mon-Thu (8 days): Lectures and Courses

Friday: Lab tours, final lectures and close-out

Lectures: 3 + 8x1 + 3 = 14


internal and (mostly) external speakers

Courses: 4 "tracks" = courses

- held in parallel
- students form 4 groups and rotate
 - sub-groups within a track
- each course 2 days, held 4 times

Social program

reception and dinner

