Fundamental High-Field Science at an X-Ray FEL Facility

A. Ringwald

http://www.desy.de/~ringwald

Scientific and Technical Issues (STI) Round-Table Meeting Hamburg/D, June 23, 2004

Free Electron Lasers in X-Ray Band

- New insights into **natural** and **life sciences**
- May possibly allow also for **high-field science** applications:
 - Envisage focusing down to diffraction limit, $\sigma \gtrsim \lambda_{
 m em} \sim 0.1~
 m nm$
 - \Rightarrow Very strong electric fields and accelerations in reach,

$$oldsymbol{\mathcal{E}} = \sqrt{\mu_0 c rac{P}{\pi \sigma^2}} = 1.1 \cdot 10^{17} rac{\mathrm{V}}{\mathrm{m}} \left(rac{P}{1 \mathrm{TW}}
ight)^{1/2} \left(rac{0.1 \mathrm{nm}}{\sigma}
ight)$$
 $oldsymbol{a} = rac{e \, oldsymbol{\mathcal{E}}}{m_e} = 1.9 \cdot 10^{28} rac{\mathrm{m}}{\mathrm{s}^2} \left(rac{P}{1 \mathrm{TW}}
ight)^{1/2} \left(rac{0.1 \mathrm{nm}}{\sigma}
ight)$

much larger than obtainable with optical laser of same peak power P \Rightarrow X-ray FELs may be employed possibly as vacuum boilers

[Chen,Pellegrini '98; AR '01; . . .]

 \Rightarrow X-ray FELs may be employed possibly as violent accelerators

[Chen, Tajima '99]

Outline:

- 1. Boiling the Vacuum with Lasers
- 2. Violent Acceleration Unruh Effect
- 3. Conclusions

A. Ringwald/DESY

1. Boiling the Vacuum with Lasers

• Spontaneous pair creation from vacuum, induced by an external **field**, was first proposed in the context of e^+e^- pair creation in static, **spatially uniform electric field** [Sauter (1931); Heisenberg, Euler (1936); Schwinger (1951); ...]

One of the most intriguing non-linear phenomena in quantum field theory

- Theoretically important: beyond perturbation theory
- Eventual experimental observation: probes theory in domain of very strong fields
- Mechanism applied to many problems in contemporary physics:
 - Quantum evaporation of black holes [Hawking (1975); Damour, Ruffini (1976); ...] - e^+e^- creation in vicinity of charged black holes [Damour,Ruffini '75; ...] - Particle production in early universe - Particle production in hadronic collisions [Casher, Neuberger, Nussinov (1979); ...]

3

- [Parker (1969); . . .]

- Fundamental High-Field Science . . . –
- Vacuum in QED unstable in a static, spatially uniform electric background field:
 - \Rightarrow Sparks with spontaneous emission of e^+e^- pairs
 - Observable rate requires extraordinary strong electric field strength, of order

$$\mathcal{E}_{c} \equiv \frac{m_{e} c^{2}}{e \lambda_{e}} = \frac{m_{e}^{2} c^{3}}{e \hbar} = 1.3 \cdot 10^{18} \frac{\mathrm{V}}{\mathrm{m}}$$

[Sauter (1931); Heisenberg, Euler (1936)]

such that

 $\begin{array}{ccc} \mbox{work of field} & \mbox{rest energy} \\ \mbox{on unit charge } e & \approx & \mbox{of } e^+e^- \mbox{ pair} \\ \mbox{over Compton wavelength } \chi_e \end{array}$

$$e \lambda_e \mathcal{E}_c =$$

STI Round-Table Meeting, Hamburg/D, June 2004

 $m_e c^2$

- Fundamental High-Field Science . . . -
- For $\mathcal{E} \ll \mathcal{E}_c$: [Schwinger (1951)]
 - Pair creation: tunneling
 - Rate **exponentially suppressed**:

$$w = \frac{\mathrm{d}^4 n_{e^+e^-}}{\mathrm{d}^3 x \, \mathrm{d} t} \propto \exp\left[-\pi \frac{\mathcal{E}_c}{\mathcal{E}}\right] = \exp\left[-\pi \frac{m_e^2 \, c^3}{\hbar \, e \, \mathcal{E}}\right]$$

- No human-made macroscopic static fields of order \mathcal{E}_c accessible
- In early 1970's:
 - Critical fields in nuclear collisions with $Z_1 + Z_2 \approx 1/\alpha$?
 - [Zel'dovich, Popov (1971); Müller, Rafelski, Greiner (1972)] - Critical fields at focus¹ or at overlap of crossed¹ intense optical lasers? [Bunkin, Tugov (1969); Brezin, Itzykson (1970); Popov (1971);...; Fried *et al.* (2001)]

¹No pair creation in plane wave.

- Fundamental High-Field Science . . . –
- Cleanest experimental setup: Two crossed laser beams ⇒ standing electromagnetic wave ⇒ pair creation in the antinode,

$$\mathbf{E}(t) = (0, 0, \mathcal{E}\cos(\omega t)), \qquad \mathbf{B}(t) = (0, 0, 0), \qquad \lambda = \frac{2\pi c}{\omega}$$

• Assume that for realistic lasers

$$\mathcal{E} \ll \mathcal{E}_c = \frac{m_e^2 c^3}{e \hbar}, \qquad \qquad \hbar \, \omega \ll m_e c^2$$

 \Rightarrow Rate of spontaneous e^+e^- creation calculable in semi-classical manner

[Brezin, Itzykson (1970); Popov (1971);...]

• The ratio

$$\eta \equiv \frac{\hbar \,\omega}{e \,\mathcal{E} \,\boldsymbol{\chi}_e} = \frac{\hbar \,\omega}{m_e c^2} \,\frac{\mathcal{E}_c}{\mathcal{E}} = \frac{m_e c \,\omega}{e \,\mathcal{E}} \equiv \frac{\mathcal{E}_\omega}{\mathcal{E}} \,.$$

independent of \hbar and plays role of an adiabaticity parameter

STI Round-Table Meeting, Hamburg/D, June 2004

A. Ringwald/DESY

- Fundamental High-Field Science . . . –
- The laser frequency ω enters in the semi-classical formulae only through the adiabaticity parameter η . For limiting cases:

$$w \equiv \frac{\mathrm{d}^4 n_{e^+e^-}}{\mathrm{d}^3 x \, \mathrm{d} t} \simeq \frac{c}{4 \, \pi^3 \chi_e^4} \begin{cases} \dots \exp\left[-\pi \frac{\mathcal{E}_c}{\mathcal{E}}\right] \,, & : \quad \eta \ll 1 \,, \\ \sum_{n>2\frac{m_e c^2}{\hbar \omega}} \dots \eta^{-2n} & : \quad \eta \gg 1 \,, \end{cases}$$

- $\eta \ll 1$: Adiabatic high-field, low-frequency limit agrees with **non-perturbative Schwinger result** for a static, spatially uniform field.
- $\eta\gg1$: Non-adiabatic low-field, high-frequency limit resembles perturbative result: corresponds to $\geq n$ -th order perturbation theory, n being the minimum number of quanta required to create an e^+e^- pair: $n\gtrsim2\,m_ec^2/(\hbar\omega)\gg1$

- Fundamental High-Field Science . . . –
- Non-perturbative Schwinger pair creation from vacuum already observed at SLAC experiment E-144?

[Burke et al. (1997); Melissinos (1998)]

 $\Leftarrow e^+e^- \text{ pair production in col-} \\ \text{lision of } 46.6 \text{ GeV/c electrons} \\ \text{with TW optical laser pulses} \\ \Rightarrow \text{ in the rest frame of the} \\ \text{incident electrons} \\ \end{cases}$

$$\mathcal{E} \sim 5 \cdot 10^{17} \text{ V/m}, \quad \eta \sim 3$$

⇒ Perturbative, multi-photon regime, but not far away from Schwinger regime

STI Round-Table Meeting, Hamburg/D, June 2004

	λ	σ	riangle t	P_{\min}	S_{\min}	\mathcal{E}_{\min}
Focused XFEL:	0.1 nm	0.1 nm	0.1 ps	2.5 TW	$7.8\cdot 10^{31}~{ m W/m}^2$	$1.7\cdot 10^{17}~{ m V/m}$
($pprox$ "aim")	0.1 nm	0.1 nm	0.1 fs	4.5 TW	$1.4\cdot 10^{32}~\mathrm{W/m^2}$	$2.3\cdot 10^{17}~\mathrm{V/m}$
Focused XFEL:	0.1 nm	20 nm	0.1 ps	38 PW	$3.0\cdot 10^{31}~ extsf{W/m}^2$	$1.1\cdot 10^{17}$ V/m
($pprox$ "state-of-art")	0.1 nm	20 nm	0.1 fs	55 PW	$4.3\cdot 10^{31}~ extsf{W/m}^2$	$1.3\cdot 10^{17}~{ m V/m}$
Focused optical laser:	$1~\mu$ m	$1~\mu$ m	10 ps	49 EW	$1.6\cdot 10^{31}~ extsf{W/m}^2$	$7.7\cdot 10^{f 16}~{f V/m}$
diffraction limit	$1~\mu$ m	$1~\mu$ m	100 fs	58 EW	$1.8\cdot 10^{31}~{ m W/m}^2$	$8.3\cdot 10^{f 16}~{ m V/m}$

• Minimum necessary power for observable effect:

• Need tens of EW optical laser or TW X-ray FEL

- Conceivable **improvements** in **XFEL** technology:
 - X-ray optics, in order to come closer to diffraction limit $\sigma\!\gtrsim\!\lambda$
 - Energy extraction, in order to increase power
- Hard to predict whether this goal will be reached before the commissioning of EW-ZW optical lasers (≥ 2020 ?).

[AR (2001)]

Laser parameter							
		Optical		XFEL			
		focus:	design	focus:	focus:		
		diffraction limit	SASE 5	state-of-art	aim		
wavelength	λ	$1~\mu$ m	0.4 nm	0.4 nm	0.15 nm		
photon energy	$\hbar \omega = rac{hc}{\lambda}$	1.2 eV	3.1 keV	3.1 keV	8.3 keV		
max. power	P \tilde{A}	1 PW	110 GW	1.1 GW	5 TW		
spot radius (rms)	σ	$1~\mu$ m	26 μ m	21 nm	0.15 nm		
coherent spike length (rms)	riangle t	500 fs \div 20 ps	0.04 fs	0.04 fs	0.08 ps		
derived quantities							
max. power density	$S = \frac{P}{\pi \sigma^2}$	$3 \cdot 10^{26} \frac{W}{m^2}$	$5 \cdot 10^{19} \frac{W}{m^2}$	$8 \cdot 10^{23} \frac{W}{m^2}$	$7 \cdot 10^{31} \frac{W}{m^2}$		
max. electric field	$\mathcal{E} = \sqrt[\pi 0]{\mu_0 c S}$	$4 \cdot 10^{14} \frac{\mathrm{m}}{\mathrm{m}}$	$1 \cdot 10^{11} \frac{W}{m}$	$2 \cdot 10^{13} \frac{W}{m}$	$2 \cdot 10^{17} \frac{W}{m}$		
max. electric field/critical field	$\mathcal{E}/\mathcal{E}_{c}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-7}$	$1 \cdot 10^{-5}$	0.1		
photon energy/ e -rest energy	$rac{\hbar\omega}{m_ec^2}$	$2 \cdot 10^{-6}$	0.006	0.006	0.02		
Adiabaticity parameter	$\eta = \frac{\hbar\omega}{e\mathcal{E}\lambda \overline{e}}$	$9 \cdot 10^{-3}$	$6 \cdot 10^4$	$5\cdot 10^2$	0.1		

	λ	σ	$\triangle t$	P_{\min}	S_{\min}	\mathcal{E}_{\min}
Focused XFEL:	0.1 nm	0.1 nm	0.1 ps	2.5 TW	$7.8\cdot 10^{31}~{ m W/m}^2$	$1.7\cdot 10^{17}~{ m V/m}$
($pprox$ "aim")	0.1 nm	0.1 nm	0.1 fs	4.5 TW	$1.4\cdot 10^{32}~\mathrm{W/m^2}$	$2.3\cdot 10^{17}~\mathrm{V/m}$
Focused XFEL:	0.1 nm	20 nm	0.1 ps	38 PW	$3.0\cdot 10^{31}~ extsf{W/m}^2$	$1.1\cdot 10^{17}$ V/m
($pprox$ "state-of-art")	0.1 nm	20 nm	0.1 fs	55 PW	$4.3\cdot 10^{31}~ extsf{W/m}^2$	$1.3\cdot 10^{17}~{ m V/m}$
Focused optical laser:	$1~\mu$ m	$1~\mu$ m	10 ps	49 EW	$1.6\cdot 10^{31}~ extsf{W/m}^2$	$7.7\cdot 10^{f 16}~{f V/m}$
diffraction limit	$1~\mu$ m	$1~\mu$ m	100 fs	58 EW	$1.8\cdot 10^{31}~{ m W/m}^2$	$8.3\cdot 10^{f 16}~{ m V/m}$

• Minimum necessary power for observable effect:

• Need tens of EW optical laser or TW X-ray FEL

- Conceivable **improvements** in **XFEL** technology:
 - X-ray optics, in order to come closer to diffraction limit $\sigma\!\gtrsim\!\lambda$
 - Energy extraction, in order to increase power
- Hard to predict whether this goal will be reached before the commissioning of EW-ZW optical lasers ($\gtrsim 2020?$).

[AR (2001)]

Geometrical optics: Focusing limit

A. Ringwald/DESY

	λ	σ	riangle t	P_{\min}	S_{\min}	\mathcal{E}_{\min}
Focused XFEL:	0.1 nm	0.1 nm	0.1 ps	2.5 TW	$7.8\cdot 10^{31}~{ m W/m}^2$	$1.7\cdot 10^{17}~{ m V/m}$
($pprox$ "aim")	0.1 nm	0.1 nm	0.1 fs	4.5 TW	$1.4\cdot 10^{32}~\mathrm{W/m^2}$	$2.3\cdot 10^{17}~\mathrm{V/m}$
Focused XFEL:	0.1 nm	20 nm	0.1 ps	38 PW	$3.0\cdot 10^{31}~ extsf{W/m}^2$	$1.1\cdot 10^{17}$ V/m
($pprox$ "state-of-art")	0.1 nm	20 nm	0.1 fs	55 PW	$4.3\cdot 10^{31}~ extsf{W/m}^2$	$1.3\cdot 10^{17}~{ m V/m}$
Focused optical laser:	$1~\mu$ m	$1~\mu$ m	10 ps	49 EW	$1.6\cdot 10^{31}~ extsf{W/m}^2$	$7.7\cdot 10^{f 16}~{f V/m}$
diffraction limit	$1~\mu$ m	$1~\mu$ m	100 fs	58 EW	$1.8\cdot 10^{31}~{ m W/m}^2$	$8.3\cdot 10^{f 16}~{ m V/m}$

• Minimum necessary power for observable effect:

• Need tens of EW optical laser or TW X-ray FEL

- - Conceivable **improvements** in **XFEL** technology:
 - X-ray optics, in order to come closer to diffraction limit $\sigma\!\gtrsim\!\lambda$
 - Energy extraction, in order to increase power
 - Hard to predict whether this goal will be reached before the commissioning of EW-ZW optical lasers ($\gtrsim 2020?$).

[AR (2001)]

[Tajima,Mourou '02]

2. Violent Acceleration – Unruh Effect

- What is the Unruh effect? [Unruh (1976)]
 - An accelerated observers sees the vacuum fluctuations as a heat bath,

$$T_{\text{Unruh}} = \frac{\hbar a}{2 \pi c k} = 4 \cdot 10^{-21} \text{ K} \left(\frac{a}{1 \text{ m/s}^2}\right)$$

 Similar situation for an observer in the vicinity of a black hole.

$$T_{\text{Hawking}} = \frac{\hbar \kappa}{2 \pi k} = 6 \cdot 10^{-8} \text{ K } \left(\frac{1 M_{\odot}}{M_{\text{bh}}}\right) ,$$

- Unruh radiation similar to Hawking radiation
- Possibility to study the physics of black holes in the laboratory

5-2000 8544A1

[P. Chen/SLAC]

[Hawking (1975)]

15

STI Round-Table Meeting, Hamburg/D, June 2004

Experimental detection possibilities discussed: [Rosu (1996)]

- Hydrodynamical analogon to Schwarzschild-metric
- Depolarisation of electrons in storage rings [Bell, Leinaas (1983÷87)] $T \approx 1200$ K at LEP/CERN; but: circular vs. linear Unruh effect? Thermal interpretation?
- Crystall- "channeling" [Darbinian et al. (1989)] $a \approx 10^{31} \text{ m/s}^2$ for ultra-relativistic particles, $\gamma \sim 10^8$; bremsstrahlungs background problematic
- Centripetal acceleration [Darbinian et al. (1990)] need $B \sim 5 \cdot 10^7$ G, $\gamma \sim 10^9$, in order to overcome synchrotron background
- Linear acceleration at the focus of an ultra-intensive laser

[Chen, Tajima (1999)]

[Unruh (1981)]

- Fundamental High-Field Science . . . -
- Accelerate electron in standing laser wave, $a\approx 10^{26}~{\rm m/s^2}$
 - Modified zero-point fluctuations

$$\langle E_i(-\tau/2)E_j(+\tau/2)\rangle = \frac{4\hbar}{\pi c^3}\delta_{ij}\frac{(a/c)^4}{\sinh^4(a\tau/2c)}$$

- \Rightarrow Additional jittering in the electron movement
- \Rightarrow Modified emitted radiation, in addition to classical Larmor radiation
 - * tilted thermal spectrum
 - * characteristic angular dependence

Schematic Diagram for Detecting Unruh Radiation

[P. Chen/SLAC]

3. Conclusions

- Have considered the possibility to study non-perturbative spontaneous e^+e^- pair creation from vacuum for the first time in the laboratory
- Still considerable improvement in X-ray FEL technology over presently considered design parameters necessary
- Although achievement of such demanding goal slow and laborious, rewards that may be gained in this unique regime of high power densities are extraordinary and well worth the effort