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Free Electron Lasers in X-Ray Band

• New insights into natural and life sciences

• May possibly allow also for high-field science applications:

– Envisage focusing down to diffraction limit, σ >
∼

λem ∼ 0.1 nm

⇒ Very strong electric fields and accelerations in reach,
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much larger than obtainable with optical laser of same peak power P

⇒ X-ray FELs may be employed possibly as vacuum boilers
[Chen,Pellegrini ’98; AR ’01; . . . ]

⇒ X-ray FELs may be employed possibly as violent accelerators
[Chen,Tajima ’99]
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Outline:

1. Boiling the Vacuum with Lasers

2. Violent Acceleration – Unruh Effect

3. Conclusions
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1. Boiling the Vacuum with Lasers

• Spontaneous pair creation from vacuum, induced by an external
field, was first proposed in the context of e+e− pair creation in static,
spatially uniform electric field [Sauter (1931); Heisenberg,Euler (1936); Schwinger (1951); . . . ]

One of the most intriguing non-linear phenomena in quantum field theory

– Theoretically important: beyond perturbation theory
– Eventual experimental observation: probes theory in domain of very

strong fields

• Mechanism applied to many problems in contemporary physics:

– Quantum evaporation of black holes [Hawking (1975); Damour,Ruffini (1976); . . . ]

– e+e− creation in vicinity of charged black holes [Damour,Ruffini ‘75; . . . ]

– Particle production in early universe [Parker (1969); . . . ]

– Particle production in hadronic collisions [Casher, Neuberger, Nussinov (1979); . . . ]
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• Vacuum in QED unstable in a static, spatially uniform electric back-
ground field:

⇒ Sparks with spontaneous emission of e+e− pairs
– Observable rate requires extraordinary strong electric field strength, of

order

Ec ≡
me c2

e λe–
=

m2
e c3

e h̄
= 1.3 · 1018 V

m

[Sauter (1931); Heisenberg, Euler (1936)]

such that
work of field rest energy

on unit charge e ≈ of e+e− pair
over Compton wavelength λe–

e λe
– Ec = me c2
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• For E ≪ Ec: [Schwinger (1951)]

– Pair creation: tunneling
– Rate exponentially suppressed:
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• No human-made macroscopic static fields of order Ec accessible

• In early 1970’s:

– Critical fields in nuclear collisions with Z1 + Z2 ≈ 1/α?
[Zel’dovich, Popov (1971); Müller, Rafelski, Greiner (1972)]

– Critical fields at focus1 or at overlap of crossed1 intense optical
lasers? [Bunkin, Tugov (1969); Brezin, Itzykson (1970); Popov (1971);...; Fried et al. (2001)]

1No pair creation in plane wave.
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• Cleanest experimental setup: Two crossed laser beams ⇒ standing
electromagnetic wave ⇒ pair creation in the antinode,

E(t) = (0, 0, E cos(ωt)) , B(t) = (0, 0, 0) , λ =
2πc

ω

• Assume that for realistic lasers

E ≪ Ec =
m2

e c3

e h̄
, h̄ ω ≪ mec

2

⇒ Rate of spontaneous e+e− creation calculable in semi-classical manner
[Brezin,Itzykson (1970); Popov (1971);...]

• The ratio
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h̄ ω
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independent of h̄ and plays role of an adiabaticity parameter
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• The laser frequency ω enters in the semi-classical formulae only through
the adiabaticity parameter η. For limiting cases:
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, : η ≪ 1 ,

∑

n>2mec2

h̄ω

. . . η−2n : η ≫ 1 ,

η ≪ 1: Adiabatic high-field, low-frequency limit agrees with non-perturbative
Schwinger result for a static, spatially uniform field.

η ≫ 1: Non-adiabatic low-field, high-frequency limit resembles perturbative
result: corresponds to ≥ n-th order perturbation theory, n being
the minimum number of quanta required to create an e+e− pair:
n >
∼ 2mec

2/(h̄ω) ≫ 1
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• Non-perturbative Schwinger
pair creation from vacuum
already observed at SLAC
experiment E-144?

[Burke et al. (1997); Melissinos (1998)]

⇐ e+e− pair production in col-
lision of 46.6 GeV/c electrons
with TW optical laser pulses
⇒ in the rest frame of the
incident electrons

E ∼ 5 · 1017 V/m, η ∼ 3

⇒ Perturbative, multi-photon
regime, but not far away from
Schwinger regime

the predicted rates [3, 4, 5] for reaction (2) become large only when � approaches unity, andnot necessarily when � becomes large.When a photon of energy �h! collides head-on with a wave of laboratory �eld strengthErms and invariant strength �, the invariant � = (2�h!=mc2)(Erms=Ecrit) = (2�h!=mc2)(�C=�0)�may be large. For example, in a head-on collision of a photon of energy 29 GeV with a 527-nmlaser pulse (�0 = 84 nm), � = 0:52�.Likewise, in reaction (3), or other e-laser interactions involving vacuum polarization, therelevant invariant is � = E?=Ecrit, where E? = 2Erms is the laser �eld strength as viewed inthe rest frame of an electron beam with laboratory energy E and Lorentz factor  = E=mc2.For a 46.6-GeV electron beam colliding head-on with a 527-nm laser, � = 0:84�.We have performed an experimental study of strong-�eld QED in the collision of a 46.6-GeV electron beam, the Final Focus Test Beam (FFTB) at SLAC [10], with terawatt pulsesfrom a frequency doubled Nd:glass laser with a repetition rate of 0.5 Hz achieved by a �nallaser ampli�er with slab geometry [11, 12, 13, 14]. A schematic diagram of the experimentis shown in Fig. 1. The apparatus was designed to detect electrons that undergo nonlinearCompton scattering e+ n!0 ! e0 + ! (4)as well as positrons produced in e-laser interactions. Measurements of reaction (4) have beenreported elsewhere [11, 15].
Figure 1: Schematic layout of the experiment.The peak focused laser intensity was obtained for linearly polarized green (527 nm) pulsesof energy U = 650 mJ, focal area A � 2��x�y = 30 �m2 and width �t = 1:6 ps (fwhm), forwhich I = U=A�t � 1:3� 1018 W/cm2, � = 0:36, � = 0:2 and � = 0:3.The electron beam was operated at 10-30 Hz and was tuned to a focus with �x = 25 �mand �y = 40 �m at the laser-electron interaction point. Typical bunches were 7 ps long(fwhm) and contained 7� 109 electrons.A string of permanent magnets after the collision point deected the electron beamdownwards by 20 mrad. Electrons and positrons of momenta less than 20 GeV were de-ected by the magnets into two Si-W calorimeters (ECAL and PCAL) with energy resolu-tion �E=E � 19%=qE[GeV] and position resolution of 2 mm. The Si-W calorimeters were3

[Burke et al. (1997)]

η−1
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• Minimum necessary power for observable effect: [AR (2001)]

λ σ △t Pmin Smin Emin

Focused XFEL: 0.1 nm 0.1 nm 0.1 ps 2.5 TW 7.8 · 1031 W/m2 1.7 · 1017 V/m

(≈ “aim”) 0.1 nm 0.1 nm 0.1 fs 4.5 TW 1.4 · 1032 W/m2 2.3 · 1017 V/m

Focused XFEL: 0.1 nm 20 nm 0.1 ps 38 PW 3.0 · 1031 W/m2 1.1 · 1017 V/m

(≈ “state-of-art”) 0.1 nm 20 nm 0.1 fs 55 PW 4.3 · 1031 W/m2 1.3 · 1017 V/m

Focused optical laser: 1 µm 1 µm 10 ps 49 EW 1.6 · 1031 W/m2 7.7 · 1016 V/m

diffraction limit 1 µm 1 µm 100 fs 58 EW 1.8 · 1031 W/m2 8.3 · 1016 V/m

• Need tens of EW optical laser or TW X-ray FEL

⇐ Power densities and electric fiels that can be reached with presently
available techniques far too small for observable effect (cf. extra table)

• Conceivable improvements in XFEL technology:
– X-ray optics, in order to come closer to diffraction limit σ >

∼λ
– Energy extraction, in order to increase power

• Hard to predict whether this goal will be reached before the
commissioning of EW-ZW optical lasers (>

∼ 2020?).
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Laser parameter

Optical XFEL

focus: design focus: focus:

diffraction limit SASE 5 state-of-art aim

wavelength λ 1 µm 0.4 nm 0.4 nm 0.15 nm

photon energy h̄ ω = hc
λ

1.2 eV 3.1 keV 3.1 keV 8.3 keV

max. power P 1 PW 110 GW 1.1 GW 5 TW

spot radius (rms) σ 1 µm 26 µm 21 nm 0.15 nm
coherent spike length (rms) △t 500 fs ÷ 20 ps 0.04 fs 0.04 fs 0.08 ps

derived quantities

max. power density S = P
πσ2 3 · 1026 W

m2 5 · 1019 W
m2 8 · 1023 W

m2 7 · 1031 W
m2

max. electric field E =
√

µ0 c S 4 · 1014 V
m 1 · 1011 V

m 2 · 1013 V
m 2 · 1017 V

m

max. electric field/critical field E/Ec 3 · 10−4 1 · 10−7 1 · 10−5 0.1

photon energy/e-rest energy h̄ω
mec2

2 · 10−6 0.006 0.006 0.02

Adiabaticity parameter η = h̄ω
e Eλe–

9 · 10−3 6 · 104 5 · 102 0.1
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• Minimum necessary power for observable effect: [AR (2001)]
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diffraction limit 1 µm 1 µm 100 fs 58 EW 1.8 · 1031 W/m2 8.3 · 1016 V/m

• Need tens of EW optical laser or TW X-ray FEL

⇐ Power densities and electric fiels that can be reached with presently
available techniques far too small for observable effect (cf. extra table)

• Conceivable improvements in XFEL technology:
– X-ray optics, in order to come closer to diffraction limit σ >
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– Energy extraction, in order to increase power

• Hard to predict whether this goal will be reached before the
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• Minimum necessary power for observable effect: [AR (2001)]

λ σ △t Pmin Smin Emin

Focused XFEL: 0.1 nm 0.1 nm 0.1 ps 2.5 TW 7.8 · 1031 W/m2 1.7 · 1017 V/m
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diffraction limit 1 µm 1 µm 100 fs 58 EW 1.8 · 1031 W/m2 8.3 · 1016 V/m

• Need tens of EW optical laser or TW X-ray FEL

⇐ Power densities and electric fiels that can be reached with presently
available techniques far too small for observable effect (cf. extra table)

• Conceivable improvements in XFEL technology:
– X-ray optics, in order to come closer to diffraction limit σ >

∼λ
– Energy extraction, in order to increase power

• Hard to predict whether this goal will be reached before the
commissioning of EW-ZW optical lasers (>

∼ 2020?).
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[Tajima,Mourou ‘02]
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2. Violent Acceleration – Unruh Effect

• What is the Unruh effect? [Unruh (1976)]

– An accelerated observers sees the
vacuum fluctuations as a heat
bath,

TUnruh =
h̄ a

2 π c k
= 4 · 10−21 K

(

a

1 m/s2

)

– Similar situation for an observer
in the vicinity of a black hole.

THawking =
h̄ κ

2 π k
= 6 · 10−8 K

(

1 M⊙

Mbh

)

,



[P. Chen/SLAC]

• Why interesting?

– Unruh radiation similar to Hawking radiation [Hawking (1975)]

– Possibility to study the physics of black holes in the laboratory

A. Ringwald/DESY STI Round-Table Meeting, Hamburg/D, June 2004



– Fundamental High-Field Science . . . – 16

• Experimental detection possibilities discussed: [Rosu (1996)]

– Hydrodynamical analogon to Schwarzschild-metric [Unruh (1981)]

– Depolarisation of electrons in storage rings [Bell, Leinaas (1983÷87)]

T ≈ 1200 K at LEP/CERN; but: circular vs. linear Unruh effect? Thermal interpretation?

– Crystall-“channeling” [Darbinian et al. (1989)]

a ≈ 1031 m/s2 for ultra-relativistic particles, γ ∼ 108; bremsstrahlungs background problematic

– Centripetal acceleration [Darbinian et al. (1990)]

need B ∼ 5 · 107 G, γ ∼ 109, in order to overcome synchrotron background

– Linear acceleration at the focus of an ultra-intensive laser
[Chen, Tajima (1999)]
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• Accelerate electron in standing laser
wave, a ≈ 1026 m/s2

– Modified zero-point fluctuations

〈Ei(−τ/2)Ej(+τ/2)〉 =
4h̄

πc3
δij

(a/c)4

sinh4(aτ/2c)

⇒ Additional jittering in the electron
movement

⇒ Modified emitted radiation, in
addition to classical Larmor radiation
∗ tilted thermal spectrum
∗ characteristic angular dependence

[P. Chen/SLAC]

A. Ringwald/DESY STI Round-Table Meeting, Hamburg/D, June 2004



– Fundamental High-Field Science . . . – 18

3. Conclusions

• Have considered the possibility to study non-perturbative spontaneous
e+e− pair creation from vacuum for the first time in the laboratory

• Still considerable improvement in X-ray FEL technology over presently
considered design parameters necessary

• Although achievement of such demanding goal slow and laborious,
rewards that may be gained in this unique regime of high power
densities are extraordinary and well worth the effort
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