A. Ringwald

http://www.desy.de/~ringwald

Physikalisches Kolloquium Jena, 17. Mai 2004

1. Einführung

• In konkreter Planung:

Freie-Elektronen-Laser im Röntgenbereich

- SLAC (⇒ Linac Coherent Light Source)
- **DESY** (\Rightarrow Europäisches Röntgenlaserprojekt **XFEL**)
- ⇒ Neue Einsichten in **Natur** und **Lebenswissenschaften**

- Spektrale Eigenschaften
 - Hohe Leistung
 - Kurze Pulslänge
 - Enge Bandbreite
 - Räumliche Kohärenz
 - Stimmbare Wellenlänge

⇒ Anwendungen

- Atom- und Molekülphysik
- Physik der kondensierten Materie
- Materialwissenschaften
- Chemie
- Strukturelle Biologie
- Plasmaphysik
- Grundlagenphysik?

A. Ringwald/DESY

Fahrplan:

- 2. Freie-Elektronen-Laser im Röntgenbereich
- 3. Grundlagenphysikalische Anwendungen
- Kochen des Vakuums
- Unruh-Effekt
- Axionproduktion
- 4. Zusammenfassung

2. Freie-Elektronen-Laser (FEL) im Röntgenbereich

- Konventionelle Laser: Strahlung typischerweise im optischen Bereich
 - timulierte Emission von atomar gebundenen Elektronen
 - \Leftarrow Gebrauch von Spiegeln
- Verstärkungsmedium von FELs sind freie (ungebundene) Elektronenbündel, beschleunigt zu relativistischen Geschwindigkeiten, mit einer charakteristischen longitudinalen Ladungsdichtemodulation [Madey '71]

FEL im Self Amplified Spontaneous Emission (SASE) Modus

[Kodratenko, Saldin (1980); Bonifacio, Pellegrini (1984)]

A. Ringwald/DESY

Öffnungswinkel

$$\frac{1}{\gamma} = \frac{m_e c^2}{E_e} = 2 \cdot 10^{-5} \, \left(\frac{25 \,\,{\rm GeV}}{E_e}\right)$$

5

Resonanzbedingung

$$\lambda_{
m em} = rac{\lambda_{
m U}}{2\gamma^2} \left(1+rac{K_{
m U}^2}{2}
ight)$$

Undulatorparameter

$$K_{\rm U} = \frac{e\lambda_{\rm U}B_{\rm U}}{2\pi m_e c} \sim 1$$

Strahlungsleistung

$$P \propto e^2 \, N_e^2 \, B_{
m U}^2 \, \gamma^2$$

Verstärkung durch Kohärenz

 $N_e = 10^{9 \div 10}$

⇒ Spektrale Eigenschaften

- Hohe Leistung
- Kurze Pulslänge
- Enge Bandbreite
- Räumliche Kohärenz
- Stimmbare Wellenlänge

Physikalisches Kolloquium, Jena/D, Mai 2004

- Grundlagenphysik mit Freie-Elektronen-Lasern -
- **Transversale Verteilung der Strahlungsintensität** am Eingang (links), in der Mitte (Mitte), and am Ausgang (rechts) des Undulators

• Räumliche Verteilung der Strahlungsintensität in der Mitte (links) und am Ausgang (rechts) des Undulators

- Grundlagenphysik mit Freie-Elektronen-Lasern -
- Zeitliche (links) and spektrale (rechts) Struktur eines Strahlungspulses eines SASE X-FELs bei einer Wellenlänge von 0.1 nm

• Existierende und geplante SASE FELs

Wo?	$\lambda_{ m em}$	Jahr
Livermore	~ 1 mm	1986
LURE/Orsay	5 \div 10 μ m	1997
UCLA/LANL	12 μ m	1998
LEUTL/Argonne	530 nm	1999
	385 nm	2000
TTF1 VUV-FEL/DESY	$80 \div 180$ nm	2000
TTF2 VUV-FEL/DESY	6 ÷ 40 nm	2004
LCLS/SLAC	0.15 nm	2005 – 2008 Konstr.
XFEL/DESY	0.085 ÷ 5.8 nm	2005 – 2011 Konstr.

TTF: TESLA Test Facility

LCLS: Linac Coherent Light Source

• Das Europäische Röntgenlaserprojekt XFEL

	Einh.	SASE 1	SASE 2	SASE 3	SASE 4	SASE 5
Wellenlänge	nm	$0.1 \div 0.5$	$0.085 \div 0.133$	$0.1 \div 0.24$	$0.1 \div 1.0$	$0.4 \div 5.8$
Bandbreite (FWHM)	%	0.08	0.07	0.08	0.08	$0.29 \div 0.7$
max. Leistung	GW	37	19	22	30	$110 \div 200$
durchschn. Leistung	W	210	110	125	170	$610 \div 1100$
Photonstrahlgr. (rms)	μ m	43	47	53	47	$25 \div 38$
max. Leistungsdichte	${\sf W}/{\sf m}^2$	$6\cdot 10^{18}$	$3\cdot 10^{18}$	$3\cdot 10^{18}$	$3 \cdot 10^{18}$	$6\cdot 10^{19}$

A. Ringwald/DESY

3. Grundlagenphysikalische Anwendungen

- Grundlagenphysik mit X-FELs:
 - Paarerzeugung in starkem elektrischen Feld "Vakuumkochen"
 - Unruh-Effekt "(Ereignis-)Horizontphysik"
 - Axionproduktion
- \Rightarrow Starke elektrische Felder $\mathcal{E} \leftrightarrow$ große Strahlungsdichten $P/(\pi\sigma^2)$
- \leftarrow Fokussierung bis hinunter zur Beugungsgrenze, $\sigma \gtrsim \lambda_{
 m em} \sim 0.1~
 m nm$
- \Rightarrow Sehr starke elektrische Felder und Beschleunigungen möglich,

$$\mathcal{E} = \sqrt{\mu_0 c \frac{P}{\pi \sigma^2}} = 1.1 \cdot 10^{17} \frac{V}{m} \left(\frac{P}{1 \text{ TW}}\right)^{1/2} \left(\frac{0.1 \text{ nm}}{\sigma}\right)$$
$$a = \frac{e \mathcal{E}}{m_e} = 1.9 \cdot 10^{28} \frac{m}{s^2} \left(\frac{P}{1 \text{ TW}}\right)^{1/2} \left(\frac{0.1 \text{ nm}}{\sigma}\right)$$

viel größer als mit optischen Lasern derselben Spitzenleistung P

A. Ringwald/DESY

Kochen des Vakuums

• Spontane Teilchenerzeugung aus dem Vakuum, induziert von einem **äußeren Feld**, zuerst diskutiert im Kontext der e^+e^- Paarerzeugung in einem statischen, räumlich uniformen elektrischen Feld

[Sauter (1931); Heisenberg, Euler (1936); Schwinger (1951); ...]

Faszinierendes, nichtlineares Phänomen in der Quantenfeldtheorie

- Theorie: jenseits der gewöhnlichen Störungstheorie
- Experiment: testet die Theorie in der Domäne sehr starker Felder
- Mechanismus hat viele Anwendungen in moderner Physik:
 - Evaporation von schwarzen Löchern [Hawking (1975); Damour, Ruffini (1976); ...]
 - Teilchenproduktion im frühen Universum [Parker (1969); . . .]
 - Teilchenproduktion in hadronischen Teilchenkollisionen

[Casher, Neuberger, Nussinov (1979); ...]

- Grundlagenphysik mit Freie-Elektronen-Lasern -
- In statischem, räumlich uniformen elektrischen Hintergrundsfeld ist das Vakuum in der QuantenElektroDynamik (QED) instabil:
 - \Rightarrow "Funkensprühen": spontane Erzeugung von e^+e^- Paaren
 - Für beobachtbare Rate, benötige enorme Feldstärke,

$$\mathcal{E}_c \equiv \frac{m_e c^2}{e \, \lambda_e} = \frac{m_e^2 c^3}{e \, \hbar} = 1.3 \cdot 10^{18} \, \frac{\mathrm{V}}{\mathrm{m}}$$

[Sauter (1931); Heisenberg, Euler (1936)]

so daß

Arbeit des Feldes Ruheenergie an Einheitsladung $e \approx \operatorname{von} e^+e^-$ Paar über Comptonwellenlänge λ_e

$$e \lambda_e \mathcal{E}_c = m_e c^2$$

- Grundlagenphysik mit Freie-Elektronen-Lasern -
- Für $\mathcal{E} \ll \mathcal{E}_c$: [Schwinger (1951)]
 - Paarerzeugung: Quantentunneln
 - Rate exponentiell unterdrückt:

$$w = \frac{\mathrm{d}^4 n_{e^+e^-}}{\mathrm{d}^3 x \, \mathrm{d} t} \propto \exp\left[-\pi \frac{\mathcal{E}_c}{\mathcal{E}}\right] = \exp\left[-\pi \frac{m_e^2 \, c^3}{\hbar \, e \, \mathcal{E}}\right]$$

- Keine makroskopischen statischen Felder von der Größenordnung \mathcal{E}_c
- In frühen 1970ern:
 - Kritische Felder in **Kernstößen mit** $Z_1 + Z_2 \approx 1/\alpha$?
 - [Zel'dovich, Popov (1971); Müller, Rafelski, Greiner (1972)] – Kritische Felder am Fokus¹ oder in der Überschneidung von gekreuzten¹ intensiven optischen Lasern?

[Bunkin, Tugov (1969); Brezin, Itzykson (1970); Popov (1971);...; Fried et al. (2001)]

¹Keine Paarerzeugung in ebener Welle!

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Am Fokus eines ~ 5 Terawatt X-FEL könnten 10% der kritischen Feldstärke erreicht werden: [Chen, Pellegrini (1998); Melissinos (1998); AR (2001)]

Laserparameter						
		Optisch		X-FEL		
		Fokus:	Design	Fokus:	Fokus:	
		Beugungsgrenze	SASE 5	Heute machbar	Ziel	
Wellenlänge	λ	$1~\mu$ m	0.4 nm	0.4 nm	0.15 nm	
Photonenergie	$\hbar \omega = \frac{hc}{\lambda}$	1.2 eV	3.1 keV	3.1 keV	8.3 keV	
max. Leistung	P	1 PW	110 GW	1.1 GW	5 TW	
Spotradius (rms)	σ	$1~\mu$ m	26 μ m	21 nm	0.15 nm	
kohärente Spikelänge (rms)	riangle t	500 fs \div 20 ps	0.04 fs	0.04 fs	0.08 ps	
	Δ	bgeleitete Größen				
max. Leistungsdichte	$S = \frac{P}{\pi \sigma^2}$	$3 \cdot 10^{26} \ \frac{W}{m^2}$	$5 \cdot 10^{19} \frac{W}{m^2}$	$8 \cdot 10^{23} \ \frac{W}{m^2}$	$7 \cdot 10^{31} \frac{W}{m^2}$	
max. electric field	$\mathcal{E} = \sqrt{\mu_0 c S}$	$4 \cdot 10^{14} \frac{V}{m}$	$1 \cdot 10^{11} \frac{\text{W}}{\text{m}}$	$2 \cdot 10^{13} \frac{W}{m}$	$2 \cdot 10^{17} \frac{V}{m}$	
max. elektrisches Feld/kritisches Feld	$\mathcal{E}/\mathcal{E}_{c}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-7}$	$1 \cdot 10^{-5}$	0.1	
$Photonenergie/e\operatorname{-Ruheenergie}$	$\frac{\hbar\omega}{m_ec^2}$	$2 \cdot 10^{-6}$	0.006	0.006	0.02	
Adiabatizitätsparamotor	$\tilde{h}\omega$	0.10^{-3}	c 104	F 10 ²	0.1	

• Oder, ~ 50 Exawatt (= 5×10^7 TW) optischer Laser

- Etwas Theorie zur Abschätzung der kritischen Laserparameter für einen beobachtbaren Effekt [AR (2001)]
- ⇒ Vereinfachte N\u00e4herung f\u00fcr das elektromagnetische Feld der Laserstrahlung:
 - Paarerzeugung in der Überschneidung von zwei gekreuzten Laserstrahlen. Nehme an, daß dort das elektromagnetische Feld demjenigen in einer Antinode einer **stehenden Welle** ähnelt:

$$\mathbf{E}(t) = (0, 0, \mathcal{E}\cos(\omega t)), \qquad \mathbf{B}(t) = (0, 0, 0), \qquad \lambda = \frac{2\pi c}{\omega}$$

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Nehme an, daß für realistische Laser

$$\mathcal{E} \ll \mathcal{E}_c = \frac{m_e^2 c^3}{e \hbar}, \qquad \qquad \hbar \, \omega \ll m_e c^2$$

- ⇒ Rate der spontanen e^+e^- Erzeugung in **semiklassischer** Weise ($\hbar \ll 1$) berechenbar,
 - mit verallgemeinerten WKB Methoden

- mit imaginären-Zeit (Instanton) Methoden

[Brezin, Itzykson (1970)] [Popov (1971)];...]

• Das Verhältnis

$$\eta \equiv \frac{\hbar \,\omega}{e \,\mathcal{E} \,\lambda_e} = \frac{\hbar \,\omega}{m_e c^2} \frac{\mathcal{E}_c}{\mathcal{E}} = \frac{m_e c \,\omega}{e \,\mathcal{E}} \equiv \frac{\mathcal{E}_\omega}{\mathcal{E}}$$

ist unabhängig von \hbar and spielt Rolle eines Adiabatizitätsparameters

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Laserfrequenz ω tritt in semiklassischer Formel nur in Form des Adiabatizitätsparameters $\eta \equiv \hbar \omega / (e \mathcal{E} \chi_e)$ auf. Grenzfälle: $w \equiv \frac{\mathrm{d}^4 n_{e^+e^-}}{\mathrm{d}^3 x \, \mathrm{d} t} \simeq \frac{c}{4 \pi^3 \chi_e^4} \times \left[\sqrt{2} \left(\mathcal{E} \right)^{\frac{5}{2}} - \left[- \mathcal{E} \left((1 - 1/2) + \mathcal{E} \left(\mathcal{E} \right) \right) \right]$

$$\times \begin{cases} \frac{\sqrt{2}}{\pi} \left(\frac{\mathcal{E}}{\mathcal{E}_{c}}\right)^{\frac{1}{2}} \exp\left[-\pi \frac{\mathcal{E}_{c}}{\mathcal{E}} \left(1 - \frac{1}{8}\eta^{2} + \mathcal{O}(\eta^{4})\right)\right], & : \eta \ll 1, \\ \sqrt{\frac{\pi}{2}} \left(\frac{\hbar \omega}{m_{e}c^{2}}\right)^{\frac{5}{2}} \sum_{n>2\frac{m_{e}c^{2}}{\hbar\omega}} \left(\frac{e}{4\eta}\right)^{2n} e^{-2\left(n-2\frac{m_{e}c^{2}}{\hbar\omega}\right)} \operatorname{Erfi}\left(\sqrt{2\left(n-2\frac{m_{e}c^{2}}{\hbar\omega}\right)}\right) & : \eta \gg 1, \end{cases}$$

- $\eta \ll 1$: Adiabatischer Hochfeld-, Kleinfrequenz-Limit stimmt mit nichtstörungstheoretischem Ergebnis von Schwinger für ein statisches, räumlich uniformes Feld überein
- $\eta \gg 1$: Nicht-adiabatischer Kleinfeld-, Hochfrequenz-Limit ähnelt störungstheoretischem Resultat: entspricht $\geq n$ -ter Ordnung Störungstheorie, wobei n die minimale Anzahl von Laserphotonen ist, die benötigt werden um ein e^+e^- Paar zu erzeugen: $n \geq 2 m_e c^2/(\hbar \omega) \gg 1$

- Grundlagenphysik mit Freie-Elektronen-Lasern -
- Nichtstörungstheoretische Vakuum-Paarerzeugung schon bei SLAC Experiment E-144 beobachtet?

[Burke et al. (1997); Melissinos (1998)]

 $\Leftarrow e^+e^- \text{ Paarerzeugung in Kol-} \\ \text{lisionen von } 46.6 \text{ GeV/c} \\ \text{Elektronen mit TW optischen} \\ \text{Laserpulsen} \Rightarrow \text{im Ruhesystem} \\ \text{der einlaufenden Elektronen} \\ \end{cases}$

$$\mathcal{E} \sim 5 \times 10^{17} \text{ V/m}, \quad \eta \sim 3$$

⇒ Störungstheoretisches Multi-Photon-Regime, aber nahe Schwinger-Regime

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Minimal-notwendige Leistung für beobachtbaren Effekt:

(2001)]	
2001 //	
/1	

	λ	σ	riangle t	P_{\min}	S_{\min}	\mathcal{E}_{\min}	
Fokussierter X-FEL:	0.1 nm	0.1 nm	0.1 ps	2.5 TW	$7.8\cdot 10^{31}~{ m W/m}^2$	$1.7\cdot 10^{17}~\mathrm{V/m}$	
$(\approx$ "Ziel")	0.1 nm	0.1 nm	0.1 fs	4.5 TW	$1.4\cdot 10^{32}~\mathrm{W/m^2}$	$2.3\cdot 10^{17}~\mathrm{V/m}$	
Fokussierter X-FEL:	0.1 nm	20 nm	0.1 ps	38 PW	$3.0\cdot10^{31}~ extsf{W/m}^2$	$1.1\cdot10^{17}$ V/m	
($pprox$ "Heute machbar")	0.1 nm	20 nm	0.1 fs	55 PW	$4.3\cdot 10^{31}~\mathrm{W/m}^2$	$1.3\cdot 10^{17}~{ m V/m}$	
Fokussierter optischer Laser:	$1~\mu$ m	$1~\mu$ m	10 ps	49 EW	$1.6\cdot 10^{31}~\mathrm{W/m}^2$	$7.7\cdot 10^{f 16}~{ m V/m}$	
Beugungsgrenze	$1~\mu$ m	$1~\mu$ m	100 fs	58 EW	$1.8\cdot 10^{31}~{ m W/m}^2$	$8.3\cdot 10^{f 16}~{ m V/m}$	

s.a.: [Alkofer,Hecht,Roberts,Schmidt,Vinnik (2001); Roberts,Schmidt,Vinnik (2002); Bulanov,Narozhny,Mur,Popov (2004)]

- Brauche ~ 50 EW optischen Laser oder 5 TW 50 PW X-FEL
- - Denkbare Verbesserungen in X-FEL Technologie:
 - Röntgenoptik, um näher an Beugungsgrenze, $\sigma \gtrsim \lambda$, zu kommen
 - Energieextraktion, um Leistung zu vergrößern
- ⇒ Schwinger-Effekt zum ersten Mal in Reichweite (≥ 2020)! Spannendes Rennen zwischen X-FEL und optischen Lasern!

Laserparameter						
		Optisch		X-FEL		
		Fokus:	Design	Fokus:	Fokus:	
		Beugungsgrenze	SASE 5	Heute machbar	Ziel	
Wellenlänge	λ	$1~\mu$ m	0.4 nm	0.4 nm	0.15 nm	
Photonenergie	$\hbar \omega = \frac{hc}{\lambda}$	1.2 eV	3.1 keV	3.1 keV	8.3 keV	
max. Leistung	P	1 PW	110 GW	1.1 GW	5 TW	
Spotradius (rms)	σ	$1~\mu$ m	26 μ m	21 nm	0.15 nm	
kohärente Spikelänge (rms)	riangle t	500 fs \div 20 ps	0.04 fs	0.04 fs	0.08 ps	
	Δ	Abgeleitete Größen				
max. Leistungsdichte	$S = \frac{P}{\pi \sigma^2}$	$3 \cdot 10^{26} \frac{W}{m^2}$	$5 \cdot 10^{19} \frac{W}{m^2}$	$8 \cdot 10^{23} \frac{W}{m^2}$	$7 \cdot 10^{31} \frac{W}{m^2}$	
max. electric field	$\mathcal{E} = \sqrt{\mu_0 c S}$	$4 \cdot 10^{14} \frac{\text{W}}{\text{m}}$	$1 \cdot 10^{11} \frac{W}{m}$	$2 \cdot 10^{13} \frac{\mathrm{W}}{\mathrm{m}}$	$2 \cdot 10^{17} \frac{W}{m}$	
max. elektrisches Feld/kritisches Feld	$\mathcal{E}/\mathcal{E}_{c}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-7}$	$1 \cdot 10^{-5}$	0.1	
Photonenergie/ e -Ruheenergie	$rac{\hbar\omega}{m_ec^2}$	$2 \cdot 10^{-6}$	0.006	0.006	0.02	
Adiabatizitätsparameter	$\eta \stackrel{\smile}{=} \frac{\hbar\omega}{e\mathcal{E}\lambda_e}$	$9 \cdot 10^{-3}$	$6 \cdot 10^4$	$5\cdot 10^2$	0.1	

Unruh-Effekt

- Was ist der Unruh-Effekt?
 - Ein beschleunigter Beobachter sieht die Vakuumfluktuationen als ein Wärmebad [Unruh (1976)]

$$T_{\text{Unruh}} = \frac{\hbar a}{2 \pi c k} = 4 \cdot 10^{-21} \text{ K} \left(\frac{a}{1 \text{ m/s}^2}\right)$$

 – Ähnliche Situation für einen Beobachter in der Nähe eines schwarzen Lochs [Hawking (1975)]

$$T_{\text{Hawking}} = \frac{\hbar \kappa}{2 \pi k} = 6 \cdot 10^{-8} \text{ K} \left(\frac{1 M_{\odot}}{M_{\text{sL}}}\right)$$

⇒ Studium der Physik schwarzer Löcher im Labor

EVENT HORIZONS: From Black Holes to Acceleration

• Experimentelle Nachweismöglichkeiten:

- Hydrodynamisches Analogon zur Schwarzschild-Metrik [Unruh (1981)]
- Depolarisation von Elektronen in Speicherringen [Bell, Leinaas (1983 \div 87)] $T \approx 1200$ K am LEP/CERN; aber: zirkulärer vs. linearem Unruh-Effekt? Thermische Interprätation?
- Kristall-"Channeling" [Darbinian *et al.* (1989)] $a \approx 10^{31}$ m/s² für ultra-relativistische Teilchen, $\gamma \sim 10^8$; Bremsstrahlungsuntergrund problematisch
- Zentripetale Beschleunigung [Darbinian *et al.* (1990)] brauche $B \sim 5 \cdot 10^7$ G, $\gamma \sim 10^9$, um Synchrotronstrahlungsuntergrund zu überbieten
- Lineare Beschleungigung am Fokus eines ultra-intensiven Lasers

[Chen, Tajima (1999)]

[Rosu (1996)]

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Beschleunige Elektron in stehender Laserwelle, $a\approx 10^{26}~{\rm m/s^2}$
 - \Rightarrow Modifizierte Nullpunktfluktuationen

$$\langle E_i(-\tau/2)E_j(+\tau/2)\rangle = \frac{4\hbar}{\pi c^3}\delta_{ij}\frac{(a/c)^4}{\sinh^4(a\tau/2c)}$$

- \Rightarrow Zusätzliche Zitterbewegung des Elektrons
- ⇒ Modifikation in emittierter Strahlung, zusätzlich zur klassischen Larmorstrahlung
 - * gekipptes thermisches Spektrum
 - * charakteristische Winkelabhängigkeit

Schematic Diagram for Detecting Unruh Radiation

[P. Chen/SLAC]

Axionproduktion

• Was ist ein Axion?

[Peccei, Quinn (1977); S. Weinberg (1978); Wilczek (1978)]

- Hypothetisches, sehr leichtes, schwach gekoppeltes (pseudo-)skalares Teilchen, A^0 : "Pseudo-Nambu-Goldstone-Boson"
- Natürliche Lösung des starken *CP* Problems:
 Wieso ist der effektive θ-Parameter in der QCD Lagrange-Funktion

$$\mathcal{L}_{\theta} = \theta_{\text{eff}} \frac{\alpha_s}{8\pi} F^{\mu\nu a} \tilde{F}_{\mu\nu a}$$

so klein, $\theta_{\text{eff}} \leq 10^{-9}$ (\Leftarrow elektrisches Dipolmoment des Neutrons)? - Peccei-Quinn-Skala f_A bestimmt die Masse,

$$m_A = 0.62 \cdot 10^{-3} \text{ eV} \times \left(\frac{10^{10} \text{ GeV}}{f_A}\right)$$

A. Ringwald/DESY

- Grundlagenphysik mit Freie-Elektronen-Lasern
 - Wechselwirkungen mit Standardmodellteilchen modellabhängig, z. B. Axion-Photon-Kopplung,

[Raffelt . . .

$$\mathcal{L}_{WW} = -g_{A\gamma} A \mathbf{E} \cdot \mathbf{B}; \qquad g_{A\gamma} = \frac{\alpha}{2\pi f_A} \left(\frac{E}{N} - 1.92\right)$$

- Astrophysikalische Einschränkungen
 - Axionen werden in heißen Plasmen erzeugt und führen zu Energieverlusten durch Abstrahlung
 - Lebenszeiten von Sternen \Rightarrow Einschränkungen an Wechselwirkungsstärken mit Photonen, Elektronen, Nukleonen \Rightarrow Einschränkungen an $g_{A\gamma}$ (\Rightarrow f_A und m_A).

• Experimentelle Grenzen

Stärkste Grenzen:

Produktion im frühen Universum oder in astrophysikalischen Quellen;

Detektion im Labor:

- Suche nach **dunkler Materie**
 - * Mikrowellen-Hohlraum-Experimente
- Suche nach **solaren Axionen**
 - Solar-magnetisch
 (CAST: Verbesserung um eine GrO in 2004)
 - * Solar-Germanium

Viel schwächer: **Reine Laborexperimente** (Detektion **und** Produktion im Labor):

- Laserexperimente

A. Ringwald/DESY

Photonregeneration

- **Produktion:** Polarisierter Laserstrahl in supraleitendem Dipolmagneten, so daß $\mathbf{E} \mid \mid \mathbf{B} \Rightarrow$ Konversion $\gamma \rightarrow A$
- Absorbiere Laserstrahl in Wand
- Detektion: Nachweis der hinter der Wand in einem zweiten Magnetfeld durch Rückkonversion $(A \rightarrow \gamma)$ entstandenen Photonen

Rate
$$\propto \frac{1}{16} \left(\frac{g_{A\gamma} B \ell}{P_{\gamma \leftrightarrow A}} \right)^4 \frac{\langle P \rangle}{\omega} \epsilon$$

Kohärenzbedingung

$$m_A \ll 1.1 \cdot 10^{-4} \text{ eV} \left(\frac{\hbar \omega}{1 \text{ eV}} \frac{1 \text{ m}}{\ell} \right)^{1/2}$$

A. Ringwald/DESY

Pilotexperiment:

[Cameron *et al.* (1993)]

$$B = 3.7 \text{ T}, \ell = 4.4 \text{ m}, \langle P \rangle = 3 \text{ W}, \lambda = 514 \text{ nm}$$

 $\Rightarrow g_{A\gamma} < 6.7 \cdot 10^{-7} \text{ GeV}^{-1} \text{ for } m_A < 10^{-3} \text{ eV}$

- Grundlagenphysik mit Freie-Elektronen-Lasern -
- ⇒ Sensitivität eines X-FEL Photonregenerationsexperiments:
 - **SASE**-5:

$$\langle P \rangle = 1.1 \text{ kW}$$
 , $\lambda = 5.8 \text{ nm}$

$$B = 10 \text{ T} \quad , \quad \ell = 10 \text{ m}$$

- 10 GW X-FEL:

 $\langle P \rangle = 10 \text{ GW} \quad , \quad \lambda = 5.8 \text{ nm}$

 $B = 40 \text{ T} \quad , \quad \ell = 40 \text{ m}$

- Unrealistisch: nur gültig, wenn Kohärenzlänge $\ell_c \gg \ell$; realistisch derzeit $\ell_c \leq 30 \ \mu m \Rightarrow$ Reduktion der Sensitivität um Faktor $(\ell/\ell_c)^{1/2} \geq 1000$ [AR (2003)]
- ⇒ Astrophysikalische Grenzen für X-FEL außer Reichweite

A. Ringwald/DESY

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Einzigartige Gelegenheit für Suchen nach Axionen:
 - Ende 2006 wird HERA außer Betrieb genommen.
 - ⇒ Seine ≈ 400 supraleitenden **Dipolmagnete**, mit jeweils B =5 T und $\ell = 10$ m, können **wiederverwertet** werden und
 - ⇒ für Photonregenerationsexperiment benutzt werden [AR'03]

A. Ringwald/DESY

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Sensitivitäten eines optischen Photonregenerationsexperiments mit wiederverwerteten HERA Magneten
 - in HERA-Tunnel:

 $\langle P \rangle = 10 \text{ W} \quad , \quad \hbar \omega = 1 \text{ eV}$

- $B=5~{\rm T}~,~\ell=17\times10~{\rm m}$
- in XFEL-Tunnel:

$$\langle P \rangle = 10 \text{ W} \quad , \quad \hbar \omega = 1 \text{ eV}$$

 $B = 5 \text{ T} \quad , \quad \ell = 200 \times 10 \text{ m}$

⇒ Kompetitiv mit astrophysikalischen Grenzen

10-5

10⁻⁶ Laser

Physikalisches Kolloquium, Jena/D, Mai 2004

in vacuum

4. Zusammenfassung

- **SASE FELs im Röntgenbereich**:
 - können gebaut werden:
 - ← TESLA Test Facility und VUV-FEL bei DESY
 - \rightarrow Konstruktion von **LCLS** am SLAC
 - \rightarrow Aufbau des **Europäischen Röntgenlaserlabors XFEL** bei DESY
 - haben zahlreiche Anwendungen:
 - * Materialwisschenschaften
 - * Chemie
 - * Biologie
 - * ...
 - * Plasmaphysik
 - * Grundlagenphysik

- Grundlagenphysik mit Freie-Elektronen-Lasern –
- Grundlagenphysikalische Ambitionen bei DESY dadurch nicht erschöpft:
- ⇒ Teilchenphysikalisches Zukunftsprojekt:

TESLA – **T**eV-**E**nergy **S**uperconducting Linear Accelerator

