Tests of non-linear QED in the collision of electron beams with laser beams

Andreas Ringwald

in collaboration/discussion with

Paola Arias (DESY), Holger Gies (Jena), Axel Lindner (DESY), Gerhard Paulus (Jena), Javier Redondo (Munich), Andreas Wipf (Jena)

470. WE-Heraeus-Seminar on Particle Accelerators and High Intensity Lasers Physikzentrum, Bad Honnef/D, December 13–17, 2010

Motivation

• Spontaneous pair creation from vacuum, induced by an external field, was first proposed in the context of e^+e^- pair creation in static, spatially uniform electric field [Sauter (1931); Heisenberg, Euler (1936); Schwinger (1951); ...]

One of the most intriguing non-linear phenomena in quantum field theory

- theoretically important: beyond perturbation theory
- eventual experimental observation: probes theory in domain of very strong fields
- Mechanism applied to many problems in contemporary physics:
 - quantum evaporation of black holes [Hawking (1975); Damour,Ruffini (1976); ...]
 e⁺e⁻ creation in vicinity of charged black holes [Damour,Ruffini '75; ...]
 particle production in early universe [Parker (1969); ...]
 particle production in hadronic collisions [Casher, Neuberger, Nussinov (1979); ...]

- Vacuum in **QED** unstable in a static, spatially uniform electric background field:
 - \Rightarrow sparks with spontaneous emission of e^+e^- pairs
 - observable rate requires extraordinary strong electric field strength, of order

$$\mathcal{E}_c \equiv \frac{m_e c^2}{e \, \lambda_e} = \frac{m_e^2 c^3}{e \, \hbar} = 1.3 \cdot 10^{18} \, \frac{\mathrm{V}}{\mathrm{m}}$$

[Sauter (1931); Heisenberg, Euler (1936)]

- Tests of non-linear QED . . . –
- For $\mathcal{E} \ll \mathcal{E}_c$:

[Schwinger (1951)]

- pair creation: **tunneling**
- rate: non-perturbative; exponentially suppressed,

$$w = \frac{\mathrm{d}^4 n_{e^+e^-}}{\mathrm{d}^3 x \, \mathrm{d} t} \propto \exp\left[-\pi \frac{\mathcal{E}_c}{\mathcal{E}}\right] = \exp\left[-\pi \frac{m_e^2 \, c^3}{\hbar \, e \, \mathcal{E}}\right]$$

- No human-made macroscopic static fields of order \mathcal{E}_c accessible
- Proposals (in early 1970's):
 - critical fields in nuclear collisions with $Z_1 + Z_2 \approx 1/\alpha$?

[Zel'dovich, Popov (1971); Müller, Rafelski, Greiner (1972)]

- critical fields at focus¹ or at overlap of crossed¹ intense lasers?

[Bunkin, Tugov (1969); Brezin, Itzykson (1970); Popov (1971);...; Fried et al. (2001)]

¹No pair creation in plane wave.

Pair creation in overlap of crossed laser beams

Illustration from [Marklund,Lundin '08]

• In alternating electric field (\sim focus of crossed laser beam)²,

$$\mathcal{E} \ll \mathcal{E}_c = \frac{m_e^2 c^3}{e \hbar}, \qquad \qquad \hbar \, \omega \ll m_e c^2,$$

rate of spontaneous e^+e^- creation calculable in **semi-classical** manner

[Brezin, Itzykson (1970), Popov (1971)];...]

²For more realistic calculation \Rightarrow talk by Carsten Müller

$$\begin{split} w &\equiv \frac{\mathrm{d}^4 n_{e^+e^-}}{\mathrm{d}^3 x \, \mathrm{d}t} \simeq \frac{c}{4 \, \pi^3 \lambda_e^4} \times \\ & \times \begin{cases} \frac{\sqrt{2}}{\pi} \left(\frac{\mathcal{E}}{\mathcal{E}c}\right)^{\frac{5}{2}} \exp\left[-\pi \frac{\mathcal{E}c}{\mathcal{E}} \left(1 - \frac{1}{8}\eta^{-2} + \mathcal{O}(\eta^{-4})\right)\right], & : \eta \gg 1, \\ \sqrt{\frac{\pi}{2}} \left(\frac{\hbar \omega}{mec^2}\right)^{\frac{5}{2}} \sum_{n > 2 \frac{mec^2}{\hbar \omega}} \left(\frac{\mathrm{e} \eta}{4}\right)^{2n} \mathrm{e}^{-2\left(n - 2\frac{mec^2}{\hbar \omega}\right)} \mathrm{Erfi}\left(\sqrt{2\left(n - 2\frac{mec^2}{\hbar \omega}\right)}\right) & : \eta \ll 1, \end{split}$$

• Dimensionless adiabaticity parameter $\eta \ (\equiv a_0)$,

$$\eta \equiv \frac{e \,\mathcal{E} \,\dot{\boldsymbol{\chi}}_e}{\hbar \,\omega} = \frac{e \,\mathcal{E}}{m_e c \,\omega}$$

- $\eta \gg 1$: Adiabatic high-field, low-frequency limit agrees with non-perturbative Schwinger result for a static, spatially uniform field.
- $\eta \ll 1$: Non-adiabatic low-field, high-frequency limit resembles perturbative result: corresponds to $\geq n$ -th order perturbation theory, n being the minimum number of quanta required to create an e^+e^- pair: $n \gtrsim 2 m_e c^2/(\hbar \omega) \gg 1$

• Laser parameters:

Laser parameter						
		Optical	XFEL			
		focus:	design	focus:		
		state-of-art	SASE 5	state-of-art		
wavelength	λ	$1~\mu$ m	0.4 nm	0.4 nm		
photon energy	$\hbar \omega = \frac{hc}{\lambda}$	1.2 eV	3.1 keV	3.1 keV		
max. power	P	1 PW	110 GW	1.1 GW		
spot radius (rms)	σ	$1~\mu$ m	26 μ m	21 nm		
coherent spike length (rms)	riangle t	500 fs \div 20 ps	0.04 fs	0.04 fs		
derived quantities						
max. power density	$S = \frac{P}{\pi \sigma^2}$	$3 \cdot 10^{22} \frac{W}{cm^2}$	$5 \cdot 10^{15} \frac{W}{cm^2}$	$8 \cdot 10^{19} \frac{W}{cm^2}$		
max. electric field	$\mathcal{E} = \sqrt[n]{\mu_0 c S}$	$4 \cdot 10^{14} \frac{V}{m}$	$1 \cdot 10^{11} \frac{V}{m}$	$2 \cdot 10^{13} \frac{V}{m}$		
max. electric field/critical field	$\mathcal{E}/\mathcal{E}_{C}$	$3 \cdot 10^{-4}$	$1 \cdot 10^{-7}$	$1 \cdot 10^{-5}$		
photon energy $/e$ -rest energy	$\frac{\hbar\omega}{m_ec^2}$	$2 \cdot 10^{-6}$	0.006	0.006		
adiabaticity parameter	$\eta = \frac{e \mathcal{E} \lambda_{\overline{e}}}{1}$	$1 \cdot 10^2$	$2 \cdot 10^{-5}$	$2 \cdot 10^{-3}$		

6

	λ	σ	$\triangle t$	P_{\min}	S_{\min}	\mathcal{E}_{\min}
Focused XFEL:	0.1 nm	0.1 nm	0.1 ps	2.5 TW	$7.8\cdot 10^{27}~{ m W/cm}^2$	$1.7\cdot 10^{17}~{ m V/m}$
(pprox "aim")	0.1 nm	0.1 nm	0.1 fs	4.5 TW	$1.4\cdot 10^{28}~\mathrm{W/cm^2}$	$2.3\cdot 10^{17}~\mathrm{V/m}$
Focused XFEL:	0.1 nm	20 nm	0.1 ps	38 PW	$3.0\cdot10^{27}~\mathrm{W/cm^2}$	$1.1\cdot 10^{17}$ V/m
(pprox "state-of-art")	0.1 nm	20 nm	0.1 fs	55 PW	$4.3\cdot 10^{27}~ extsf{W/cm}^2$	$1.3\cdot 10^{17}~{ m V/m}$
Focused optical laser:	$1~\mu$ m	$1~\mu$ m	10 ps	49 EW	$1.6\cdot 10^{27}~{ m W/cm}^2$	$7.7\cdot 10^{f 16}~{ m V/m}$
diffraction limit	$1~\mu$ m	$1~\mu$ m	100 fs	58 EW	$1.8\cdot 10^{27}~{ m W/cm}^2$	$8.3\cdot 10^{16}~{ m V/m}$

• Minimum necessary peak power for observable effect:

⇒ Need tens of EW optical laser or TW X-ray FEL

- Conceivable **improvements** in **XFEL** technology:
 - X-ray optics, in order to approach diffraction limit $\sigma\!\gtrsim\!\lambda$
 - energy extraction, in order to increase power
- Hard to predict whether this goal will be reached before the commissioning of EW-ZW optical lasers (≥ 2020 ?).

A. Ringwald (DESY)

[AR (2001)]

Pair creation in overlap of electron beam crossed with laser beam

Illustration from [Marklund,Lundin '08]

- Pair creation via³
 - direct, Bethe-Heitler like process, $e+n\,\gamma_{\rm L} \rightarrow e+e^+e^-$
 - two stage process:

[Reiss '62; Nikishov, Ritus '64]

- $*\,$ non-linear Compton process, $e+n\,\gamma_{\rm L} \rightarrow e+\gamma$, followed by
- * stimulated, $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$ pair production

³Unified description \Rightarrow talk by Carsten Müller

• **SLAC E144** studied **non-linear Compton and stimulated pair production** in the collision of a **46.6 GeV electron beam** (the Final Focus Test Beam) with **terawatt photon pulses** of 1053 nm and 527 nm

[Bula et al., PRL 76 (1996) 3116; Burke et al., PRL 79 (1997) 1626; Bamber et al., PRD 60 (1999) 092004]

Bad Honnef/D, December 2010

- Tests of non-linear QED . . . –
- Non-linear QED in $e\gamma_{\rm L}$ coll.: adiab. param. $\eta = \frac{e\mathcal{E}}{\omega m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$

Bad Honnef/D, December 2010

- Non-linear QED in $e\gamma_{\rm L}$ coll.: adiab. param. $\eta = \frac{e\mathcal{E}}{\omega m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

[SLAC E144] Bad Honnef/D, December 2010

- Non-linear QED in $e\gamma_{\rm L}$ coll.: adiab. param. $\eta = \frac{e\mathcal{E}}{\omega m_o}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

- Pair production:
 - $*~\eta~\ll$ 1: stimulated process, $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$,

SLAC E144: $\eta \ll 1$,

- Non-linear QED in $e\gamma_{\rm L}$ coll.: adiab. param. $\eta = \frac{e\mathcal{E}}{\omega m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

- Pair production:
 - * $\eta \ll 1$: stimulated process, $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$, positron rate, $R_{e^+} \propto \eta^{2n} \propto I^n$

SLAC E144: $\eta \ll 1$,

- Non-linear QED in $e\gamma_{\rm L}$ coll.: adiab. param. $\eta = \frac{e\mathcal{E}}{\omega m_c}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

- Pair production:
 - * $\eta \ll 1$: stimulated process, $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$, positron rate, $R_{e^+} \propto \eta^{2n} \propto I^n$
 - * $\eta \gg 1$: non-perturbative process, $R_{e^+} \propto \exp(-8/3\kappa)$, where $\kappa = 2\frac{\omega'}{m_e}\frac{\mathcal{E}}{\mathcal{E}_c}$; however: SLAC E144: $\eta \ll 1$, $\kappa \ll 1$

 \Rightarrow Fundamental physics opportunity exploiting multi-GeV e-beams of

Free Electron Lasers in VUV to X-Ray Band

- FLASH: Free Electron LASer in Hamburg at DESY

- LCLS: Linac Coherent Light Source at SLAC
- SCSS: SPring-8 Compact SASE Source in Japan
- European XFEL in Hamburg/D
- . . .
- **SwissFEL** in Villigen/CH
- **ZFEL** in Groningen/NL

• Need petawatt laser pulses to probe also $\eta \gg 1$:

$$\eta = 7.6 \left[\frac{I}{10^{21} \text{ W/cm}^2} \right]^{1/2} \left[\frac{\lambda_{\text{L}}}{0.4 \ \mu \text{m}} \right]$$

LASER	SLAC 144	Required e.g.
Wavelength	527-1064 nm	800 nm
Intensity on target	$10^{18}~{ m W/cm}^2$	$10^{21}~\mathrm{W/cm^2}$
η (maximum)	0.32	15.38

• Need $\gtrsim 10$ GeV beam energy to probe $\kappa \lesssim 1$:

$$\kappa = 0.94 \left[\frac{I}{10^{21} \text{W/cm}^2} \right]^{1/2} \left[\frac{\omega'}{5 \text{ GeV}} \right]$$

Accelerator	ω' [GeV]	$I \ [W/cm^2]$	κ
SLAC	29	10^{18}	0.17
FLASH	0.2	10^{21}	0.03
XFEL	5	10^{21}	0.94

 \Rightarrow Crossing FEL electron beam pulses with intense laser pulses allows

- unprecedented studies of non-linear Compton scattering

[...;Harvey,Heinzl,Idlerton '09]

[[]Arias,Redondo,AR in prep.]

 \Rightarrow Crossing FEL electron beam pulses with intense laser pulses allows

- unprecedented studies of non-linear Compton scattering

[...;Harvey,Heinzl,Idlerton '09]

[Arias,Redondo,AR in prep.]

 \Rightarrow Crossing FEL electron beam pulses with intense laser pulses allows

- unprecedented studies of non-linear Compton scattering

```
[...;Harvey,Heinzl,Idlerton '09]
```


[Arias,Redondo,AR in prep.]

 \Rightarrow Crossing FEL electron beam pulses with intense laser pulses allows

- unprecedented studies of non-linear Compton scattering

```
[...;Harvey,Heinzl,Idlerton '09]
```

 the first clear experimental observation of non-perturbative, spontaneous pair production [...;Hu,Müller,Keitel

[[]Hu,Müller,Keitel '10]

'10]

 \Rightarrow Crossing FEL electron beam pulses with intense laser pulses allows

- unprecedented studies of non-linear Compton scattering

```
[...;Harvey,Heinzl,Idlerton '09]
```

the first clear experimental observation of non-perturbative, spontaneous pair production
 [...;Hu,Müller,Keitel

Vacuum magnetic birefringence in QED

 \Rightarrow Refractive index in a magnetic field B depends on polarization,

$$\Delta n_{\parallel,\perp} = \left[\left(7\right)_{\parallel}, \left(4\right)_{\perp} \right] \frac{\alpha}{90\pi} \left(\frac{B}{B_{\rm cr}} \right)^2; \qquad B_{\rm cr} = \frac{m_e^2}{e} \simeq 4 \times 10^9 \text{ T}$$

 \Rightarrow A linear polarized laser beam entering the magnetic field at an angle θ will turn into a beam with elliptical polarization:

$$\psi_{\text{QED}} = 1.0 \times 10^{-17} \left(\frac{\omega}{\text{eV}}\right) \left(\frac{\ell}{\text{m}}\right) \left(\frac{B}{\text{T}}\right)^2 N_{\text{pass}} \sin(2\theta)$$

- Experimental possibilities:
 - Optical (eV) laser cavity ($N_{\text{pass}} \sim 10^5$) plus macroscopic magnet ($B \sim \text{T}, \ell \sim \text{m}$): BMV (Toulouse), OSQAR (CERN), Q&A (Taiwan)
 - X-ray (multi keV) laser ($N_{\rm pass}=1$) plus
 - * macroscopic magnet $(B \sim \mathsf{T}, \ \ell \sim \mathsf{m})$ or [Cantatore *et al.* '91]
 - * magnetic field in focal region of crossed petawatt optical laser pulses $(B \sim 10^5 \text{ T}, \ \ell \sim 10 \ \mu\text{m})$ [Heinzl et al. '06]

Conclusions

- Electron beams of XFELs can be used to study fundamental physics, in particular non-linear and non-perturbative QED processes in crossed electron and high intensity optical laser beams
- \Rightarrow Should foresee, at FLASH or XFEL, to install also
 - an intense optical laser
 - a dedicated (single bunches) electron beam line
 - Same equipment can also be used for other purposes
 - QED vacuum magnetic birefringence
 - laser plasma booster

 \Rightarrow talk by Jens Osterhoff