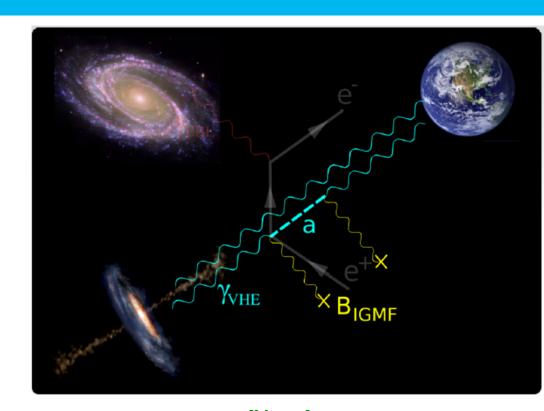
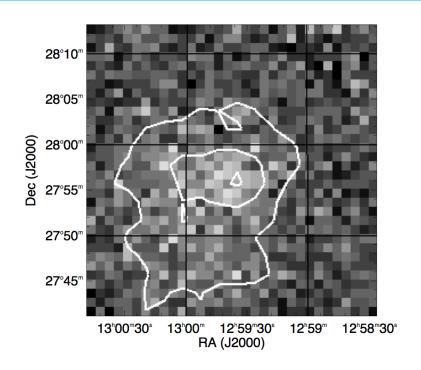
Axion-Like Particles from Strings.


Andreas Ringwald (DESY)

Origin of Mass 2014, Odense, Denmark, May 19-22, 2014

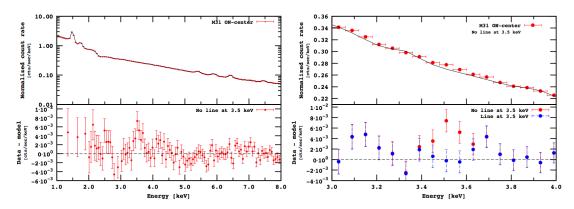
- Number of astro and cosmo hints pointing to existence of intermediate scale axion-like particles (ALPs; ultra-light pseudo-scalars (pseudo Nambu-Goldstone bosons) coupling to photons) [talk by Joerg Jaeckel]
 - Anomalous gamma transparency
 [Aharonian et al. 07; De Angelis et al 07; Aliu et al. 08; Simet et al 08; Sanchez-Conde et al. 09;
 Horns, Meyer 12; Meyer et al. 13]


[Meyer]
$$g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma\gamma}}{f_a} \gtrsim 10^{-12} \text{ GeV}^{-1}$$

$$f_a \lesssim 10^9 \text{ GeV} \times C_{a\gamma\gamma}$$

$$m_a \lesssim 10^{-7} \text{ eV}$$

- Number of astro and cosmo hints pointing to existence of intermediate scale axion-like particles (ALPs; ultra-light pseudo-scalars (pseudo Nambu-Goldstone bosons) coupling to photons)
 - Anomalous gamma transparency
 - Dark radiation and soft X-ray excess from clusters [Cicoli,Conlon,Quevedo 12; Higaki,Takahashi 12; Marsh,Conlon 13; Angus et al. 13]



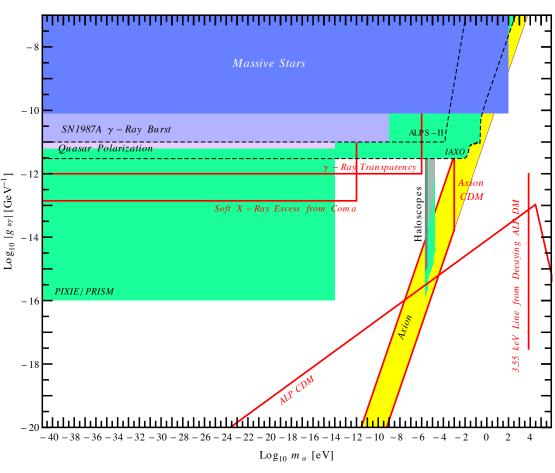
[Boyer et al., Soft excess in Coma as observed by EUVE `04]

$$g_{a\gamma\gamma} \gtrsim \sqrt{0.5/\Delta N_{\text{eff}}} \times 1.4 \times 10^{-13} \,\text{GeV}^{-1}$$

for $m_a \lesssim 10^{-12} \,\text{eV}$

- Number of astro and cosmo hints pointing to existence of intermediate scale axion-like particles (ALPs; ultra-light pseudo-scalars (pseudo Nambu-Goldstone bosons) coupling to photons)
 - Anomalous gamma transparency
 - Dark radiation and soft X-ray excess from clusters
 - 3.55 keV line from clusters
 [Bulbul et al. 1402.2301, Boyarski et al.1402.4119; Higaki et al. 1402.6965; Jaeckel et al. 1402.7335]

[Boyarski et al.1402.4119]


$$\frac{\rho_a}{\rho_{\rm DM}} \simeq 0.13 \times \left(\frac{m_a}{7.1 \,\text{keV}}\right)^{\frac{1}{2}} \left(\frac{f_a}{10^9 \,\text{GeV}}\right)^2 \left(1 + c_a^{\text{strings}}\right)$$

$$g_{a\gamma} \sim 10^{-(17 \div 18)} \,\text{GeV}^{-1} \times \left(\rho_a/\rho_{\rm DM}\right)^{-1/2}$$

$$f_a \sim 10^{14 \div 15} \,\text{GeV} \times C_{a\gamma} \times \left(\rho_a/\rho_{\rm DM}\right)^{1/2}$$

- Number of astro and cosmo hints pointing to existence of intermediate scale axion-like particles (ALPs; ultra-light pseudo-scalars (pseudo Nambu-Goldstone bosons) coupling to photons)
 - Anomalous gamma transparency
 - Dark radiation and soft X-ray excess from clusters
 - 3.55 keV line from clusters
- Require (2-3) ALPs in addition to axion

[Dias,Machado,Nishi,AR,Vaudrevange 1403.5760]

UV completions yielding intermediate scale axion/ALPs

Ad-hoc UV completions: [Peccei,Quinn `77; Kim `79; Shifman et al. `80; Dine et al. `81; ...]

Add one/more hidden complex scalar fields to the SM, whose vevs v_i break global

anomalous chiral
$$U(1)_{\mathrm{PQ}_i}$$
 Peccei-Quinn symmetries,
$$\sigma_i(x) = \frac{1}{\sqrt{2}} \big[v_i + \rho_i(x) \big] e^{i a_i'(x)/f_{a_i'}}$$

At energies much below the symmetry breaking scales v_i , the low-energy effective field is that of Nambu-Goldstone bosons,

$$\mathcal{L} \supset \frac{1}{2} \, \partial_{\mu} a_i' \, \partial^{\mu} a_i' - \frac{\alpha_s}{8\pi} \left(\sum_{i=1}^{n_{\rm ax}} C_{ig} \frac{a_i'}{f_{a_i'}} \right) G_{\mu\nu}^b \tilde{G}^{b,\mu\nu} - \frac{\alpha}{8\pi} \left(\sum_{i=1}^{n_{\rm ax}} C_{i\gamma} \frac{a_i'}{f_{a_i'}} \right) F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \left(\sum_{i=1}^{n_{\rm ax}} C_{ie} \frac{\partial_{\mu} a_i'}{f_{a_i'}} \right) \bar{e} \gamma^{\mu} \gamma_5 e^{-\frac{1}{2} (1 + \frac{1}{2}) (1 + \frac{1}{2}$$

with decay constants $f_{a'_i} = v_i$, which can be chosen ad hoc at intermediate scales. The axionic couplings C_{ij} arise due fermionic SM-SM- $U(1)_{\mathrm{PQ}_i}$ chiral triangle anomalies and depend on the particular PQ charge assignments of the fermions in the model, e.g.

KSVZ: all SM fermions have no PQ charge; one vector-like extra color triplet with chiral PQ assignment:

$$C_{a'g} = 1$$
, $C_{a'\gamma} = 6 \left(C_{\text{em}}^{(Q)} \right)^2$, $C_{a'e} = 0$

DFSZ: two Higgs doublets H_u, H_d ; SM fermions have PQ charge; no extra fermion:

$$C_{a'g}=3\,, \qquad C_{a'\gamma}=8\,, \qquad C_{a'e}=\sin^2\beta$$
 Andreas Ringwald | Axion-like Particles from Strings | Origin of Mass 2014 | Odense | 19-22 May 2014 | Page 6

UV completions yielding intermediate scale axion/ALPs

$$\mathcal{L} \supset \frac{1}{2} \, \partial_{\mu} a_{i}^{\prime} \, \partial^{\mu} a_{i}^{\prime} - \frac{\alpha_{s}}{8\pi} \left(\sum_{i=1}^{n_{\rm ax}} C_{ig} \frac{a_{i}^{\prime}}{f_{a_{i}^{\prime}}} \right) G_{\mu\nu}^{b} \tilde{G}^{b,\mu\nu} - \frac{\alpha}{8\pi} \left(\sum_{i=1}^{n_{\rm ax}} C_{i\gamma} \frac{a_{i}^{\prime}}{f_{a_{i}^{\prime}}} \right) F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} \left(\sum_{i=1}^{n_{\rm ax}} C_{ie} \frac{\partial_{\mu} a_{i}^{\prime}}{f_{a_{i}^{\prime}}} \right) \bar{e} \gamma^{\mu} \gamma_{5} e^{i\beta}$$

The proper QCD axion solving the strong CP problem is the linear combination

$$\frac{A}{f_A} \equiv \sum_{i=1}^{n_{\rm ax}} C_{ig} \frac{a_i'}{f_{a_i'}}$$

The ALPs are living in the space perpendicular to the axion. They are still Nambu-Goldstone bosons and do not couple to gluons. E.g. in case with two axion-like fields,

$$\frac{A}{f_A} = C_{1g} \frac{a_1'}{f_{a_1'}} + C_{2g} \frac{a_2'}{f_{a_2'}}, \qquad \frac{a}{f_a} = -C_{2g} \frac{a_1'}{f_{a_2'}} + C_{1g} \frac{a_2'}{f_{a_1'}},$$

with normalization

$$\frac{1}{f_A^2} = \frac{1}{f_a^2} = \left(\frac{C_{1g}}{f_{a_1'}}\right)^2 + \left(\frac{C_{2g}}{f_{a_2'}}\right)^2$$

UV completions yielding intermediate scale axion/ALPs

- Drawbacks of these ad hoc models:
 - Hidden complex scalars introduced by hand
 - PQ symmetries introduced by hand
 - PQ symmetry breaking scales introduced by hand
 - Axion/ALPs not protected from explicit symmetry breaking effects due to higher dimensional operators

$$\mathcal{L} \supset \frac{1}{M_{\rm Dl}^{D-4}} \mathcal{O}_D \sim \sigma_1^n \sigma_2^k, \qquad D = n + k > 4$$

modifying their potential, potentially shifting their minima away from zero

Can be disastrous for the axionic solution of the strong CP problem: need to require

Can make axion/ALPs too massive,
$$D \gtrsim \frac{9}{[1-0.1\cdot\log{(f_A/10^9\,{\rm GeV})}]}$$
 Can make axion/ALPs too massive,

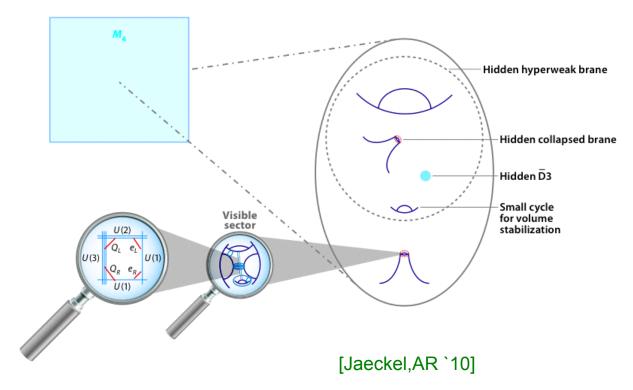
$$m_{12}^{(n,k)} \sim v_1^{(n-1)/2} v_2^{(k-1)/2} / M_{\text{Pl}}^{(D-4)/2}$$

- Concentrate on ALPs from strings which automatically avoid most of these drawbacks
 - Closed string axion and ALPs in IIB string theory
 - Accidental axion and ALPs in heterotic orbifolds

Closed string ALPs in string theory

 Massless bosonic spectrum of closed string sector of string theories in 10D contains form fields satisfying gauge symmetries

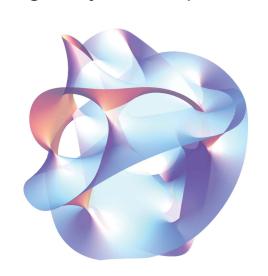
MASSLESS SPECTRUM OF STRING THEORIES							
THEORY	DIMENSION	SUPERCHARGES	BOSONIC SPECTRUM				
Heterotic	10	16	$g_{\mu u},B_{\mu u},\phi$				
$E_8 \times E_8$			$A_{\mu}^{iar{j}}$ in a	djoint representation			
Heterotic	10	16	$g_{\mu u},B_{\mu u},\phi$				
SO(32)			$A_{\mu}^{iar{j}}$ in a	djoint representation			
Type I	10	16	NS-NS	$g_{\mu u},\phi$			
SO(32)			$A^{iar{j}}_{\mu}$ in a	djoint representation			
			R-R	$C_{(2)}$			
Type IIB	10	32	NS-NS	$g_{\mu u},B_{\mu u},\phi$			
			R-R	$C_{(0)},C_{(2)},C_{(4)}$			
Type IIA	10	32	NS-NS	$g_{\mu u},B_{\mu u},\phi$			
			R-R	$C_{(1)}, C_{(3)}$			


[Quevedo '02]

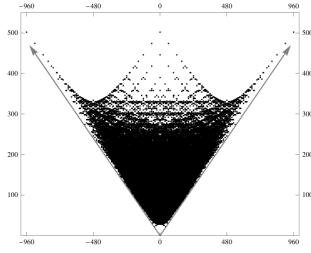
- 2. Symmetries broken by compactification
- 3. Kaluza-Klein decomposition contains ALPs, with decay constants determined by string or compactification scale [Witten 84; Conlon 06; Svrcek, Witten 06]
- 4. Shift symmetries only violated through non-perturbative effects

Closed string ALPs in IIB string theory

- Concentrate on IIB case: Realisation of brane-world scenarios.
 - Visible sector gauge theory realized by stacks of D7 branes wrapping small 4-cycles
 - Gravity propagates in the bulk, leading to a string scale $M_s \sim M_P/\sqrt{\mathcal{V}}$ and a KK scale $M_{\rm KK} \sim M_P/\mathcal{V}^{2/3}$ possibly much much smaller than the Planck scale M_P , at the expense of a large compactification volume $\mathcal{V} \gg 1$



Closed string ALPs in IIB string theory


KK reduction (expansion in harmonic forms):

$$C_2 = c^a(x)\omega_a, \ a = 1, ..., h_-^{1,1}$$

 $C_4 = c_\alpha(x)\tilde{\omega}^\alpha + ..., \ \alpha = 1, ..., h_+^{1,1}$

Number of ALPs determined by topology of CY orientifold: number of topologically non-equivalent 2-cycles or 4-cycles

$$h^{1,1} + h^{2,1}$$

[Kreuzer,Skarke]

Figure 1: A plot of the Hodge numbers of the Kreuzer-Skarke list. $\chi = 2(h^{11} - h^{21})$ is plotted horizontally and $h^{11} + h^{21}$ is plotted vertically $\mathbf{1}$. The oblique axes bound the region $h^{11} \geq 0$, $h^{21} \geq 0$. $\mathbf{2}(h^{11}, \mathbf{1} - h^{21})$

An axiverse may naturally arise from strings

[Arvanitaki et al. `09]

Closed string ALPs in IIB string theory

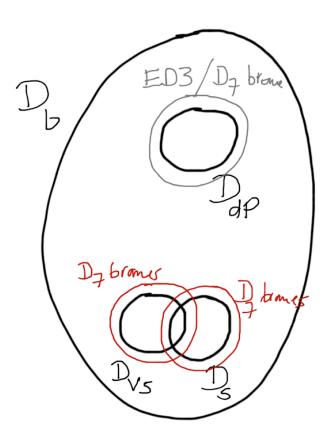
Each axion-like field comes along with a real scalar field – saxion-like field – which is real part of lowest component of chiral superfield,

$$T_{\alpha} = \tau_{\alpha} + i \, c_{\alpha}$$

- τ_{α} ... Kähler modulus measuring the volume of 4-cycle
- > 4D EFT [Jockers, Louis `05]

$$\mathcal{L} \supset -\left(dc_{\alpha} + \frac{M_{P}}{\pi}A_{i}q_{i\alpha}\right) \frac{\mathcal{K}_{\alpha\beta}}{8} \wedge \star \left(dc_{\beta} + \frac{M_{P}}{\pi}A_{j}q_{j\beta}\right) + \frac{1}{4\pi M_{P}}r^{i\alpha}c_{\alpha}\operatorname{tr}(F \wedge F) + \frac{M_{P}^{2}}{2(2\pi)^{2}}A_{i}A_{j}q_{i\alpha}\mathcal{K}_{\alpha\beta}q_{j\beta} - \frac{r^{i\alpha}\tau_{\alpha}}{4\pi M_{P}}\operatorname{tr}(F_{i} \wedge \star F_{i})$$

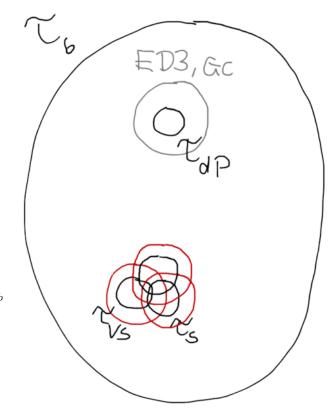
from KK reduction of D-brane action,


$$S_p = \frac{-2\pi}{(2\pi\sqrt{\alpha'})^{p+1}} \left(\int_{\Sigma} d^{p+1}\xi e^{-\phi} \sqrt{\det(g+B+2\pi\alpha'F)} + i \int_{\Sigma} e^{B+2\pi\alpha'F} \wedge \sum_{q} C_q \right)$$

- volume measures gauge coupling, $au_{lpha} \sim g^{-2}$
- c_{lpha} has axionic coupling, $\ \sim c_{lpha} F \wedge F$

Closed string ALPs in LARGE volume IIB string theory

- LVS requires at least four 4-cyles: [Cicoli et al. `11]
 - bulk (large volume) cycle, size fixed perturbatively
 - dP cycle, size fixed non-perturbatively
 - cycle supporting the stack of branes describing the visible sector, size fixed perturbatively
 - cycle supporting a stack of branes providing D-terms to stabilise the volume of the visible cycle
- > LVS has at least two light ALPs: [Cicoli, Goodsell, AR, 1206.0819]
 - large volume ALP a_b' with $f_{a_b'} \sim M_{\rm KK} \sim M_P/\mathcal{V}^{2/3}$ small coupling, $C_{bvs} \simeq \mathcal{O}\left(\mathcal{V}^{-2/3}\right) \quad m_{a_b'} \sim m_{3/2}\,\mathrm{e}^{-c\,n\,\tau_b}$
 - visible sector ALP $a'_{\rm vs}$ with $f_{a'_{\rm vs}} \sim M_s \sim M_P/\sqrt{\mathcal{V}}$, $C_{\rm vs\,vs} = \mathcal{O}(1)$ $m_{a'_{\rm vs}} \sim m_{3/2}\,{\rm e}^{-c\,n\, au_{\rm vs}}$
 - either heavy ($m_{
 m a_{dP}'}\sim M_P\,{
 m e}^{-c\, au_{
 m dP}}$) or eaten by Abelian gauge field

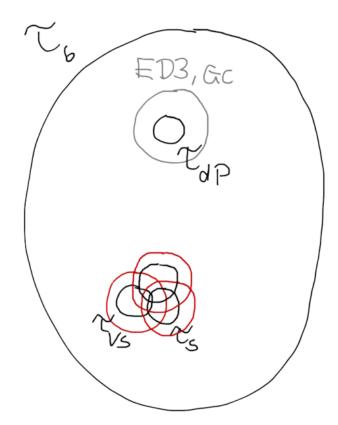


Closed string ALPs in LARGE volume IIB string theory

- LVS requires at least four 4-cyles: [Cicoli et al. `11]
 - bulk (large volume) cycle, size fixed perturbatively
 - dP cycle, size fixed non-perturbatively
 - cycle supporting the stack of branes describing the visible sector, size fixed perturbatively
 - cycle supporting a stack of branes providing D-terms to stabilise the volume of the visible cycle
- LVS has at least two light ALPs:

[Cicoli, Goodsell, AR, 1206.0819]

- large volume ALP a_b' with $f_{a_b'} \sim M_{\rm KK} \sim M_P/\mathcal{V}^{2/3}$ small coupling, $C_{\rm bvs} \simeq \mathcal{O}\left(\mathcal{V}^{-2/3}\right) \quad m_{a_b'} \sim m_{3/2}\,{\rm e}^{-c\,n\,\tau_b}$
- visible sector ALP $a'_{\rm vs}$ with $f_{a'_{\rm vs}} \sim M_s \sim M_P/\sqrt{\mathcal{V}}$, $C_{\rm vs\,vs} = \mathcal{O}(1)$ $m_{a'_{\rm vs}} \sim m_{3/2}\,{\rm e}^{-c\,n\, au_{\rm vs}}$
- either heavy ($m_{
 m a_{dP}'} \sim M_P \, {
 m e}^{-c \, au_{
 m dP}}$) or eaten by Abelian gauge field
- More light ALPs if there are more small cycles intersecting visible sector branes
 Andreas Ringwald | Axion-like Particles from Strings | Origin of Mass 2014 | Odense | 19-22 May 2014 | Page 14



Closed string ALPs in LARGE volume IIB string theory

> Mass scales for $g_s \sim 0.1, W_0 \sim 1, \mathcal{V} \sim 10^{14}$:

$$M_s \sim \frac{M_P}{\sqrt{4\pi \mathcal{V}}} \sim 10^{10}\,\mathrm{GeV}$$
 $m_{\tau_s} \sim \frac{M_P}{\mathcal{V}^{1/2}} \sim 10^{10}\,\mathrm{GeV}$
 $m_{\tau_{\mathrm{dP}}} \sim \frac{M_P}{\mathcal{V}} \ln \mathcal{V} \sim 30\,\mathrm{TeV}$
 $m_{3/2} \sim \sqrt{g_s/(4\pi)} W_0 \frac{M_P}{\mathcal{V}} \sim 1\,\mathrm{TeV}$
 $m_{\tau_{\mathrm{vs}}} \sim \alpha_{\mathrm{vs}} m_{3/2} \sim 40\,\mathrm{GeV}$
 $m_{\tau_b} \sim \frac{M_P}{\mathcal{V}^{3/2}} \sim 0.1\,\mathrm{MeV}$

> 4D EFT of LVS with intermediate string scale may offer ALP explanation of astrophysical hints, since in this scenario naturally more than one ALP with $f_{\rm a'_{vs}}$, $\sim M_s \sim 10^{10}\,{\rm GeV}$

- 1. Plenitude of hidden complex scalar fields in orbifold compactifications
- 2. Multitude of discrete symmetries which are exact at perturbative level
 - R-symmetries from the broken SO(6) symmetry of compact space
 - Stringy discrete symmetries from joining and splitting of strings
- 3. PQ symmetries can occur in the low-energy EFT as accidental remnants of these discrete symmetries, that is the discrete symmetries forbid explicit PQ symmetry violating operators up to a certain mass dimension in low-energy effective Lagrangian [Choi,Kim,Kim 07; Choi,Nilles,Ramos-Sanchez,Vaudrevange 09]
- 4. Axion/ALP mass protected if discrete symmetries large

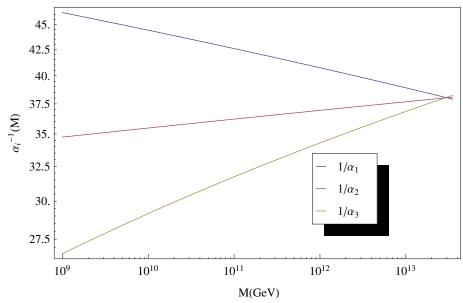
> Ad-hoc example: (DFSZ x KVSZ)-like model featuring $Z_{13} \otimes Z_5 \otimes Z_5'$ sym.

$\boxed{\psi_i}$	q_L	u_R	d_R	L	N_R	l_R	H_u	H_d	H_l	H_N	σ_2	T	Q_L	Q_R	σ_1
\mathbb{Z}_{13}	ω_{13}^5	ω_{13}^3	ω_{13}^8	ω_{13}^9	ω_{13}^3	ω_{13}^7	ω_{13}^{11}	ω_{13}^{10}	ω_{13}^2	ω_{13}^7	ω_{13}^{12}	ω_{13}^9	1	ω_{13}^6	ω_{13}^7
\mathbb{Z}_5	1	ω_5	ω_5^4	1	ω_5	ω_5^4	ω_5	ω_5	ω_5	ω_5	1	ω_5^2	ω_5	ω_5^3	ω_5^3
\mathbb{Z}_5'	1	ω_5^4	1	1	ω_5^2	ω_5^4	ω_5^4	1	ω_5	ω_5^2	ω_5	ω_5^3	1	ω_5^4	ω_5

Only allowed Yukawa couplings:

$$\mathcal{L}_{Y} = Y_{ij}\overline{q}_{iL}\widetilde{H}_{u}u_{jR} + \Gamma_{ij}\overline{q}_{iL}H_{d}d_{jR} + G_{ij}\overline{L}_{i}H_{l}l_{jR} + F_{ij}\overline{L}_{i}\widetilde{H}_{N}N_{jR} + y_{ij}\overline{(N_{iR})^{c}}\sigma_{1}N_{jR} + y_{Q}\overline{Q}_{L}\sigma_{1}Q_{R}$$

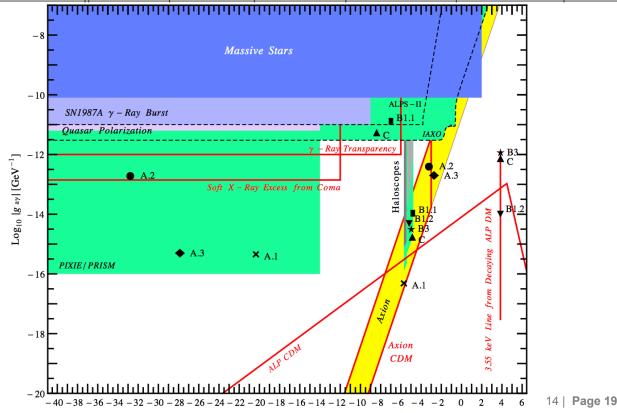
- Neutrino see-saw relations
- No flavour-changing neutral currents, since there is only one Higgs doublet for each type of fermion
- At mass dimension four, model has four accidental global U(1)s:
 - $U(1)_{
 m B}$, ensuring baryon number conservation of ordinary quarks
 - $U(1)_{\rm Q}$, ensuring conservation of the number of the exotic color triplet
 - $U(1)_{\mathrm{PQ}}$, two Peccei-Quinn symmetries, whose charge assignments can be chosen as


ψ	q_L	u_R	d_R		N_R				H_l	H_N	σ_2	T	Q_L	Q_R	σ_1
K_{ψ}	0	0	0	-1/2	-1/2	-1/2	0	0	0	0	0	0	1/2	-1/2	1
X_{ψ}	0	$-X_u$	$-X_d$	$\frac{1}{3}(4X_u + X_d)$	0	$2X_u$	$-X_u$	X_d	$-\frac{1}{3}(2X_u-X_d)$	$-\frac{1}{3}(4X_u+X_d)$	1	$-2X_u$	0	0	0

Lowest dimensional operators respecting discrete symmetry, but breaking PQ symmetries, have mass dimension 14 or higher,

$$\frac{1}{M_{\rm Pl}^{10}} H_N^{\dagger} H_d \sigma_1^{*5} \sigma_2^7, \quad \frac{1}{M_{\rm Pl}^{11}} H_l^{\dagger} H_u \sigma_1^5 \sigma_2^{*8}, \quad \frac{1}{M_{\rm Pl}^{11}} H_N^{\dagger} H_u \sigma_1^{*5} \sigma_2^8$$

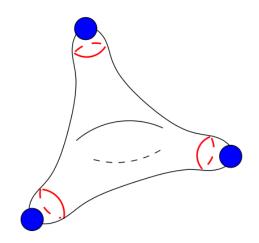
inducing masses
$$\delta m_A \sim m_a \sim \frac{v \ v_1^{5/2} v_2^{7/2}}{2^6 M_{\rm Pl}^5 f_A} \sim 10^{-21} \ {\rm eV} \,, \quad {\rm for} \ \ v_1 \sim v_2 \sim f_A \sim 10^{13} \ {\rm GeV}$$
 • Model has gauge coupling unification close to intermediate scale, $M_{\rm U} \sim 10^{13} \ {\rm GeV}$


Can be embedded in non-minimal SU(5) GUT

Proton stabilized since SU(5) multiplets involve beyond SM exotics and due to discrete symmetry

[Dias, Franco, Pleitez 07]

> For intermediate scales, model has axion plus ALP in astro-hint range:


	Input	Resulting low-energy parameters							
Model	$v_1=f_{a_1'} [{ m GeV}]$	$v_2 = f_{a_2'} \; [\mathrm{GeV}]$	$f_A \; [{ m GeV}]$	$m_A \; [{ m eV}]$	$m_a \; [{ m eV}]$	$ g_{A\gamma} \; [{ m GeV}]^{-1}$	$ g_{a\gamma} [{ m GeV}]^{-1}$	$ g_{Ae} $	$ g_{ae} $
A.1	1×10^{13}	2.5×10^{12}	8.3×10^{11}	7.2×10^{-6}	1.3×10^{-22}	8.2×10^{-16}	5.4×10^{-16}	2×10^{-16}	1.7×10^{-17}
A.2	1×10^{10}	7.5×10^{10}	9.3×10^{9}	6×10^{-4}	1.8×10^{-33}	4×10^{-13}	2×10^{-13}	2.5×10^{-15}	6.3×10^{-15}
A.3	1×10^{13}	1×10^{10}	3×10^9	2×10^{-3}	1×10^{-28}	2×10^{-13}	5×10^{-16}	5×10^{-14}	2×10^{-17}

 $Log_{10} m_a$ [eV]

- Mini-landscape of 348 MSSM-like models in Z6-II orbifold compactifications
 [Nilles, Vaudrevange 1403.1597]
 - SM gauge group
 - 3 generations of quarks and leptons
 - 1 (or more) Higgs pairs
 - Further exotics: vector-like under SM gauge group
 - O(100) hidden (SM singlet) complex scalars

[AR, Vaudrevange in prep.]

- Ongoing search for accidental ALPs
 - Created all terms in superpotential up to order 6 in fields respecting discrete sym.:
 - $\mathbb{Z}_6 \times \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ from strings splitting and joining
 - $\mathbb{Z}_{36}^R \times \mathbb{Z}_{18}^R \times \mathbb{Z}_4^R$ from broken SO(6) Lorentz symmetry of compact space [Nilles et al. 1308.3435; Cabo Bizet et al. 1308.5669]

■ Determined the accidental $U(1)_{global}$ symmetries: found models with many of them, up to O(100)

Order in \mathcal{W}	# accidental U(1) _{global} per model
Order(3)	54
Order(4)	4
Order(5)	1
Order(6)	1

- Determine the SM-SM- $U(1)_{\rm global}$ triangle anomalies to find the accidental PQ symmetries and the couplings of the ALPs to SM gauge bosons
- Break $U(1)_{global}$ at intermediate scales and analyze couplings
- Which terms in superpotential break $U(1)_{global}$ explicitly? ALP masses?

Summary and conclusions

- Models that exhibit a QCD axion with an intermediate-scale decay constant and additional even lighter axion-like particles having the same decay constant and coupling to the photon can explain astrophysical anomalies and be tested in the next generation of helioscopes and light-shining-through-walls experiments
- String phenomenology holds the promise of an axiverse the QCD axion plus a (possibly large) number of further ultralight axion-like particles, possibly populating each decade of mass down to the inverse Hubble scale
- Promise fulfilled in LARGE Volume Scenario of IIB string compactifications and orbifold compactifications of the heterotic string

