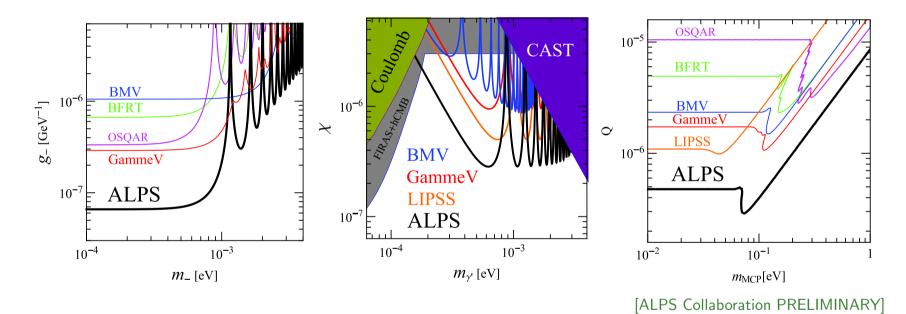
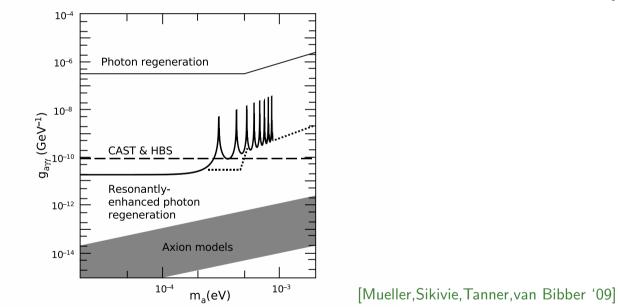
Challenges and Opportunities for the Next-Generation of Photon Regeneration Experiments


Andreas Ringwald

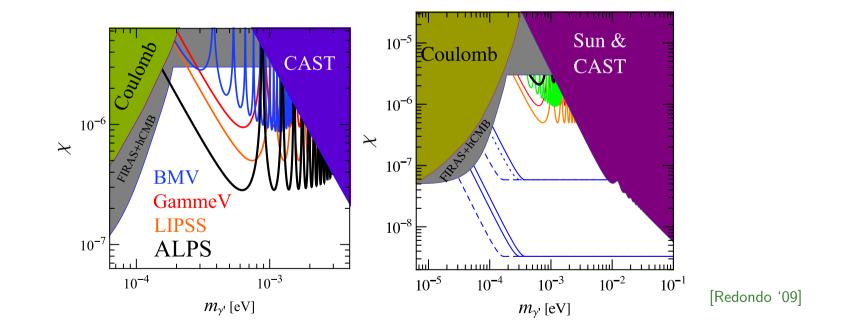
Axions 2010 January 15-17, 2010, Gainesville, FL, USA

Remarkable progress in photon regeneration experiments:


• PVLAS has triggered a number of experiments for various WISPs:

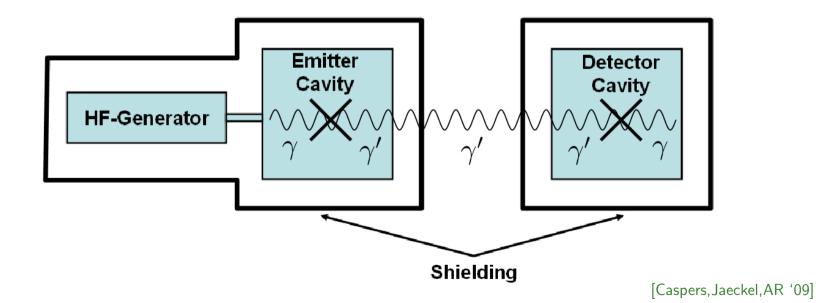
Planning for the next-generation of experiments has started

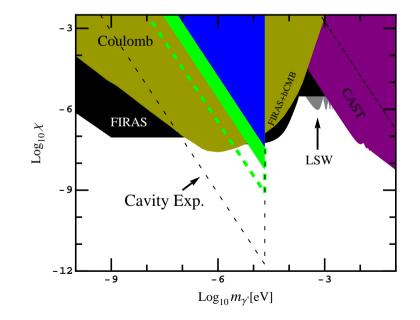
• What should be their target?


• ALP: not shown: upper bound, $g_{\phi\gamma} \lesssim 1 \times 10^{-11} \,\text{GeV}^{-1}$, for $m_{\phi} \lesssim 10^{-9} \,\text{eV}$, from non-observation of gamma ray burst in coincidence with SN 1987A neutrino burst

[Brockway, Carlson, Raffelt '96; Grifols, Masso, Toldra '96]

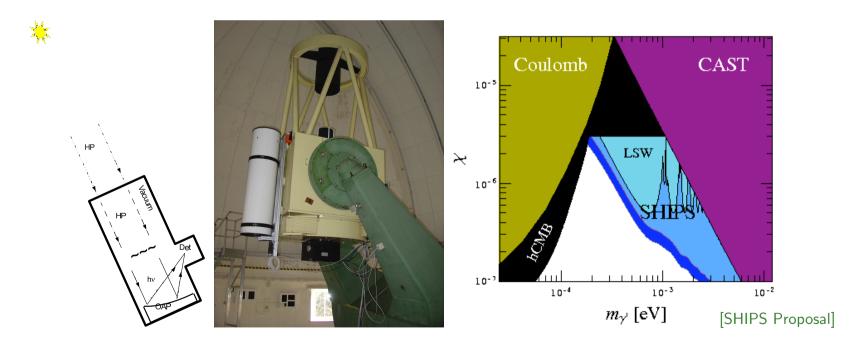
 \Rightarrow seems doable with some effort (here, e.g., 6+6 Tevatron/HERA magnets)


• HP: lots of photon regeneration possibilities: increase length of cavities and finesse; exploit resonantly enhanced photon regeneration

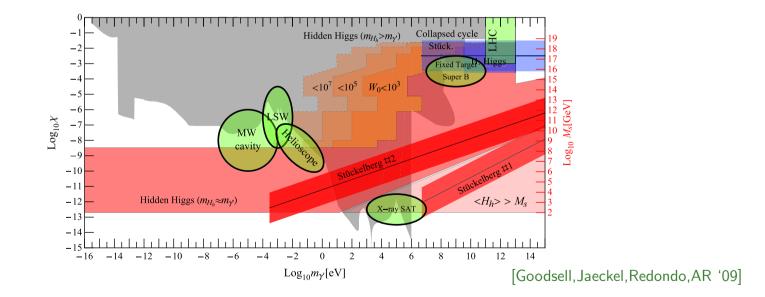

A. Ringwald (DESY)

Gainesville, January 2010

• HP: lots of photon regeneration possibilities: increase length of cavities and finesse; exploit resonantly enhanced photon regeneration; build a microwave cavity experiment



• HP: lots of photon regeneration possibilities: increase length of cavities and finesse; exploit resonantly enhanced photon regeneration; build a microwave cavity experiment

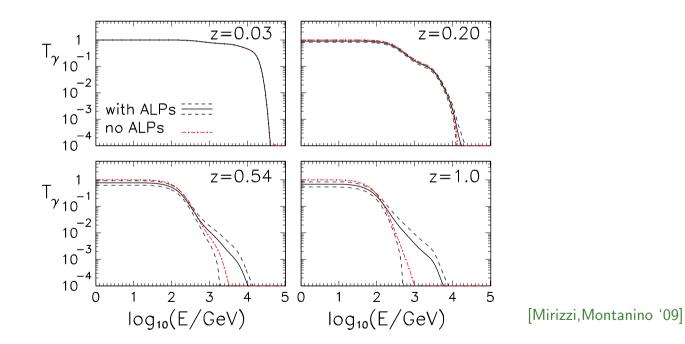


• HP: lots of photon regeneration possibilities: increase length of cavities and finesse; exploit resonantly enhanced photon regeneration; build a microwave cavity experiment and a new helioscope

• HP: lots of photon regeneration possibilities: increase length of cavities and finesse; exploit resonantly enhanced photon regeneration; build a microwave cavity experiment and a new helioscope

Probe intermediate string scales! If mass arises via hidden Higgs mechanism, stronger astro bounds apply, since hidden Higgs acts like MCP: $Q_{\rm hH} = \chi e_{\rm h}/e \lesssim 10^{-14}$ [Ahlers, Jaeckel, Redondo, AR '08]

Opportunity: Laboratory test of hints for cosmic photon regeneration


- Recent observations of cosmologically distant γ -ray sources have revealed surprising degree of transparency of the universe to VHE (E > 100 GeV) photons [H.E.S.S. Collaboration '06;...; MAGIC Collaboration '08;...]
- Possible explanations:
 - Extragalactic Background Light (EBL) less dense than expected \Rightarrow less absorption of VHE photons due to e^+e^- production on EBL?
 - harder injection spectra than initially thought?
 - VHE $\gamma \leftrightarrow {\sf ALP}$ conversions, i.e. cosmic photon regeneration, with

$10^{-12} \,\mathrm{GeV}^{-1} \lesssim g_{\phi\gamma} \lesssim 10^{-11} \,\mathrm{GeV}^{-1}, \qquad m_{\phi} \lesssim 10^{-10} \,\mathrm{eV}?$

- * $\gamma \rightarrow ALP$ conversion in magnetic field around source and $ALP \rightarrow \gamma$ in magnetic field of Milky Way [Hooper,Serpico '07; Hochmuth,Sigl '07; ...]
- * $\gamma \leftrightarrow \mathsf{ALP}$ in random extragalactic magnetic fields [De Angelis, Mansutti, Roncadelli '07; ...]

Opportunity: Laboratory test of hints for cosmic photon regeneration

• Photon transfer function, taking into account γ -ALP conversions, with $g = 10^{-11} \,\mathrm{GeV^{-1}}, m_{\phi} \lesssim 10^{-10} \,\mathrm{eV}$, has relevant dispersion due to randomness of EG magnetic fields:

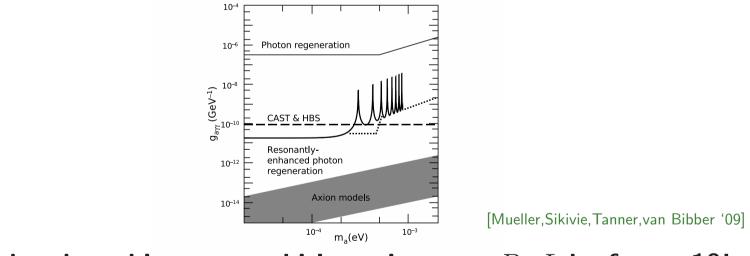
Gainesville, January 2010

Opportunity: Laboratory test of hints for cosmic photon regeneration

- ⇒ **Signature:** reconstructed EBL density from TeV photon observations which appears to vary over different directions of sky
- **Similarly,** scatter in observed HE luminosities of compact sources in clusters of galaxies may be a signal of ALPs in same parameter range!

[Burrage,Davis,Shaw '09]

- Observed alignment of polarization vectors of very distant quasars may also be explained by selective photon disappearance from photon-ALP oscillations in same parameter range!
 [Payez,Cudell,Hutsemekers '08]
- Photon-ALP oscillations from this parameter range have also been invoked to explained the origin of the debated correlation of arrival direction of UHE cosmic rays and BL-Lacs
 [Fairbairn,Rashba,Troitsky '09]
- ALPs of similar nature may solve problematic aspects of solar physics: X-ray activity, corona problem, triggering of solar flares. [Zioutas et al. '08,'09]


– Challenges and Opportunities ... –

 \Rightarrow A new (pseudo-?)Nambu-Goldstone boson ϕ , with decay constant

 $f_{\phi} \sim \alpha/g_{\phi\gamma} \sim 10^9 \div 10^{10} \text{ GeV}?$

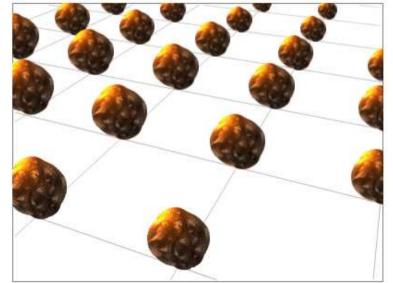
⇒ **Opportunity for a next-generation lab LSW experiment probing:**

 $10^{-12} \,\mathrm{GeV}^{-1} \lesssim g_{\phi\gamma} \lesssim 10^{-11} \,\mathrm{GeV}^{-1}, \qquad m_{\phi} \lesssim 10^{-12} \div 10^{-10} \,\mathrm{eV}$

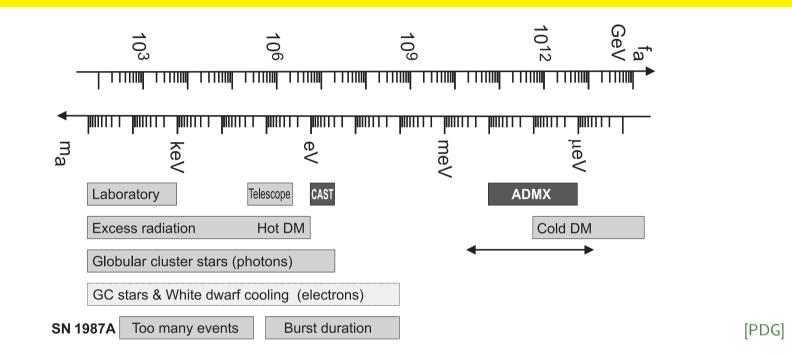
 \Rightarrow Need to be a bit more ambitious: increase $B \cdot L$ by factor 10!

• Axions in string theory:

Axions and ALPs generic in string compactifications: KK zero modes of form fields [Witten '87; ...; Conlon '06, Svrcek,Witten '06; Arvanitaki *et al. '09*;...] Very promising possibility: axions with [Cicoli,Goodsell,Redondo,AR in prep.]


$$10^{9} \,\mathrm{GeV} \lesssim f_{a} \sim M_{s} \lesssim 10^{16} \,\mathrm{GeV}$$
$$10^{-2} \,\mathrm{eV} \gtrsim m_{a} \sim \frac{m_{\pi} f_{\pi}}{M_{s}} \gtrsim 10^{-9} \,\mathrm{eV}$$

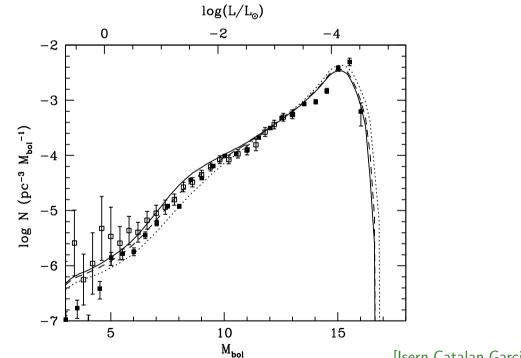
and, at same time, ALPs with


$$f_{\phi} \sim f_a \sim M_s, \quad 0 \le m_{\phi} \sim \frac{\Lambda^2}{M_s} \le m_a$$

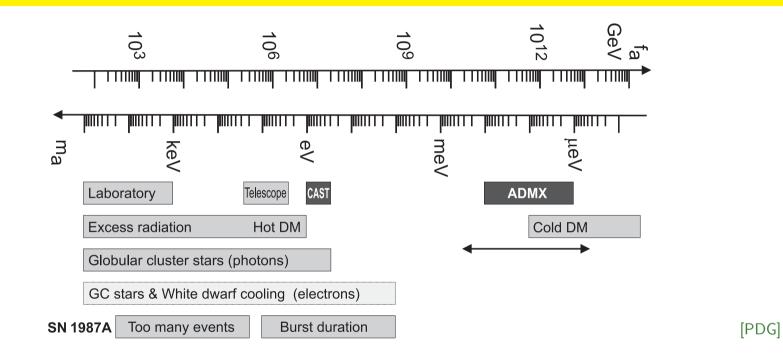
 \Rightarrow Cosmic PR may point to

 $M_s \sim f_a \sim 10^9 \div 10^{10}\,{
m GeV}$ A. Ringwald (DESY)

Gainesville, January 2010


• Non-standard energy loss in white dwarfs, compatible with existence of axions with an axion-electron coupling, $g_{ae} \sim 10^{-13}$

[lsern *et al.* '08]


A. Ringwald (DESY)

Gainesville, January 2010

• White dwarf luminosity function compared to predictions: solid: $g_{ae} = 0$ (no axion); dashed: $g_{ae} = 1.4 \times 10^{-13}$; dotted: $g_{ae} = 2.8 \times 10^{-12}$

[Isern, Catalan, Garcia-Berro, Torres '09]

• Non-standard energy loss in white dwarfs, compatible with existence of axions with an axion-electron coupling, $g_{ae} \sim 10^{-13}$, suggesting an axion decay constant, $f_a \sim g_{ae} m_e = 4 \times 10^9 \text{ GeV} \Rightarrow g_{a\gamma} \sim 3 \times 10^{-12} \text{ GeV}^{-1}$ [Isern *et al.* '08] But also consistent with ALP of mass $m_{\phi} \ll m_a$!

⇒ **Opportunity for a next-generation lab LSW experiment probing:**

- \Rightarrow Need to be even more ambitious: extend sensitivity to axion band by increasing $B \cdot \sum L_i$ by factor 10, while keeping L_i small!
 - May discover up to two particles in one strike:

An ALP with $m_\phi \lesssim 10^{-10}\,{
m eV}$ and the axion with $m_a \sim 1\,{
m meV}!$