Tests of non-linear QED in the collision of electron beams with laser beams

Andreas Ringwald

in collaboration with

Paola Arias, Holger Gies (Jena), Axel Lindner, Gerhard Paulus (Jena), Javier Redondo (Munich), Andreas Wipf (Jena)

2. Beschleuniger-Ideenmarkt November 23-24, 2010, DESY, HH, Germany

• SLAC E144 studied non-linear QED in the collision of a 46.6 GeV electron beam (the Final Focus Test Beam) with photon pulses from a terawatt class Nd:glass laser

[Bula et al., PRL 76 (1996) 3116; Burke et al., PRL 79 (1997) 1626; Bamber et al., PRD 60 (1999) 092004]

– Tests of non-linear QED \ldots –

- Non-linear QED in $e\gamma_{\rm L}$ coll.: multi-photon param. $\eta = \frac{e\mathcal{E}_{\rm L}}{\omega_{\rm L}m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$

A. Ringwald (DESY)

DESY, November 2010

- Non-linear QED in $e\gamma_{\rm L}$ coll.: multi-photon param. $\eta = \frac{e\mathcal{E}_{\rm L}}{\omega_{\rm L}m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

[SLAC E144] DESY, November 2010

3

A. Ringwald (DESY)

– Tests of non-linear QED \dots –

- Non-linear QED in $e\gamma_{\rm L}$ coll.: multi-photon param. $\eta = \frac{e\mathcal{E}_{\rm L}}{\omega_{\rm L}m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

- Pair production:
 - * Stimulated process ($\eta \ll 1$) $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$ Positron rate, $R_{e^+} \propto \eta^{2n} \propto I^n$

- Non-linear QED in $e\gamma_{\rm L}$ coll.: multi-photon param. $\eta = \frac{e\mathcal{E}_{\rm L}}{\omega_{\rm L}m_e}$
 - Non-linear Compton

 $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$

- Pair production:
 - * Stimulated process ($\eta \ll 1$) $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$ Positron rate, $R_{e^+} \propto \eta^{2n} \propto I^n$

6

- Tests of non-linear QED \ldots –
- Non-linear QED in $e\gamma_{\rm L}$ coll.: multi-photon param. $\eta = \frac{e\mathcal{E}_{\rm L}}{\omega_{\rm L}m_e}$
 - Non-linear Compton
 - $e + n \gamma_{\rm L} \rightarrow e + \gamma$ Electron yield, $Y_e \propto \eta^{2(n-1)} \propto I^{n-1}$
 - Pair production:
 - * Stimulated process ($\eta \ll 1$) $\gamma + n \gamma_{\rm L} \rightarrow e^+ e^-$ Positron rate, $R_{e^+} \propto \eta^{2n} \propto I^n$
 - * Spontaneous tunneling process $(\eta \gg 1)$ $R_{e^+} \propto \exp(-8/3\kappa)$ where $\kappa = 2 \frac{E_{\gamma}}{m_e} \frac{\mathcal{E}_{\mathrm{L}}}{\mathcal{E}_{\mathrm{crit}}}$
- SLAC E144: $\eta \ll 1$, $\kappa \ll 1$

DESY, November 2010

Improvements over SLAC 144: Petawatt class laser to probe $\eta \gg 1$, $\kappa \lesssim 1$:

$$\eta = 7.6 \left[\frac{I}{10^{21} \text{ W/cm}^2} \right]^{1/2} \left[\frac{\lambda_{\rm L}}{0.4 \ \mu \rm{m}} \right]$$

LASER	SLAC 144	Required e.g.	
Energy per pulse	0.32 J (Green)	1 J	
Wavelength	527-1064 nm	800 nm	
Pulse Duration	1.5 ps FWHM	few \times ps FWHM	
Focus radius	$\sim \mu$ m	few $\times \mu$ m	
Intensity on target	$10^{18}~{ m W/cm^2}$	$10^{21}~{ m W/cm^2}$	
η (maximum)	0.32	15.38	

Improvements over SLAC 144: Petawatt class laser to probe $\eta \gg 1$, $\kappa \lesssim 1$:

$$\kappa = 0.94 \left[\frac{I}{10^{21} \mathrm{W/cm}^2} \right]^{1/2} \left[\frac{\omega'}{5 \mathrm{~GeV}} \right]$$

Experiment	ω' [GeV]	$I [W/cm^2]$	κ
SLAC	29	10^{18}	0.17
FLASH	0.2	10^{21}	0.03
XFEL	5	10^{21}	0.94

• Rate for non-linear Compton as function of energy of hard photon ω' SLAC:

[Arias,Redondo,AR]

- Tests of non-linear QED ... –
- Rate for non-linear Compton as function of energy of hard photon ω' FLASH:

[Arias,Redondo,AR]

- Tests of non-linear QED ... –
- Rate for non-linear Compton as function of energy of hard photon ω' FLASH:

DESY, November 2010

- Tests of non-linear QED \dots –
- Rate for non-linear Compton as function of energy of hard photon ω' XFEL:

Conclusions

- Colliding the FLASH and later XFEL electron beams with intense photon beams from a laser would allow unique studies of non-linear QED:
 - nonlinear Compton scattering (FLASH)
 - non-perturbative spontaneous pair production (XFEL)
- Requirements very similar to the ones of the project "10 GeV Laser-Plasma-Booster Stufe für FLASH":
 - an extra beam-line at FLASH II (and later at XFEL) which can deliver dedicated single bunches at few Hz repetition rate
 - installation of a petawatt laser system