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– The High Energy Universe – 1
1. Introduction

• There is a high energy universe:

Gamma rays have been identified up
to energies E <∼ few × 103 GeV

Cosmic rays have been observed up
to energies E <∼ few × 1011 GeV

• It is under active observation:

Gamma ray observatories: e.g.

H.E.S.S., MAGIC

Air shower detectors: e.g. Pierre

Auger Observatory

Neutrino telescopes: e.g. IceCube

• Attack fundamental questions:

What is it made of? What are the
cosmic accelerators? Can we exploit
them also for particle physics?

[M. Martinez ’05]
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Neutrino telescopes: e.g. IceCube
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cosmic accelerators? Can we exploit
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1. Introduction

• There is a high energy universe:

Gamma rays have been identified up
to energies E <∼ few × 103 GeV
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1. Introduction

• There is a high energy universe:

Gamma rays have been identified up
to energies E <∼ few × 103 GeV

Cosmic rays have been observed up
to energies E <∼ few × 1011 GeV

• It is under active observation:

Gamma ray observatories: e.g.

H.E.S.S., MAGIC

Air shower detectors: e.g. Pierre

Auger Observatory

Neutrino telescopes: e.g. IceCube

• Attack fundamental questions:

What is it made of? What are the
cosmic accelerators? Can we exploit
them also for particle physics?

[icecube.wisc.edu]
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Outline:

2. Observations at ultrahigh energies

3. Non-observations at ultrahigh energies

4. Future observations at ultrahigh energies

5. Conclusions
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2. Observations at ultrahigh energies

• Spectrum: Large statistical and sys-
tematic uncertainties

⇐ low flux
⇐ energy from shower simulations

• Crucial improvement by PAO:

⇐ huge size ⇒ better statistics
⇐ hybrid observations ⇒ better

energy calibration through Fly’s
Eye technique, direction from
ground array

• It works
[Ahlers et al. ‘05]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005



– The High Energy Universe – 7

2. Observations at ultrahigh energies

• Spectrum: Large statistical and sys-
tematic uncertainties

⇐ low flux
⇐ energy from shower simulations

• Crucial improvement by PAO:

⇐ huge size ⇒ better statistics
⇐ hybrid observations ⇒ better

energy calibration through Fly’s
Eye technique, direction from
ground array

• It works [www.auger.org]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005



– The High Energy Universe – 8

2. Observations at ultrahigh energies

• Spectrum: Large statistical and sys-
tematic uncertainties

⇐ low flux
⇐ energy from shower simulations

• Crucial improvement by PAO:

⇐ huge size ⇒ better statistics
⇐ hybrid observations ⇒ better

energy calibration through Fly’s
Eye technique, direction from
ground array

• It works
[Ahlers et al. ‘05]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005



– The High Energy Universe – 9

2. Observations at ultrahigh energies

• Spectrum: Large statistical and sys-
tematic uncertainties

⇐ low flux
⇐ energy from shower simulations

• Crucial improvement by PAO:

⇐ huge size ⇒ better statistics
⇐ hybrid observations ⇒ better

energy calibration through Fly’s
Eye technique, direction from
ground array

• It works
[Ahlers et al. ‘05]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005



– The High Energy Universe – 10
2. Observations at ultrahigh energies

• Angular distribution: ≈ isotrop

• Composition: Large uncertainty

⇐ studies rely on simulations

• Cosmic rays above >∼ 1017.6 eV, the
“second knee”, dominantly protons

• Assume that CR’s in 10[8.6,11] GeV
range originate from isotropically dis-
tributed extragalactic proton sources,
with simple power-law injection spec-
tra ∝ E

−γ
i (1 + z)n

[Berezinsky,..’02-’05;...;Ahlers et al. ‘05]

⇒ Good fit; inelastic interactions with
CMB (e+e− “dip”; π “bump”) visi-
ble; some post-GZK events?

[Greisen;Zatsepin,Kuzmin ‘67]
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• Possible sources of these protons:
GRB, AGN, . . .

• Shock acceleration:

– p’s, confined by magnetic fields,
accelerate through repeated scat-
tering by plasma shock fronts

– production of π’s and n’s through
collisions of the trapped p’s with
ambient plasma produces γ’s, ν’s
and CR’s (n diffusion from source)

• Neutrinos as diagnostic tool:

– ν’s from sources (pγ → n + π’s)
close to be measured

– Cosmogenic neutrino flux (from
pγCMB → Nπ’s) dominates above
109 GeV

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005
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• Possible sources of these protons:
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3. Non-observations at ultrahigh energies

• Cν’s with Eν >∼ 108 GeV probe νN

scattering at
√

sνN >∼ 14 TeV (LHC)

• Perturbative Standard Model (SM)
≈ under control (← HERA)

[Gandhi et al. ’98; Kwiecinski et al. ’98; ...]

⇒ Search for enhancements in σνN

beyond (perturbative) SM:

⋄ Electroweak sphaleron production
(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-brane

or string ball production in TeV
scale gravity models
⋄ . . . [Ahlers et al. ‘05]
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“Model-independent” upper bounds on σνN

dN

dt
∝

∫
dEν Fν(Eν)σνN(Eν)

⇒ Non-observation of deeply-penetra-
ting particles, together with lower
bound on Fν (e.g. cosmogenic ν’s)
⇒ upper bound on σνN

[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01;..]

• Recent quantitative analysis:
[Anchordoqui,Fodor,Katz,AR,Tu ‘04]

⋄ Best current limits from exploi-
tation of RICE search results

[Kravchenko et al. [RICE] ‘02,03]

⋄ Auger will improve these limits by
one order of magnitude [Anchordoqui,Fodor,Katz,AR,Tu ‘04]
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4. Future observations at ultrahigh energies

• Existing observatories for Extremely
High Energy Cosmic neutrinos pro-
vide sensible upper bounds on flux

• Upcoming decade: progressively lar-
ger detectors for EHECν’s

⇒ E ≥ 1016 eV:

→ Astrophysics of cosmic rays

⇒ E ≥ 1017 eV:

→ Particle physics beyond LHC

⇒ E ≥ 1021 eV:

→ Cosmology: relics of phase tran-
sitions; absorption on big bang re-
lic neutrinos

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005
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Top-down scenarios for super-GZK neutrinos

• Existence of superheavy particles
with 1012 GeV <∼mX <∼ 1016 GeV,
produced during and after inflation
through e.g.

– particle creation in time-varying
gravitational field

⇒ super-GZK ν’s from decay or anni-
hilation of superheavy dark matter
(for τX >∼ τU)

– decomposition of topological de-
fects, formed during preheating,
into their constituents

⇒ super-GZK ν’s from topological
defects [Kolb,Chung,Riotto ‘98]
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A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005



– The High Energy Universe – 32

Top-down scenarios for super-GZK neutrinos

• Existence of superheavy particles
with 1012 GeV <∼mX <∼ 1016 GeV,
produced during and after inflation
through e.g.

– particle creation in time-varying
gravitational field

⇒ super-GZK ν’s from decay or anni-
hilation of superheavy dark matter
(for τX >∼ τU)

– decomposition of topological de-
fects, formed during preheating,
into their constituents

⇒ super-GZK ν’s from topological
defects [Bhattacharjee,Hill,Schramm ‘92]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005



– The High Energy Universe – 33

Top-down scenarios for super-GZK neutrinos

• Injection spectra: fragmentation
functions Di(x, µ), i = p, e, γ, ν, de-
termined via

– Monte Carlo generators
– DGLAP evolution from experi-

mental initial distributions at e.g.
µ = mZ to µ = mX

⇒ Reliably predicted!

• Spectra at Earth:

– for superheavy dark matter, injec-
tion nearby: jν ∼ jγ ∼ jp

– for topological defects, injection
far away: jν ≫ jγ ∼ jp
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Top-down scenarios for super-GZK neutrinos
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Top-down scenarios for super-GZK neutrinos

• Injection spectra: fragmentation
functions Di(x, µ), i = p, e, γ, ν, de-
termined via

– Monte Carlo generators
– DGLAP evolution from experi-

mental initial distributions at e.g.
µ = mZ to µ = mX

⇒ Reliably predicted!

• Spectra at Earth:

– for superheavy dark matter, injec-
tion nearby: jν ∼ jγ ∼ jp

– for topological defects, injection
far away: jν ≫ jγ ∼ jp

[Fodor,Katz ‘01]
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Top-down scenarios for super-GZK neutrinos
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Top-down scenarios for super-GZK neutrinos

• How natural?

– Superheavy dark matter: need
symmetry to prevent fast X decay
∗ gauge ⇒ X stable
∗ discrete⇒ stable or quasi-stable

– Topological defects: generic pre-
diction of symmetry breaking (SB)
in GUT’s, including fundamental
string theory, e.g.
∗ G→ H×U(1) SB: monopoles
∗ U(1) SB: ordinary or supercon-

ducting strings
∗ G→ H×U(1)→ H× ZN SB:

monopoles connected by strings
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Top-down scenarios for super-GZK neutrinos

• How natural?
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Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

– particle physics

∗ GUT parameters, e.g. mX

∗ particle content of the desert,
e.g. SM vs. MSSM
∗ νN scattering at

√
s≫ LHC

– cosmology

∗ window on early phase transition
∗ Hubble expansion rate H(z)
∗ existence of the big bang relic

neutrino background

[Fodor,Katz,AR,Weiler,Wong,in prep.]
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Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

– particle physics

∗ GUT parameters, e.g. mX

∗ particle content of the desert,
e.g. SM vs. MSSM
∗ νN scattering at

√
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– cosmology

∗ window on early phase transition
∗ Hubble expansion rate H(z)
∗ existence of the big bang relic

neutrino background [Barbot,Drees ‘02]
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Top-down scenarios for super-GZK neutrinos
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5. Conclusions

• Exciting times for ultrahigh energy
cosmic rays and neutrinos:

– many observatories under con-
struction

⇒ appreciable event samples

• Expect strong impact on

– astrophysics
– particle physics
– cosmology
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