The High Energy Universe: Observations and Implications

Andreas Ringwald
http://www.desy.de/~ringwald

2nd Vienna Central European Seminar on Particle Physics and Quantum Field Theory, ”Frontiers in Astroparticle Physics”, November 25 - 27, 2005, Vienna, Austria
1. Introduction

- There is a high energy universe:
 Gamma rays have been identified up to energies $E \lesssim \text{few} \times 10^3$ GeV
 - Cosmic rays have been observed up to energies $E \lesssim \text{few} \times 10^{11}$ GeV
- It is under active observation:
 - Gamma ray observatories: e.g. H.E.S.S., MAGIC
 - Air shower detectors: e.g. Pierre Auger Observatory
 - Neutrino telescopes: e.g. IceCube
- Attack fundamental questions:
 - What is it made of? What are the cosmic accelerators? Can we exploit them also for particle physics?

[M. Martinez ’05]
1. Introduction

- There is a high energy universe:
 - **Gamma rays** have been identified up to energies $E \lesssim \text{few} \times 10^3$ GeV
 - **Cosmic rays** have been observed up to energies $E \lesssim \text{few} \times 10^{11}$ GeV

A. Ringwald (DESY)
Frontiers in Astroparticle Physics, Vienna, Nov 2005
1. Introduction

- There is a high energy universe:
 - **Gamma rays** have been identified up to energies $E \lesssim \text{few} \times 10^3$ GeV
 - **Cosmic rays** have been observed up to energies $E \lesssim \text{few} \times 10^{11}$ GeV

- It is under active observation:
 - Gamma ray observatories: e.g. H.E.S.S., MAGIC
 - Air shower detectors: e.g. Pierre Auger Observatory

[www.auger.org]
1. Introduction

- **There is a high energy universe:**
 - **Gamma rays** have been identified up to energies $E \lesssim \text{few} \times 10^3$ GeV
 - **Cosmic rays** have been observed up to energies $E \lesssim \text{few} \times 10^{11}$ GeV

- **It is under active observation:**
 - Gamma ray observatories: e.g. **H.E.S.S.**, **MAGIC**
 - Air shower detectors: e.g. **Pierre Auger Observatory**
 - Neutrino telescopes: e.g. **IceCube**

- **Attack fundamental questions:**
 - What is it made of? What are the cosmic accelerators? Can we exploit them also for particle physics?

A. Ringwald (DESY)
Outline:

2. Observations at ultrahigh energies

3. Non-observations at ultrahigh energies

4. Future observations at ultrahigh energies

5. Conclusions
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties
 - low flux
 - energy from shower simulations

[Ahlers et al. ‘05]

[Ahlers et al. ‘05]
2. Observations at ultrahigh energies

- **Spectrum**: Large statistical and systematic uncertainties
 - low flux
 - energy from shower simulations

- Crucial improvement by **PAO**:
 - huge size \(\Rightarrow\) better statistics
 - hybrid observations \(\Rightarrow\) better energy calibration through Fly’s Eye technique, direction from ground array
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties
 - low flux
 - energy from shower simulations

- Crucial improvement by **PAO**:
 - huge size ⇒ better statistics
 - hybrid observations ⇒ better energy calibration through Fly’s Eye technique, direction from ground array

- It works

A. Ringwald (DESY)
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties
 \[\Leftarrow \text{low flux} \]
 \[\Leftarrow \text{energy from shower simulations} \]

- Crucial improvement by **PAO:**
 \[\Leftarrow \text{huge size} \Rightarrow \text{better statistics} \]
 \[\Leftarrow \text{hybrid observations} \Rightarrow \text{better energy calibration through Fly’s Eye technique, direction from ground array} \]

- It works

A. Ringwald (DESY)
2. Observations at ultrahigh energies

- **Angular distribution:** \approx isotrop
2. Observations at ultrahigh energies

- **Angular distribution:** \approx isotrop
- **Composition:** Large uncertainty
 \Leftarrow studies rely on simulations
- Cosmic rays above $\gtrsim 10^{17.6}$ eV dominantly protons
2. Observations at ultrahigh energies

- **Angular distribution**: \approx isotrop
- **Composition**: Large uncertainty
 \[\Rightarrow \text{studies rely on simulations} \]
- Cosmic rays above $\gtrsim 10^{17.6}$ eV, the "second knee", dominantly protons
- Assume that CR’s in $10^{8.6,11}$ GeV range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra $\propto E_i^{-\gamma}(1 + z)^n$

[Ahlers et al. ‘05]
2. Observations at ultrahigh energies

- **Angular distribution**: \approx isotrop
- **Composition**: Large uncertainty
 \Leftarrow studies rely on simulations
- Cosmic rays above $\gtrsim 10^{17.6}$ eV, the “second knee”, dominantly protons
- Assume that CR’s in $10^{8.6,11}$ GeV range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra $\propto E_i^{-\gamma}(1+z)^n$

 \[\text{[Berezinsky...'02-'05;...; Ahlers et al. ‘05]} \]

\Rightarrow Good fit; inelastic interactions with CMB (e^+e^- “dip”; π “bump”) visible; some post-GZK events?

A. Ringwald (DESY) \hspace{1cm} \text{[Greisen,Zatsepin,Kuzmin ‘67]}

\[\text{[Ahlers et al. ‘05]} \]

Frontiers in Astroparticle Physics, Vienna, Nov 2005
• Possible sources of these protons: GRB, AGN, . . .
• Possible sources of these protons: GRB, AGN, . . .

• **Shock acceleration:**
 - p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts

[Ahlers PhD in prep.]
• Possible sources of these protons: GRB, AGN, . . .

• Shock acceleration:
 – p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts

Hillas-plot
(candidate sites for $E=100$ EeV and $E=1$ ZeV)

- Neutron star
- GRB
- Protons (100 EeV)
- Protons (1 ZeV)
- White dwarf
- SNR
- Galactic disk-halo
- Clusters
- Colliding galaxies

A. Ringwald (DESY)

Frontiers in Astroparticle Physics, Vienna, Nov 2005
• Possible sources of these protons: GRB, AGN, . . .

• **Shock acceleration:**
 – p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 – production of π’s and n’s through collisions of the trapped p’s with ambient plasma produces γ’s, ν’s and CR’s (n diffusion from source)
• Possible sources of these protons: GRB, AGN, . . .

• **Shock acceleration:**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π's and n's through collisions of the trapped p's with ambient plasma produces γ's, ν's and CR's (n diffusion from source)

• **Neutrinos as diagnostic tool:**
 - ν's from sources ($p\gamma \rightarrow n + \pi$'s) close to be measured
 - Cosmogenic neutrino flux (from $p\gamma_{\text{CMB}} \rightarrow N\pi$'s) dominates above 10^9 GeV

[Ahlers et al. ‘05]
3. Non-observations at ultrahigh energies

• $C\nu'$s with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

[Graph showing $E^2 J(E)$ vs E with various fluxes and limits marked.

[Ahlers et al. '05]
3. Non-observations at ultrahigh energies

- $C\nu's$ with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) \approx under control (← HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; ...]

\[A. \text{Ringwald (DESY)} \]

\[\text{Frontiers in Astroparticle Physics, Vienna, Nov 2005} \]
3. Non-observations at ultrahigh energies

- $C\nu$'s with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)
- Perturbative Standard Model (SM) \approx under control (∇ HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; ...]

\Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)

![Graph showing the cross-section $\sigma_{\nu N}$ vs. E_ν]
3. Non-observations at ultrahigh energies

- $C\nu'$s with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) \approx under control (\leftarrow HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; ...]

\Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models
 - ...

A. Ringwald (DESY)

Frontiers in Astroparticle Physics, Vienna, Nov 2005
“Model-independent” upper bounds on $\sigma_{\nu N}$

\[
\frac{dN}{dt} \propto \int dE_\nu F_\nu(E_\nu) \sigma_{\nu N}(E_\nu)
\]

\Rightarrow Non-observation of deeply-penetrating particles, together with lower bound on F_ν (e.g. cosmogenic ν’s)

\Rightarrow upper bound on $\sigma_{\nu N}$

[Berezinsky,Smirnov '74; Morris,AR '94; Tyler,Olinto,Sigl '01;..]

[Anchordoqui,Fodor,Katz,AR,Tu '04;]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005
“Model-independent” upper bounds on $\sigma_{\nu N}$

$$\frac{dN}{dt} \propto \int dE_\nu F_\nu(E_\nu) \sigma_{\nu N}(E_\nu)$$

\Rightarrow Non-observation of deeply-penetrating particles, together with lower bound on F_ν (e.g. cosmogenic ν’s)
\Rightarrow upper bound on $\sigma_{\nu N}$

[Berezinsky,Smirnov ’74; Morris,AR ’94; Tyler,Olinto,Sigl ’01;..]

- Recent quantitative analysis:
 - Best current limits from exploitation of RICE search results
 [Kravchenko et al. [RICE] ’02,03]
 - Auger will improve these limits by one order of magnitude
 [Anchordoqui,Fodor,Katz,AR,Tu ’04]

A. Ringwald (DESY)
4. Future observations at ultrahigh energies

- Existing observatories for Extremely High Energy Cosmic neutrinos provide sensible upper bounds on flux

\[E \geq 10^{16} \text{eV} \rightarrow \text{Astrophysics} \]
\[E \geq 10^{17} \text{eV} \rightarrow \text{Particle physics beyond LHC} \]
\[E \geq 10^{21} \text{eV} \rightarrow \text{Cosmology: relics of phase transitions; absorption on big bang relics} \]
4. Future observations at ultrahigh energies

- Existing observatories for Extremely High Energy Cosmic neutrinos provide sensible upper bounds on flux.
- Upcoming decade: progressively larger detectors for EHECν’s.
4. Future observations at ultrahigh energies

- Existing observatories for Extremely High Energy Cosmic neutrinos provide sensible upper bounds on flux

- Upcoming decade: progressively larger detectors for EHEC\textsubscript{\nu}'s

\[E \geq 10^{16} \text{ eV}: \]
 \rightarrow \textbf{Astrophysics} of cosmic rays

\[E \geq 10^{17} \text{ eV}: \]
 \rightarrow \textbf{Particle physics} beyond LHC
4. Future observations at ultrahigh energies

- Existing observatories for Extremely High Energy Cosmic neutrinos provide sensible upper bounds on flux

- Upcoming decade: progressively larger detectors for EHECν’s

\[E \geq 10^{16} \text{ eV:} \]

→ Astrophysics of cosmic rays

\[E \geq 10^{17} \text{ eV:} \]

→ Particle physics beyond LHC

\[E \geq 10^{21} \text{ eV:} \]

→ Cosmology: relics of phase transitions; absorption on big bang relic neutrinos

A. Ringwald (DESY)
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

[Kolb, Chung, Riotto '98]
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

- decomposition of topological defects, formed during preheating, into their constituents

[Tkachev,Khlebnikov,Kofman,Linde ‘98]
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \, \text{GeV} \lesssim m_X \lesssim 10^{16} \, \text{GeV}$, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 ⇒ super-GZK ν's from decay or annihilation of superheavy dark matter (for $\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents

[Ref. [Berezinsky, Kachelriess, Vilenkin '97]]
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with 10^{12} GeV $\lesssim m_X \lesssim 10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 \Rightarrow super-GZK ν’s from decay or annihilation of superheavy dark matter (for $\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents
 \Rightarrow super-GZK ν’s from topological defects

[Bhattacharjee,Hill,Schramm ’92]
Top-down scenarios for super-GZK neutrinos

• **Injection spectra**: fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 – Monte Carlo generators

\[[\text{Birkel, Sarkar '98}] \]
Top-down scenarios for super-GZK neutrinos

- **Injection spectra:** fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$

A. Ringwald (DESY)

Frontiers in Astroparticle Physics, Vienna, Nov 2005
Top-down scenarios for super-GZK neutrinos

- **Injection spectra**: fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

[Fodor, Katz '01]
Top-down scenarios for super-GZK neutrinos

- **Injection spectra**: fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
 ⇒ Reliably predicted!

\[[\text{Aloisio, Berezinsky, Kachelriess '04}] \]
Top-down scenarios for super-GZK neutrinos

- **Injection spectra:** fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

\Rightarrow Reliably predicted!

- **Spectra at Earth:**
 - for superheavy dark matter, injection nearby: $j_\nu \sim j_\gamma \sim j_p$

[Aloisio,Berezinsky,Kachelriess '04]

A. Ringwald (DESY)
Top-down scenarios for super-GZK neutrinos

- **Injection spectra**: fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

\Rightarrow Reliably predicted!

- **Spectra at Earth**:
 - for superheavy dark matter, injection nearby: $j_\nu \sim j_\gamma \sim j_p$
 - for topological defects, injection far away: $j_\nu \gg j_\gamma \sim j_p$

A. Ringwald (DESY)
Top-down scenarios for super-GZK neutrinos

- **How natural?**
 - **Superheavy dark matter:** need symmetry to prevent fast X decay
 - gauge $\Rightarrow X$ stable
 - discrete \Rightarrow stable or quasi-stable
Top-down scenarios for super-GZK neutrinos

• How natural?
 – **Superheavy dark matter**: need symmetry to prevent fast X decay
 * gauge \Rightarrow X stable
 * discrete \Rightarrow stable or quasi-stable
 – **Topological defects**: generic prediction of symmetry breaking (SB) in GUT’s, including fundamental string theory, e.g.
 * $G \rightarrow H \times U(1)$ SB: monopoles
 * $U(1)$ SB: ordinary or superconducting strings
Top-down scenarios for super-GZK neutrinos

- **How natural?**
 - **Superheavy dark matter:** need symmetry to prevent fast X decay
 * gauge $\Rightarrow X$ stable
 * discrete \Rightarrow stable or quasi-stable
 - **Topological defects:** generic prediction of symmetry breaking (SB) in GUT's, including fundamental string theory, e.g.
 * $G \rightarrow H \times U(1)$ SB: monopoles
 * $U(1)$ SB: ordinary or superconducting strings
 * $G \rightarrow H \times U(1) \rightarrow H \times Z_N$ SB: monopoles connected by strings

[Berezinsky '05]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005
Top-down scenarios for super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 - cosmology

[Fodor, Katz, AR, Weiler, Wong, in prep.]
Top-down scenarios for super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 - cosmology

[Fodor, Katz, AR, Weiler, Wong, in prep.]

A. Ringwald (DESY) Frontiers in Astroparticle Physics, Vienna, Nov 2005
Top-down scenarios for super-GZK neutrinos

- Strong impact of measurement for
 - **particle physics**
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 - **cosmology**

[Barbot, Drees '02]
Top-down scenarios for super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg \text{LHC}$
 - cosmology
Top-down scenarios for super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg$ LHC
 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background ($C\nu B$)
Top-down scenarios for super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg$ LHC
 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background ($C\nu B$)

[Fodor,Katz,AR,Weiler,Wong,in prep.]
Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg$ LHC

 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background (CνB)

[Fodor, Katz, AR, Weiler, Wong, in prep.]

A. Ringwald (DESY)
5. Conclusions

- Exciting times for ultrahigh energy cosmic rays and neutrinos:
 - many observatories under construction
 ⇒ appreciable event samples

- Expect strong impact on
 - astrophysics
 - particle physics
 - cosmology