The High Energy Universe: Observations and Implications

Andreas Ringwald

http://www.desy.de/~ringwald

2nd Vienna Central European Seminar on Particle Physics and Quantum Field Theory, "Frontiers in Astroparticle Physics", November 25 - 27, 2005, Vienna, Austria

• There is a high energy universe: Gamma rays have been identified up to energies $E \lesssim {\rm few} \times 10^3 {\rm ~GeV}$

[M. Martinez '05]

• There is a high energy universe: Gamma rays have been identified up to energies $E \lesssim {\rm few} \times 10^3 {\rm ~GeV}$ Cosmic rays have been observed up to energies $E \lesssim {\rm few} \times 10^{11} {\rm ~GeV}$

Frontiers in Astroparticle Physics, Vienna, Nov 2005

- There is a high energy universe: Gamma rays have been identified up to energies $E \lesssim {\rm few} \times 10^3 {\rm ~GeV}$ Cosmic rays have been observed up to energies $E \lesssim {\rm few} \times 10^{11} {\rm ~GeV}$
- It is under active observation:
 Gamma ray observatories: e.g.
 H.E.S.S., MAGIC
 Air shower detectors: e.g. Pierre
 Auger Observatory

[www.auger.org]

- There is a high energy universe: Gamma rays have been identified up to energies $E \lesssim {\rm few} \times 10^3 {\rm ~GeV}$ Cosmic rays have been observed up to energies $E \lesssim {\rm few} \times 10^{11} {\rm ~GeV}$
- It is under active observation:
 Gamma ray observatories: e.g.
 H.E.S.S., MAGIC
 Air shower detectors: e.g. Pierre
 Auger Observatory
 Neutrino telescopes: e.g. IceCube
- Attack fundamental questions:

What is it made of? What are the cosmic accelerators? Can we exploit them also for particle physics?

Snow Layer IceCube 1400 m 2400 m

[icecube.wisc.edu]

Outline:

- 2. Observations at ultrahigh energies
- 3. Non-observations at ultrahigh energies
- 4. Future observations at ultrahigh energies
- 5. Conclusions

- **Spectrum:** Large statistical and systematic uncertainties
 - $\Leftarrow \mathsf{low} \mathsf{flux}$
 - \Leftarrow energy from shower simulations

[[]Ahlers et al. '05]

- **Spectrum:** Large statistical and systematic uncertainties
 - $\ \Leftarrow \ \text{low flux}$
 - \Leftarrow energy from shower simulations
- Crucial improvement by **PAO**:
 - $\Leftarrow \mathsf{ huge size} \Rightarrow \mathsf{better statistics}$
 - ⇐ hybrid observations ⇒ better energy calibration through Fly's Eye technique, direction from ground array

[www.auger.org]

7

- **Spectrum:** Large statistical and systematic uncertainties
 - \leftarrow low flux
 - \Leftarrow energy from shower simulations
- Crucial improvement by **PAO**:
 - $\Leftarrow \mathsf{ huge size} \Rightarrow \mathsf{better statistics}$
 - ⇐ hybrid observations ⇒ better energy calibration through Fly's Eye technique, direction from ground array

[Ahlers et al. '05]

It works

A. Ringwald (DESY)

- **Spectrum:** Large statistical and systematic uncertainties
 - \leftarrow low flux
 - \Leftarrow energy from shower simulations
- Crucial improvement by **PAO**:
 - $\Leftarrow \mathsf{ huge size} \Rightarrow \mathsf{better statistics}$
 - ⇐ hybrid observations ⇒ better energy calibration through Fly's Eye technique, direction from ground array

[Ahlers et al. '05]

• It works

A. Ringwald (DESY)

• Angular distribution: \approx isotrop

Frontiers in Astroparticle Physics, Vienna, Nov 2005

- Angular distribution: \approx isotrop
- Composition: Large uncertainty
 - $\Leftarrow \ \text{studies rely on simulations}$
- Cosmic rays above $\gtrsim 10^{17.6}$ eV dominantly protons

- Angular distribution: \approx isotrop
- Composition: Large uncertainty

 \Leftarrow studies rely on simulations

- Cosmic rays above $\gtrsim 10^{17.6}$ eV, the "second knee", dominantly protons
- Assume that CR's in $10^{[8.6,11]}~{\rm GeV}$ range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra $\propto E_i^{-\gamma}(1+z)^n$

[Berezinsky,..'02-'05;...;Ahlers et al. '05]

- Angular distribution: \approx isotrop
- Composition: Large uncertainty

 $\Leftarrow \ \text{studies rely on simulations}$

- Cosmic rays above $\gtrsim 10^{17.6}$ eV, the "second knee", dominantly protons
- Assume that CR's in $10^{[8.6,11]}~{\rm GeV}$ range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra $\propto E_i^{-\gamma}(1+z)^n$

[Berezinsky,..'02-'05;...;Ahlers et al. '05]

⇒ Good fit; inelastic interactions with **CMB** (e^+e^- "dip"; π "bump") visible; some **post-GZK events**? A. Ringwald (DESY) [Greisen;Zatsepin,Kuzmin '67]

- The High Energy Universe -
- Possible sources of these protons: GRB, **AGN**, . . .

Frontiers in Astroparticle Physics, Vienna, Nov 2005

A. Ringwald (DESY)

- The High Energy Universe –
- Possible sources of these protons: GRB, **AGN**, ...
- Shock acceleration:
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts

- The High Energy Universe –
- Possible sources of these protons: GRB, **AGN**, . . .
- Shock acceleration:
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts

[Pierre Auger Observatory] Frontiers in Astroparticle Physics, Vienna, Nov 2005

- The High Energy Universe –
- Possible sources of these protons: GRB, **AGN**, . . .
- Shock acceleration:
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's and CR's (n diffusion from source)

- The High Energy Universe -
- Possible sources of these protons: GRB, **AGN**, . . .
- Shock acceleration:
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's and CR's (n diffusion from source)
- Neutrinos as diagnostic tool:
 - $\nu '{\rm s}$ from sources ($p\gamma \rightarrow n+\pi '{\rm s})$ close to be measured
 - Cosmogenic neutrino flux (from $p\gamma_{\rm CMB} \rightarrow N\pi$'s) dominates above 10^9 GeV

A. Ringwald (DESY)

- $C\nu$'s with $E_{\nu} \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)
- Perturbative Standard Model (SM)
 ≈ under control (← HERA)

[Gandhi et al. '98; Kwiecinski et al. '98; ...]

Frontiers in Astroparticle Physics, Vienna, Nov 2005

- $C\nu$'s with $E_{\nu} \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)
- Perturbative Standard Model (SM)
 ≈ under control (← HERA)

[Gandhi et al. '98; Kwiecinski et al. '98; ...]

- \Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - ♦ Electroweak sphaleron production (B + L violating processes in SM)

A. Ringwald (DESY)

- $C\nu$'s with $E_{\nu} \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)
- Perturbative Standard Model (SM)
 ≈ under control (← HERA)

[Gandhi et al. '98; Kwiecinski et al. '98; ...]

- \Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - ♦ Electroweak sphaleron production (B + L violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models

♦ . . .

A. Ringwald (DESY)

[AR,Tu '01; Tu '04]

- The High Energy Universe -

"Model-independent" upper bounds on $\sigma_{
uN}$

$$\frac{\mathrm{d}N}{\mathrm{d}t} \propto \int \mathrm{d}E_{\nu} \, F_{\nu}(E_{\nu}) \, \sigma_{\nu N}(E_{\nu})$$

⇒ Non-observation of deeply-penetrating particles, together with lower bound on F_{ν} (e.g. cosmogenic ν 's) ⇒ upper bound on $\sigma_{\nu N}$

[Berezinsky,Smirnov '74; Morris,AR '94; Tyler,Olinto,Sigl '01;..]

[Anchordoqui,Fodor,Katz,AR,Tu '04]

- The High Energy Universe -

"Model-independent" upper bounds on $\sigma_{
u N}$

$$\frac{\mathrm{d}N}{\mathrm{d}t} \propto \int \mathrm{d}E_{\nu} \, F_{\nu}(E_{\nu}) \, \sigma_{\nu N}(E_{\nu})$$

⇒ Non-observation of deeply-penetrating particles, together with lower bound on F_{ν} (e.g. cosmogenic ν 's) ⇒ upper bound on $\sigma_{\nu N}$

[Berezinsky,Smirnov '74; Morris,AR '94; Tyler,Olinto,Sigl '01;..]

• Recent quantitative analysis:

[Anchordoqui,Fodor,Katz,AR,Tu '04]

♦ Best current limits from exploitation of **RICE** search results

[Kravchenko et al. [RICE] '02,03]

 Auger will improve these limits by one order of magnitude

[Anchordoqui,Fodor,Katz,AR,Tu '04]

Frontiers in Astroparticle Physics, Vienna, Nov 2005

A. Ringwald (DESY)

- Existing observatories for Extremely
 High Energy Cosmic neutrinos provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

- Existing observatories for Extremely
 High Energy Cosmic neutrinos pro- vide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's
- $\Rightarrow E \ge 10^{16} \text{ eV}$:
 - $\rightarrow~$ Astrophysics of cosmic rays
- $\Rightarrow E \ge 10^{17} \text{ eV}$:
 - $\rightarrow~$ Particle physics beyond LHC

- Upcoming decade: progressively larger detectors for EHECν's
- $\Rightarrow E \ge 10^{16} \text{ eV}$:
 - \rightarrow **Astrophysics** of cosmic rays
- $\Rightarrow E \ge 10^{17} \text{ eV}$:
 - \rightarrow Particle physics beyond LHC
- $\Rightarrow E \ge 10^{21} \text{ eV}$:
- → **Cosmology:** relics of phase transitions; absorption on big bang relic neutrinos A. Ringwald (DESY)

- Existence of superheavy particles with $10^{12}~{\rm GeV}\,{\lesssim}\,m_X\,{\lesssim}\,10^{16}~{\rm GeV},$ produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

[Kolb,Chung,Riotto '98]

29

- Existence of superheavy particles with $10^{12}~{\rm GeV}\,{\lesssim}\,m_X\,{\lesssim}\,10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

 decomposition of topological defects, formed during preheating, into their constituents

[Tkachev,Khlebnikov,Kofman,Linde '98]

- Existence of superheavy particles with $10^{12}~{\rm GeV} \lesssim m_X \lesssim 10^{16}~{\rm GeV},$ produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 - ⇒ super-GZK ν 's from decay or annihilation of superheavy dark matter (for $\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents

[Berezinsky,Kachelriess,Vilenkin '97]

- Existence of superheavy particles with $10^{12}~{\rm GeV}\,{\lesssim}\,m_X\,{\lesssim}\,10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 - ⇒ super-GZK ν 's from decay or annihilation of superheavy dark matter (for $\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents
 - \Rightarrow super-GZK ν 's from topological defects

[Bhattacharjee,Hill,Schramm '92]

Frontiers in Astroparticle Physics, Vienna, Nov 2005

A. Ringwald (DESY)

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$

Frontiers in Astroparticle Physics, Vienna, Nov 2005

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

Frontiers in Astroparticle Physics, Vienna, Nov 2005

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
- \Rightarrow Reliably predicted!

[Aloisio,Berezinsky,Kachelriess '04]

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
- \Rightarrow Reliably predicted!
- Spectra at Earth:
 - for superheavy dark matter, injection nearby: $j_{\nu}\sim j_{\gamma}\sim j_{p}$

[Aloisio,Berezinsky,Kachelriess '04]

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
- \Rightarrow Reliably predicted!
- Spectra at Earth:
 - for superheavy dark matter, injection nearby: $j_{\nu} \sim j_{\gamma} \sim j_p$
 - for topological defects, injection far away: $j_{\nu} \gg j_{\gamma} \sim j_p$

A. Ringwald (DESY)

[Aloisio,Berezinsky,Kachelriess '04]

- How natural?
 - Superheavy dark matter: need symmetry to prevent fast X decay
 - * gauge $\Rightarrow X$ stable
 - * discrete \Rightarrow stable or quasi-stable

- How natural?
 - Superheavy dark matter: need symmetry to prevent fast X decay * gauge $\Rightarrow X$ stable
 - * discrete \Rightarrow stable or quasi-stable
 - Topological defects: generic prediction of symmetry breaking (SB) in GUT's, including fundamental string theory, e.g.
 - * $G \to H \times U(1)$ SB: monopoles
 - * U(1) SB: ordinary or superconducting strings

- How natural?
 - Superheavy dark matter: need symmetry to prevent fast X decay * gauge $\Rightarrow X$ stable
 - * discrete \Rightarrow stable or quasi-stable
 - Topological defects: generic prediction of symmetry breaking (SB) in GUT's, including fundamental string theory, e.g.
 - * $G \to H \times U(1)$ SB: monopoles
 - * U(1) SB: ordinary or superconducting strings
 - * $\mathbf{G} \to \mathbf{H} \times \mathbf{U}(1) \to \mathbf{H} \times \mathbf{Z}_N$ SB: monopoles connected by strings

- Strong impact of measurement for
 - particle physics

- cosmology

[[]Fodor,Katz,AR,Weiler,Wong,in prep.]

- Strong impact of measurement for
 - particle physics
 - * GUT parameters, e.g. m_X

[[]Fodor,Katz,AR,Weiler,Wong,in prep.]

- Strong impact of measurement for
 - particle physics
 - $\ast\,$ GUT parameters, e.g. m_X
 - * particle content of the desert,e.g. SM vs. MSSM
 - cosmology

[Barbot,Drees '02]

Frontiers in Astroparticle Physics, Vienna, Nov 2005

• Strong impact of measurement for

- particle physics

- \ast GUT parameters, e.g. m_X
- * particle content of the desert,e.g. SM vs. MSSM
- * νN scattering at $\sqrt{s}\gg {\rm LHC}$

- * window on early phase transition
- * Hubble expansion rate H(z)
- * existence of the big bang relic neutrino background (C ν B)

- Strong impact of measurement for
 - particle physics
 - \ast GUT parameters, e.g. m_X
 - * particle content of the desert,e.g. SM vs. MSSM
 - * νN scattering at $\sqrt{s}\gg {\rm LHC}$

- * window on early phase transition
- * Hubble expansion rate H(z)
- * existence of the big bang relic neutrino background (C ν B)

[Fodor,Katz,AR,Weiler,Wong,in prep.]

- Strong impact of measurement for
 - particle physics
 - \ast GUT parameters, e.g. m_X
 - * particle content of the desert,e.g. SM vs. MSSM
 - * νN scattering at $\sqrt{s}\gg {\rm LHC}$

- * window on early phase transition
- * Hubble expansion rate H(z)
- * existence of the big bang relic neutrino background (C ν B)

[Fodor,Katz,AR,Weiler,Wong,in prep.]

- The High Energy Universe -

5. Conclusions

- Exciting times for ultrahigh energy cosmic rays and neutrinos:
 - many observatories under construction
 - \Rightarrow appreciable event samples
- Expect strong impact on
 - astrophysics
 - particle physics
 - cosmology

