Andreas Ringwald

http://www.desy.de/~ringwald

in collaboration with Yvonne Wong, arXiv:hep-ph/0408241

Seminar, Laboratori Nazionali del Gran Sasso, Assergi L'Aquila, I November 2004

1. Introduction

- Big Bang cosmology:
 - ⇒ Cosmic microwave background (CMB)
 - \Rightarrow Cosmic neutrino background (C ν B)

[CERN] Gran Sasso National Laboratory, I

1. Introduction

- Big Bang cosmology:
 - \Rightarrow Cosmic microwave background (CMB)
 - \Rightarrow Cosmic neutrino background (C ν B)
- Firm predictions:

$$\underbrace{\bar{n}_{\nu_i \, 0} = \bar{n}_{\bar{\nu}_i \, 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma \, 0}}_{CMB} = 56 \text{ cm}^{-3}$$

⇒ Big bang relic neutrinos \approx as abundant as relic photons [ratio $(6 \times 3)/22 = 9/11$]

1. Introduction

- Big Bang cosmology:
 - \Rightarrow Cosmic microwave background (CMB)
 - \Rightarrow Cosmic neutrino background (C ν B)
- Firm predictions:

$$\underbrace{\bar{n}_{\nu_i \, 0} = \bar{n}_{\bar{\nu}_i \, 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma \, 0}}_{CMB} = 56 \text{ cm}^{-3}$$

⇒ Big bang relic neutrinos \approx as abundant as relic photons [ratio $(6 \times 3)/22 = 9/11$]

$$\underbrace{\bar{p}_{\nu_i 0} = \bar{p}_{\bar{\nu}_i 0}}_{C\nu B} = 3\left(\frac{4}{11}\right)^{1/3} \underbrace{T_{\gamma 0}}_{CMB} = 5 \times 10^{-4} \text{ eV}$$

 \Rightarrow At least two neutrino mass eigenstates nonrelativistic ($m_{\nu_i} \gg 5 \times 10^{-4} (1+z) \text{ eV}$)

A. Ringwald (DESY)

- ⇒ Nonrelativistic relic neutrinos subject to gravitational clustering on cold dark matter (CDM) and baryonic structures
- ⇒ Neutrino density might be enhanced in the halo of the Milky Way or in the halos of other galaxies/clusters of galaxies
 - $C\nu B$ has not been detected in laboratory:
 - ← Neutrinos interact only weakly
 - $\Leftrightarrow \mathsf{Smallness} \mathsf{ of neutrino mass} \Leftrightarrow \mathsf{small momentum-transfer}$
 - Only evidence for/inference about CvB from other cosmological measurements:
 - Big bang nucleonsynthesis (BBN) ($1.8 \le N_{\nu} \le 4.5$)
 - Large scale structure data together with CMB ($\sum m_{\nu_i} \leq 1.8 \text{ eV}$)
 - Design of possible direct, scattering-based detection experiment: Requires precise knowledge of phase space distribution of relic neutrinos Possible now with much more accuracy then ever!

A. Ringwald (DESY)

• Further content:

- 2. Gravitational clustering of relic neutrinos
- 3. Implications for detection
- 4. Conclusions

2. Gravitational clustering of relic neutrinos

- In context of flat ΛCDM model, neutrino component \approx perturbation
 - On cosmological scales, $\bar{\rho}_{\nu}/\bar{\rho}_m < 0.2 \stackrel{\text{free-streaming}}{\Rightarrow}$ even smaller on cluster/galactic scales
 - \rightarrow CDM component ρ_m dominates in gravitational potential ϕ
- \Rightarrow Neutrino clustering in cold dark matter halos from Λ CDM simulations [Singh,Ma '03; AR,Wong '04]
 - Neutrino phase space distributions $f_{\nu_i}(\boldsymbol{x}, \boldsymbol{p}, \tau)$, depending on $\boldsymbol{x} = \boldsymbol{r}/a(t)$, $\boldsymbol{p} = am_{\nu_i}\dot{\boldsymbol{x}}$, $d\tau = dt/a(t)$, obey the Vlasov, or collisionless Boltzmann, equation,

$$\frac{Df_{\nu_i}}{D\tau} \equiv \frac{\partial f_{\nu_i}}{\partial \tau} + \dot{\boldsymbol{x}} \cdot \frac{\partial f_{\nu_i}}{\partial \boldsymbol{x}} \underbrace{-am_{\nu_i}\nabla\phi}_{\dot{\boldsymbol{p}}} \cdot \frac{\partial f_{\nu_i}}{\partial \boldsymbol{p}} = 0$$

A. Ringwald (DESY)

- Gravitational clustering of relic neutrinos in galactic halos and their detection -
- Poisson equation

$$\nabla^2 \phi = 4\pi G a^2 \underbrace{\left(\rho_m(\boldsymbol{x},\tau) - \overline{\rho}_m(\tau)\right)}_{\delta_m(\boldsymbol{x},\tau) \, \overline{\rho}_m(\tau)}$$

relates ϕ to density fluctuation δ_m with respect to physical mean $\bar{\rho}_m$

• Vlasov equation \Leftrightarrow conservation of f_{ν_i} along characteristics $\{x(\tau), p(\tau)\}$,

$$\frac{d\boldsymbol{x}}{d\tau} = \frac{\boldsymbol{p}}{am_{\nu_i}}, \qquad \frac{d\boldsymbol{p}}{d\tau} = -am_{\nu_i}\nabla\phi$$

- Complete set of characteristics coming through every point in phase space exactly equivalent to Vlasov equation
- Particle-based solution methods (*N*-body simulations):
 Follow a sufficiently large, but still manageable set of characteristics selected from the initial phase space distribution

- Gravitational clustering of relic neutrinos in galactic halos and their detection -
- Velocity of unperturbed ν distribution,

$$\bar{v}_{\nu} \simeq 1.6 \times 10^2 \ (1+z) \left(\frac{\text{eV}}{m_{\nu}}\right) \ \text{km/s}$$

 \simeq (\lesssim) velocity dispersion of galaxy (cluster) 2×10^2 km/s (10^3 km/s) today

- \Rightarrow For sub-eV neutrinos, clustering on small scales can only have been a $z \leq 2$ event
 - In this epoch, exploit ρ_m of CDM halos, \approx conform to a universal shape, e.g. the Navarro Frenk White profile,

$$\rho_{\rm halo}(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2},$$

A. Ringwald (DESY)

Gran Sasso National Laboratory, I

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

- Neutrino free-streaming:
- $\Rightarrow n_{\nu}/\bar{n}_{\nu}$ flattens out at small radii

9

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

- Neutrino free-streaming:
 - $\Rightarrow n_{\nu}/\bar{n}_{\nu}$ flattens out at small radii
- $\Rightarrow \rho_{\nu}/\rho_m \text{ drops substan-} \\ \text{tially below } \bar{\rho}_{\nu}/\bar{\rho}_m$

10

Comparative analysis for various $\{m_{ u}, M_{ m vir}\}$:

- Neutrino free-streaming:
 - $\Rightarrow n_{\nu}/\bar{n}_{\nu}$ flattens out at small radii
 - $\Rightarrow \rho_{\nu}/\rho_{m} \text{ drops substan-} \\ \text{tially below } \bar{\rho}_{\nu}/\bar{\rho}_{m}$
- Improved clustering for increasing $M_{\rm vir}$ a/o m_{ν} :
 - \diamond Overdensity $\propto M_{
 m vir}$ for fixed $r,~m_{
 u}$

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

- Neutrino free-streaming:
 - $\Rightarrow n_{\nu}/\bar{n}_{\nu}$ flattens out at small radii
 - $\Rightarrow \rho_{\nu}/\rho_{m} \text{ drops substan-} \\ \text{tially below } \bar{\rho}_{\nu}/\bar{\rho}_{m}$
- Improved clustering for increasing $M_{\rm vir}$ a/o m_{ν} :
 - \diamond Overdensity $\propto M_{
 m vir}$ for fixed r, $m_{
 u}$
 - \diamondsuit Overdensity $\propto m_{\nu}^{(1\div3)}$ for fixed r , $M_{\rm vir}$

[AR,Wong '04]

A. Ringwald (DESY)

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

- Neutrino free-streaming:
 - $\Rightarrow n_{\nu}/\bar{n}_{\nu}$ flattens out at small radii
 - $\Rightarrow \rho_{\nu}/\rho_m \text{ drops substan-} \\ \text{tially below } \bar{\rho}_{\nu}/\bar{\rho}_m$
- Improved clustering for increasing $M_{\rm vir}$ a/o m_{ν} :
 - \diamond Overdensity $\propto M_{
 m vir}$ for fixed r, $m_{
 u}$
 - \diamond Overdensity $\propto m_{
 u}^{(1 \div 3)}$ for fixed r, $M_{
 m vir}$
- Linear approximation fails, unless $n_{
 u}/\bar{n}_{
 u} \lesssim 2$ A. Ringwald (DESY)

Gran Sasso National Laboratory, I

Phase space distribution of neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8$ kpc)?

- Central region of Milky Way ($\leq 10 \text{ kpc}$) dominated by baryonic matter in form of disk + bulge (+ bar?)
- $\Rightarrow \mbox{ Use N-one-body method} \\ \mbox{ with following ϕ \Leftrightarrow mass} \\ \mbox{ distribution} \end{cases}$
 - MWnow: present day one from observations; static
 - NFWhalo: NFW profile for Milky Way parameters; dynamic

A. Ringwald (DESY)

Momentum distribution of neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8$ kpc):

• almost isotropic:

$$\stackrel{\diamondsuit}{\diamond} \begin{array}{l} \langle p_r \rangle \simeq 0 \\ \Diamond \end{array} \\ 2 \langle p_r^2 \rangle \simeq \langle p_T^2 \rangle \end{array}$$

	$\frac{n\nu}{\bar{n}\nu}$	$\langle y_{T} \rangle$	$\langle y_T \rangle$	$\langle y angle$	$\langle y_r^2 angle$	$\langle y_T^2 angle$	$\langle y^2 \rangle$
Fermi–Dirac	1	0	2.5	3.2	4.3	8.6	12.9
MWnow							
$m_{\nu} =$							
$0.6 \mathrm{eV}$	20	0.0	4.0	5.1	9.3	18	28
$0.45 \ \mathrm{eV}$	10	0.0	3.1	4.0	6.1	12	18
$0.3 \ \mathrm{eV}$	4.4	0.0	2.5	3.2	3.9	8.0	12
$0.15~{\rm eV}$	1.6	0.0	2.3	2.9	3.7	7.3	11
NFWhalo							
$m_{\nu} =$							
$0.6 \mathrm{~eV}$	12	0.0	3.4	4.3	6.9	13	20
$0.45 \ \mathrm{eV}$	6.4	0.0	2.8	3.5	4.6	9.5	14
$0.3 \ \mathrm{eV}$	3.1	0.0	2.3	3.0	3.6	7.3	11
$0.15~{\rm eV}$	1.4	0.0	2.3	2.0	3.8	7.6	11

$$y = p/T_{\nu,0} = m_{\nu}v/T_{\nu,0}$$

Momentum distribution of neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8$ kpc):

• almost isotropic:

 $\begin{array}{l} \diamondsuit \ \langle p_r \rangle \simeq 0 \\ \diamondsuit \ 2 \langle p_r^2 \rangle \simeq \langle p_T^2 \rangle \end{array}$

- flat at low momenta, with common value $\sim 1/2$
- turning point at $\simeq p_{\rm esc} \equiv m_{\nu} v_{\rm esc} \equiv m_{\nu} \sqrt{2|\phi(r_{\oplus})|}$
- matches Fermi-Dirac at high momenta

Gran Sasso National Laboratory, I

A. Ringwald (DESY)

Phase space bounds?

- $\overline{f} \leq \max(f_0)$: Final coarse-grained \overline{f} must not exceed maximum of initial fine-grained f_0 [Lynden-Bell '67]
 - $\checkmark \ \bar{f}$ saturates bound up to $p_{\rm esc}$, \sim semi-degenerate state that can only be made denser by filling in states above $p_{\rm esc}$

Phase space bounds?

- $\overline{f} \leq \max(f_0)$: Final coarse-grained \overline{f} must not exceed maximum of initial fine-grained f_0 [Lynden-Bell '67]
 - \sqrt{f} saturates bound up to $p_{
 m esc}$, \sim semi-degenerate state that can only be made denser by filling in states above $p_{
 m esc}$
- Stronger bound: [Tremaine,Gunn '79; Kull et al. '96] Sum semi-de-generate distribution only up to $p_{\rm esc}$,

$$\frac{n_{\nu}}{\bar{n}_{\nu}} < \frac{m_{\nu}^3 v_{\rm esc}^3}{9\zeta(3)T_{\nu,0}^3}$$

 \checkmark applicable: large $M_{
m vir}~(m_{
u})$ A. Ringwald (DESY)

3. Implications for detection

- Gravitational clustering of relic neutrinos significant for their detection?
- Consider detection methods based on **scattering processes**, involving the relic neutrinos either as a **beam** or as a **target**:
 - Coherent elastic scattering of the relic neutrino flux off target matter in a terrestrial detector (flux detection)
 - Scattering of extremely energetic particles (accelerator beams or cosmic rays) off the relic neutrinos as a target (target detection)

Flux detection

 Low average momentum of relic neutrinos corresponds to a (reduced) de Broglie wavelength of macroscopic dimension,

 $\dot{\mathbf{x}} = 1/\langle p \rangle = 0.12 \ \mathrm{cm}/\langle y \rangle$

 \Rightarrow Envisage scattering processes in which many target atoms act coherently over a macroscopic volume $\lambda^3 \Rightarrow$ elastic scattering rate enhanced by

$$\frac{N_A}{A} \rho_{\rm t} \, \lambda^3 \simeq 6 \times 10^{18} \, \left(\frac{100}{A}\right) \left(\frac{\rho_{\rm t}}{\rm g/cm^3}\right) \left(\frac{\lambda}{0.1 \, \rm cm}\right)^3$$

compared to case where neutrinos are elastically scattered coherently only on the individual nuclei of the target [Shvartsman *et al.* '82; Smith,Lewin '83]

A. Ringwald (DESY)

 Test body will experience neutrino wind force through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer}$$
$$\simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{g/{\rm cm}^3}\right) \left(\frac{r_{\rm t}}{\lambda}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

• Test body will experience **neutrino wind force** through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer} \\ \simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{g/{\rm cm}^3}\right) \left(\frac{r_{\rm t}}{\chi}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

• At present, smallest measurable acceleration $\gtrsim 10^{-13} \text{ cm/s}^2$, using conventional **Cavendish-type torsion balance**. Improvements to $\gtrsim 10^{-23} \text{ cm/s}^2$ proposed

[Hagmann '99]

 Test body will experience neutrino wind force through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer}$$
$$\simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{g/{\rm cm}^3}\right) \left(\frac{r_{\rm t}}{\chi}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

[Hagmann '99]

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

- At present, smallest measurable acceleration $\gtrsim 10^{-13}$ cm/s², using conventional Cavendish-type torsion balance. Improvements to $\gtrsim 10^{-23}$ cm/s² proposed
- ⇒ Detection possible in 30-40 years, if neutrinos are Dirac particles [Smith '03]

A. Ringwald (DESY)

	$rac{n_{ u}}{ar{n}_{ u}}$	$\lambda = \frac{1}{\langle p \rangle}$	$\langle v angle$
MWnow			
$m_{\nu} =$			
$0.6 \mathrm{~eV}$	20	$2.3 imes10^{-2}~{ m cm}$	1.4×10^{-3}
$0.45~{\rm eV}$	10	$2.9 imes10^{-2}~{ m cm}$	1.5×10^{-3}
$0.3 \ \mathrm{eV}$	4.4	$3.7 imes10^{-2}$ cm	1.8×10^{-3}
$0.15 \ \mathrm{eV}$	1.6	$4.1 imes 10^{-2}$ cm	3.2×10^{-3}
NFWhalo			
$m_{\nu} =$			
$0.6 \mathrm{eV}$	12	$2.7 imes10^{-2}~{ m cm}$	1.2×10^{-3}
$0.45~{\rm eV}$	6.4	$3.4 imes10^{-2}~{ m cm}$	1.3×10^{-3}
$0.3 \ \mathrm{eV}$	3.1	$3.9 imes10^{-2}~{ m cm}$	1.7×10^{-3}
$0.15~{\rm eV}$	1.4	$5.9 imes10^{-2}$ cm	2.2×10^{-3}

Target detection

• For center-of-mass energies below W- and Z-resonances, cf.

$$\sqrt{2 m_{\nu} E} \simeq 4.5 \left(\frac{m_{\nu}}{\text{eV}}\right)^{1/2} \left(\frac{E}{10 \text{ TeV}}\right)^{1/2} \text{MeV}$$

weak interaction cross sections grow rapidly with energy

- \Rightarrow Exploit a flux of extremely energetic particles
 - accelerator beams
 - from cosmic rays

for scattering on relic neutrinos as target

Exploit accelerator beams:

• Scattering rate [B. Müller '87; Melissinos '99, Weiler '01]

$$R_{\nu ZN} \simeq \sum_{\nu,\bar{\nu}} n_{\nu} \sigma_{\nu ZN} L I/(Z e)$$

$$\simeq 2 \times 10^{-8} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{m_{\nu}}{eV}\right) \frac{A^{2}}{Z} \left(\frac{E_{N}}{10 \text{ TeV}}\right) \left(\frac{L}{100 \text{ km}}\right) \left(\frac{I}{0.1 \text{ A}}\right) \text{ yr}^{-1}$$

 $\Rightarrow \text{ Too small to give rise to an observable effect}$ in the foreseeable future (LHC, VLHC)

⇒ Need Ultimate Large Hadron Collider

- Few elastic scattering events per year; hard to detect, due to small momentum transfers ($\sim 1 \text{ GeV}$ at $E_N \sim 10^7 \text{ TeV}$)
- Alternative: exploit inverse beta decay

$${}^{A}_{Z}N + \nu_{e} \rightarrow {}^{A}_{Z+1}N + e^{-}$$

$$\Rightarrow \det A_{Z+1}N$$
 on exit of machine

A. Ringwald (DESY)

[Melissinos '99; Zavattini unpubl]

accel.	N	E_N	L	Ι	$\frac{R_{\nu A}}{\left[\frac{n_{\nu}}{\bar{n}_{\nu}}\frac{m_{\nu}}{eV}\right]}$
		[TeV]	[km]	[A]	[yr ⁻¹]
LHC	p	7	26.7	0.6	2×10^{-8}
	Pb	574	26.7	0.006	1×10^{-5}
VLHC	p	87.5	233	0.06	2×10^{-7}
	Pb	7280	233	0.0006	1×10^{-4}
ULHC	p	10^{7}	40 000	0.1	10

Exploit cosmic rays:

 Before ULHC: target detection only via extremely energetic cosmic rays

Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHECv)

$$E_{\nu}^{\mathrm{res}} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \left(\frac{\mathrm{eV}}{m_{\nu}}\right) \mathrm{eV}$$

with relic $\bar{\nu}$ into **Z**-bosons

[Weiler '82]

Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHECv)

$$E_{\nu}^{\mathrm{res}} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \left(\frac{\mathrm{eV}}{m_{\nu}}\right) \mathrm{eV}$$

with relic $\bar{\nu}$ into **Z**-bosons

[Weiler '82]

Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHECv)

$$E_{\nu}^{\mathrm{res}} = rac{m_Z^2}{2m_{
u}} \simeq 4 imes 10^{21} \left(rac{\mathrm{eV}}{m_{
u}}
ight) \, \mathrm{eV}$$

Absorption dips in EHEC ν spectrum

with relic $\bar{\nu}$ into **Z**-bosons

[Weiler '82]

 \Diamond

A. Ringwald (DESY)

[Eberle, AR, Song, Weiler '04]

[Weiler '82;...; Eberle, AR, Song, Weiler '04]

Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHECv)

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \left(\frac{\rm eV}{m_{\nu}}\right) \ \rm eV$$

with relic $\bar{\nu}$ into **Z**-bosons

[Weiler '82]

♦ Absorption dips in EHEC ν spectrum [Weiler '82;...; Eberle,AR,Song,Weiler '04]
♦ Emission features (Z-bursts): [Fargion et al. '99; Weiler '99;...; Fodor,Katz,AR '01,'02]
protons and photons with energies above the predicted Greisen–Zatsepin–Kuzmin (GZK) cutoff at $E_{GZK} \simeq 4 \times 10^{19}$ eV [Greisen '66; Zatsepin,Kuzmin '66]

Gran Sasso National Laboratory, I

Absorption spectroscopy: [Eberle, AR, Song, Weiler '04]

 Presently planned EHEC
 v detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided

Absorption spectroscopy: [Eberle, AR, Song, Weiler '04]

- Presently planned EHEC
 it detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - \diamond **EHEC** ν flux at resonant energies close to current observational bounds
 - \diamond neutrino mass sufficiently large, $m_{
 u} \gtrsim 0.1 \ {
 m eV}$

Absorption spectroscopy: [Eberle, AR, Song, Weiler '04]

- Presently planned EHEC
 it detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - \diamond **EHEC** ν flux at resonant energies close to current observational bounds
 - \diamond neutrino mass sufficiently large, $m_{
 u} \gtrsim 0.1 \ {
 m eV}$

Absorption spectroscopy: [Eberle, AR, Song, Weiler '04]

- Presently planned EHEC
 v detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - EHEC ν flux at resonant energies close to current observational bounds
 - neutrino mass sufficiently large, $m_{
 u} \gtrsim 0.1 \ {\rm eV}$
- In this case, the associated Z-bursts likely to be seen as post-GZK events at the planned cosmic ray detectors

Implications of clustering for

absorption spectroscopy:

- \diamond sensitive to relic neutrino background at $z \gg 1$
- ♦ clustering (z ≤ 2) can only show up as secondary dips with small, **unresolvable** widths in energy

Implications of clustering for

• absorption spectroscopy:

- $\diamond~$ sensitive to relic neutrino background at $z\gg 1$
- \diamond clustering ($z \leq 2$) can only show up as secondary dips with small, **unresolvable** widths in energy

emission spectroscopy:

♦ sensitive to relic neutrino content of local universe ($r_{\text{GZK}} \leq 50 \text{ Mpc} \Leftrightarrow z \leq 0.01$)

[Da Costa et al. '96]

Implications of clustering for

• absorption spectroscopy:

- \diamond sensitive to relic neutrino background at $z \gg 1$
- ♦ clustering (z ≤ 2) can only show up as secondary dips with small, **unresolvable** widths in energy

emission spectroscopy:

- ♦ sensitive to relic neutrino content of local universe ($r_{\text{GZK}} \leq 50 \text{ Mpc} \Leftrightarrow z \leq 0.01$)
- ♦ neutrino density contrasts, above free-streaming scale $\lambda_{\rm fs} \simeq 2 \,({\rm eV}/m_{\nu})$ Mpc, approximately track those of underlying CDM
- \Rightarrow no substantial neutrino overdensity over the whole GZK volume ($\sim r_{\rm GZK}^3$)
- no significant enhancement of overall emission rate by gravitational clustering

[Fodor,Katz,AR '02; AR,Wong '04]

Implications of clustering for

• absorption spectroscopy:

- $\diamondsuit\,$ sensitive to relic neutrino background at $z\gg 1$
- ♦ clustering (z ≤ 2) can only show up as secondary dips with small, **unresolvable** widths in energy

emission spectroscopy:

- ♦ sensitive to relic neutrino content of local universe ($r_{\rm GZK} \lesssim 50 \ {\rm Mpc} \Leftrightarrow z \lesssim 0.01$)
- \diamond neutrino density contrasts, above free-streaming scale $\lambda_{\rm fs} \simeq 2 \,({\rm eV}/m_{
 u})$ Mpc, approximately track those of underlying CDM
- \Rightarrow no substantial neutrino overdensity over the whole GZK volume ($\sim r_{\rm GZK}^3)$
- ⇒ no significant enhancement of overall emission rate by gravitational clustering
- ◇ relic neutrino tomography: for ~ 1° angular resolution and $m_{\nu} \sim 0.15 - 0.6$ eV, expect ~ 8-55 increase in number of events from Virgo A. Ringwald (DESY)

[Jarrett [2MASS] '04]

4. Conclusions

- Study of gravitational clustering of big bang relic neutrinos onto existing CDM and baryonic structures within flat ΛCDM model
 - Clustering properties on galaxy cluster, galactic, and sub-galactic scales for a range of allowed neutrino masses
 - * Local universe:
 - · Overdensity $\approx 1000 \ (\approx 100)$ for $m_{\nu} = 0.6 \text{ eV} \ (= 0.15 \text{ eV})$ for inner part ($\leq 100 \text{ kpc}$) of Virgo and Centaurus
 - * Local neighbourhood of Earth:
 - · Overdensity $\approx 20~(\approx 2)$ for $m_{\nu} = 0.6~{
 m eV}~(= 0.15~{
 m eV})$
 - \cdot Coarse-grained momentum spectrum semi-degenerate, $\bar{f}\sim 1/2$, up to escape momentum
 - \cdot Higher density needs non-standard theory
 - No tremendous increase of rate for scattering-based detection
 - Visible in non-linear matter power spectrum? [Abazajian et al., talk in Trento, Oct '04]