Physics of Neutrinos at Ultra High Energies

Andreas Ringwald

http://www.desy.de/~ringwald

“The UHE Universe: a vision for the next decade”
Centro Congressi Villa Mondragone, Monteporzio Catone, Italy
June 19-21, 2006
1. Introduction

• Existing observatories for Ultra High Energy Cosmic ν's provide sensible upper bounds on flux

• Upcoming decade: progressively larger detectors for UHECν's

$\Rightarrow E \geq 10^{16}$ eV:

 \rightarrow Astrophysics of cosmic rays

$\Rightarrow E \geq 10^{17}$ eV:

 \rightarrow Particle physics beyond LHC

$\Rightarrow E \geq 10^{21}$ eV:

 \rightarrow Cosmology: relics of phase transitions; absorption on big bang relic neutrinos

A. Ringwald (DESY)

The UHE Universe, Monteporzio Catone/I, June 2006
Further content:

2. Sources and fluxes of UHEC neutrinos
3. Fundamental physics opportunities of UHEC neutrinos
4. Conclusions
2. Sources and fluxes of UHEC neutrinos

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - \(p \)'s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of \(\pi \)'s and \(n \)'s through collisions of the trapped \(p \)'s with ambient plasma produces \(\gamma \)'s, \(\nu \)'s and CR's (\(n \) diffusion from source)
2. Sources and fluxes of UHEC neutrinos

- Paradigm for astrophysical extragalactic source of protons and neutrinos: shock acceleration
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π's and n's through collisions of the trapped p's with ambient plasma produces γ's, ν's and CR's (n diffusion from source)

Hillas: $E_p \lesssim 10^{21}$ eV
2. Sources and fluxes of UHEC neutrinos

- Paradigm for astrophysical extragalactic source of protons and neutrinos: shock acceleration
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π's and n's through collisions of the trapped p's with ambient plasma produces γ's, ν's and CR's (n diffusion from source)

Hillas: $E_p \lesssim 10^{21} \text{ eV} \Rightarrow E_\nu \lesssim 10^{20} \text{ eV}$
2. Sources and fluxes of UHEC neutrinos

• Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π’s and n’s through collisions of the trapped p’s with ambient plasma produces γ’s, ν’s and CR’s (n diffusion from source)

 Hillas: $E_p \lesssim 10^{21}$ eV $\Rightarrow E_\nu \lesssim 10^{20}$ eV

 $\Rightarrow E_\nu \gtrsim 10^{20}$ eV (super-GZK) ν’s:
 ← yet unknown acceleration sites
 ← other acceleration mechanism
 ← **decay of superheavy particles**

[Barbot, Drees '02]

2. Sources and fluxes of UHEC neutrinos

- Paradigm for astrophysical extragalactic source of protons and neutrinos: shock acceleration
 - p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π’s and n’s through collisions of the trapped p’s with ambient plasma produces γ’s, ν’s and CR’s (n diffusion from source)

Hillas: $E_p \lesssim 10^{21}$ eV $\Rightarrow E_\nu \lesssim 10^{20}$ eV

$\Rightarrow E_\nu \gtrsim 10^{20}$ eV (super-GZK) ν’s:
 - yet unknown acceleration sites
 - other acceleration mechanism
 - decay of superheavy particles

A. Ringwald (DESY)
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - decomposition of topological defects from late phase transitions into their constituents

[Ringeval, Sakellariadou, Bouchet '06]
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - decomposition of topological defects from late phase transitions into their constituents
 ⇒ super-GZK ν’s from constituent decay

[Aloisio, Berezinsky, Kachelriess ’04]
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \, \text{GeV} \lesssim m_X \lesssim 10^{16} \, \text{GeV}$, produced during and after inflation through e.g.
 - decomposition of topological defects from late phase transitions into their constituents
 ⇒ super-GZK ν's from constituent decay
 - particle creation in time-varying gravitational field

[Kolb, Chung, Riotto '98]
Top-down scenarios for super-GZK neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - decomposition of topological defects from late phase transitions into their constituents
 \[\Rightarrow \text{super-GZK } \nu \text{'s from constituent decay} \]
 - particle creation in time-varying gravitational field
 \[\Rightarrow \text{super-GZK } \nu \text{'s from decay or annihilation of superheavy dark matter (for } \tau_X \gtrsim \tau_U) \]

[Aloisio, Berezinsky, Kachelriess '04]

A. Ringwald (DESY)

The UHE Universe, Monteporzio Catone/I, June 2006
Top-down scenarios for super-GZK neutrinos

- How generic?
 - **Topological defects**: generic prediction of symmetry breaking (SB) in GUT’s, and even fundamental string theory, e.g.
 * $G \rightarrow H \times U(1)$ SB: monopoles
 * $U(1)$ SB: ordinary or superconducting strings

[Rajantie ‘03]
Top-down scenarios for super-GZK neutrinos

\[SO(10) \rightarrow ^1 4C \ 2_L \ 2_R \]

\[
\begin{cases}
1 & \rightarrow & 3C \ 2_L \ 2_R \ 1_{B-L} \\
1 & \rightarrow & 4C \ 2_L \ 1_R \\
1 & \rightarrow & 3C \ 2_L \ 1_R \ 1_{B-L} \\
1 (1,2) & \rightarrow & G_{SM} (Z_2)
\end{cases}
\]

\[
\begin{cases}
1 & \rightarrow & 3C \ 2_L \ 1_R \ 1_{B-L} \\
2' (2) & \rightarrow & G_{SM} (Z_2) \\
1 & \rightarrow & 3C \ 2_L \ 1_R \ 1_{B-L} \\
2' (2) & \rightarrow & G_{SM} (Z_2) \\
2 (2) & \rightarrow & G_{SM} (Z_2)
\end{cases}
\]

[Jeannerot,Rocher,Sakellariadou '03]
Top-down scenarios for super-GZK neutrinos

- **How generic?**
 - **Topological defects:** generic prediction of symmetry breaking (SB) in GUT’s, and even fundamental string theory, e.g.
 - $G \rightarrow H \times U(1)$ SB: monopoles
 - $U(1)$ SB: ordinary or superconducting strings
 - $G \rightarrow H \times U(1) \rightarrow H \times Z_N$ SB: monopoles connected by strings

[Berezinsky '05]
Top-down scenarios for super-GZK neutrinos

- **How generic?**
 - **Topological defects:** generic prediction of symmetry breaking (SB) in GUT’s, including fundamental string theory, e.g.
 - $G \rightarrow H \times U(1)$ SB: monopoles
 - $U(1)$ SB: ordinary or superconducting strings
 - $G \rightarrow H \times U(1) \rightarrow H \times Z_N$ SB: monopoles connected by strings
 - **Superheavy dark matter:** need symmetry to prevent fast X decay
 - gauge $\Rightarrow X$ stable
 - discrete \Rightarrow stable or quasi-stable
3. Fundamental physics opportunities with UHEC neutrinos

- C_{ν}'s with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) \approx under control (← HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; ...]

A. Ringwald (DESY)

A. Ringwald (DESY)

The UHE Universe, Monteporzio Catone/I, June 2006
3. Fundamental physics opportunities with UHEC neutrinos

- $C\nu's$ with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) \approx under control (\leftarrow HERA)

 \footnotesize{[Gandhi et al. '98; Kwiecinski et al. '98; ...]}

\Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:

 - Electroweak sphaleron production
3. Fundamental physics opportunities with UHEC neutrinos

- **Cν’s** with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) ≈ under control (← HERA)

 \cite{Gandhi:98,Kwiecinski:98,...}

\Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:

- Electroweak sphaleron production ($B + L$ violating processes in SM)
3. Fundamental physics opportunities with UHEC neutrinos

- **Cν’s** with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) ≈ under control (\leftarrow HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; ...]

⇒ Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV-scale gravity models

\[\text{[AR '03]} \]
3. Fundamental physics opportunities with UHEC neutrinos

- **Cν's** with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) ≈ under control (← HERA)

 $[\text{Gandhi et al. '98; Kwiecinski et al. '98; ...}]$

⇒ Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV-scale gravity models

$[\text{Fodor,Katz,AR,Tu '03; Han,Hooper '03}]$
3. Fundamental physics opportunities with UHEC neutrinos

- $\mathbf{C}\nu's$ with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) \approx under control (← HERA)

 \[\text{[Gandhi et al. '98; Kwiecinski et al. '98; ...]} \]

⇒ Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models
 - . . .

A. Ringwald (DESY)

The UHE Universe, Monteporzio Catone/I, June 2006
3. Fundamental physics opportunities with UHEC neutrinos

- **Cν's** with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) ≈ under control (← HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; ...]

⇒ Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models
 - . . .

A. Ringwald (DESY)

The UHE Universe, Monteporzio Catone/I, June 2006
3. Fundamental physics opportunities with UHEC neutrinos

- **Cν’s** with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s}_{\nu N} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) ≈ under control (← HERA)

 [Gandhi et al. ’98; Kwiecinski et al. ’98; ...]

⇒ Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models
 - . . .

A. Ringwald (DESY)
TeV scale physics with UHEC neutrinos

\[\frac{dN}{dt} \propto \int dE_\nu F_\nu(E_\nu) \sigma_{\nu N}(E_\nu) \]

\[\Rightarrow \] Non-observation of deeply-penetrating particles, together with lower bound on \(F_\nu \) (e.g. cosmogenic \(\nu \)'s)

\[\Rightarrow \] upper bound on \(\sigma_{\nu N} \)

[Berezinsky, Smirnov '74; Morris, AR '94; Tyler, Olinto, Sigl '01; ...]

Recent quantitative analysis:

[Anchordoqui, Fodor, Katz, AR, Tu '04]

[Anchordoqui, Fodor, Katz, AR, Tu '04]

A. Ringwald (DESY)

The UHE Universe, Monteporzio Catone/I, June 2006
TeV scale physics with UHEC neutrinos

\[\frac{dN}{dt} \propto \int dE_\nu \ F_\nu(E_\nu) \ \sigma_{\nu N}(E_\nu) \]

⇒ Non-observation of deeply-penetrating particles, together with lower bound on \(F_\nu \) (e.g. cosmogenic \(\nu \)'s)
⇒ upper bound on \(\sigma_{\nu N} \)

[Berezinsky,Smirnov '74; Morris,AR '94; Tyler,Olinto,Sigl '01;...]

• Recent quantitative analysis:

 [Anchordoqui,Fodor,Katz,AR,Tu '04]

 ◦ Best current limits from exploitation of RICE search results

 [Kravchenko et al. [RICE] '02,03]

 ◦ Auger will improve these limits by one order of magnitude

A. Ringwald (DESY)
TeV scale physics with UHEC neutrinos

• Bounds exploiting searches for deeply-penetrating particles applicable as long as $\sigma_{\nu N} \lesssim (0.5 \div 1) \text{ mb}$

• For even higher cross sections, e.g. via sphaleron or brane production:

⇒ Strongly interacting neutrino scenario for the post-GZK events

[Berezinsky, Zatsepin '69]

• Quantitative analysis:

 [Fodor, Katz, AR, Tu '03; Ahlers, AR, Tu '05]

 – Very good fit to CR data

[Ahlers, AR, Tu '05]
Bounds exploiting searches for deeply-penetrating particles applicable as long as $\sigma_{\nu N} \lesssim (0.5 \div 1) \text{ mb}$

For even higher cross sections, e.g. via sphaleron or brane production:

⇒ Strongly interacting neutrino scenario for the post-GZK events

[Berezinsky,Zatsepin ’69]

Quantitative analysis:

[Fodor,Katz,AR,Tu ’03; Ahlers,AR,Tu ’05]

- Very good fit to CR data
- Need steeply rising cross section, otherwise clash with nonobservation of deeply-penetrating particles

[Ahlers,A.R.,Tu ’05]
[AR ’03;Han,Hooper ’04] - - - sphalerons
[Anchordoqui,Feng,Goldberg ’02] - - - p-branes
[Burgett,Domokos,Kovesi-Domokos ’04] ...string excitations

A. Ringwald (DESY)
GUT scale physics with super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 - cosmology

[Fodor, Katz, AR, Weiler, Wong, in prep.]

GUT scale physics with super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 - cosmology

[Fodor, Katz, AR, Weiler, Wong, in prep.]
GUT scale physics with super-GZK neutrinos

• Strong impact of measurement for
 – particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 – cosmology

[Barbot, Drees ’02]
GUT scale physics with super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background (ν_B)

[Fodor, Katz, AR, Weiler, Wong, in prep.]
GUT scale physics with super-GZK neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background ($C\nu B$)

[Adriano Ringwald, DESY]

The UHE Universe, Monteporzio Catone, June 2006
4. Conclusions

- Exciting times for ultrahigh energy cosmic rays and neutrinos:
 - many observatories under construction
 ⇒ appreciable event samples

- Expect strong impact on
 - astrophysics
 - particle physics
 - cosmology