Prospects for the Direct Detection of the Cosmic Neutrino Background

Andreas Ringwald

http://www.desy.de/~ringwald

PANIC 2008 November 9–14, 2008, Eilat, Israel

0. Introduction

- Progress in observational cosmology
- \Rightarrow Cosmic recipe emerged:

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_C$	Obs.	0.01% Cosmic Microwa Background
Radiation	γ	$0.1 \; { m meV}$	10^{87}	0.01 %	СМВ	Cosmic Microwave Big Bang formation of light nuclei 3–5% Ordinary Matter 0.02% C.N., O Fe
Hot Dark		$> 0.04 \; \mathrm{eV}$		> 0.1 %	BBN	Expansion vs. 0.5% stars 3.5% warm/hot gas
Matter	Neutrinos		10^{87}		СМВ	(time: Pattern and
		$< 0.6 \; \mathrm{eV}$		< 2 %	LSS	structure
Ordinary					BBN	(Laboratory) Searches
Matter	p,n,e	MeV-GeV	10^{78}	5 %	СМВ	Dark Er
Cold Dark	WIMPs?	$\geq \! 100 \; {\rm GeV}$	$\leq 10^{77}$		LSS	
Matter		\sim	\sim	25 %	СМВ	
	Axions?	\lesssim meV	$\gtrsim 10^{91}$			[Connecting quarks cosmos]
Dark					SN]
Energy	?	10^{-33} eV	?	70 %	СМВ	

⇒ Direct, weak interaction based detection of the Cosmic Neutrino Background (CNB)? A. Ringwald (DESY)

- Prospects for the Direct Detection of the CNB –
- Indirect evidence for **CNB** from cosmological probes:
 - **BBN** prefers $N_{\nu} > 0$ (expansion rate during BBN \Rightarrow He-4 abundance)
 - CMB and LSS prefer $N_{\nu} > 0$ (matter/radiation eq. \Rightarrow fluctuation power spectra)
- CNB has not been detected directly in laboratory:
 - \Leftarrow neutrinos interact only weakly
 - $\Leftarrow \mathsf{ smallness} \mathsf{ of neutrino mass} \Leftrightarrow \mathsf{small momentum-transfer}$
- Design of direct, weak interaction based detection experiment
 - \leftarrow need phase space distribution of relic neutrinos
 - ← theoretically known better than ever!

Further content:

- 1. How many, how fast?
- 2. How to detect?
- 3. Conclusions

1. How many, how fast?

• Relic neutrinos decoupled at $t\sim 1~{\rm s}$

1. How many, how fast?

- Relic neutrinos decoupled at $t\sim 1~{\rm s}$
- Predictions (for small degeneracy): $\underbrace{\bar{n}_{\nu_i 0} = \bar{n}_{\bar{\nu}_i 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma 0}}_{CMB} = 56 \text{ cm}^{-3}$

relic neutrinos $\approx \#$ relic photons

1. How many, how fast?

- Relic neutrinos decoupled at $t\sim 1~{\rm s}$
- Predictions (for small degeneracy): $\underbrace{\bar{n}_{\nu_i 0} = \bar{n}_{\bar{\nu}_i 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma 0}}_{CMB} = 56 \text{ cm}^{-3}$

relic neutrinos $\approx \#$ relic photons

$$\underbrace{\bar{p}_{\nu_i 0} = \bar{p}_{\bar{\nu}_i 0}}_{C\nu B} = 3\left(\frac{4}{11}\right)^{1/3} \underbrace{T_{\gamma 0}}_{CMB} = 5 \times 10^{-4} \text{ eV}$$

At least two neutrino mass eigenstates nonrelativistic ($m_{\nu_i} \gg 5 \times 10^{-4} \text{ eV}$)

1. How many, how fast?

- Relic neutrinos decoupled at $t \sim 1$ s
- Predictions (for small degeneracy): $\underline{\bar{n}_{\nu_i 0} = \bar{n}_{\bar{\nu}_i 0}}_{=} = \frac{3}{22} \ \underline{\bar{n}_{\gamma 0}}_{=} = 56 \ \mathrm{cm}^{-3}$ $C\nu R$

relic neutrinos $\approx \#$ relic photons

$$\underbrace{\bar{p}_{\nu_i 0} = \bar{p}_{\bar{\nu}_i 0}}_{C\nu B} = 3\left(\frac{4}{11}\right)^{1/3} \underbrace{T_{\gamma 0}}_{CMB} = 5 \times 10^{-4} \text{ eV}$$

At least two neutrino mass eigenstates nonrelativistic ($m_{\nu_i} \gg 5 \times 10^{-4} \text{ eV}$)

- ⇒ Gravitational clustering on CDM
- Density enhanced in galactic halos \Rightarrow A. Ringwald (DESY)

Relic neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8 \text{ kpc}$):

• Overdensity $\approx 1-20$

A. Ringwald (DESY)

Relic neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8 \text{ kpc}$):

- Overdensity $\approx 1-20$
- Momentum distribution:
 - almost isotropic
 - flat at low momenta
 - turning point at \simeq

$$p_{\rm esc} \equiv m_{\nu} v_{\rm esc} \equiv m_{\nu} \sqrt{2|\phi(r_{\oplus})|}$$

 matches Fermi-Dirac at high momenta

A. Ringwald (DESY)

2. How to detect?

- Some possibilities of direct detection:
 - mechanical force through coherent scattering of relic neutrinos
 - neutrino capture on β decaying nuclei
 - Pauli blocking effects near thresholds for atomic neutrino pair emission enhanced by laser irradiation
 - scattering of accelerator beams off the relic neutrinos

Mechanical force based detection

 Low average momentum of relic neutrinos corresponds to a (reduced) de Broglie wavelength of macroscopic dimension,

$$\dot{\mathbf{x}} = 1/\langle p
angle = 0.12 \ \mathrm{cm}/\langle y
angle$$

 \Rightarrow Envisage scattering processes in which many target atoms act coherently over a macroscopic volume $\lambda^3 \Rightarrow$ elastic scattering rate enhanced by

$$\frac{N_A}{A} \rho_{\rm t} \, \dot{\chi}^3 \simeq \mathbf{6} \times \mathbf{10^{18}} \, \left(\frac{100}{A}\right) \left(\frac{\rho_{\rm t}}{\rm g/cm^3}\right) \left(\frac{\dot{\chi}}{0.1 \, \rm cm}\right)^3$$

compared to case where neutrinos are elastically scattered coherently only on the individual nuclei of the target [Shvartsman *et al.* '82; Smith,Lewin '83]

 Test body will experience neutrino wind force through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer}$$
$$\simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{g/{\rm cm}^3}\right) \left(\frac{r_{\rm t}}{\lambda}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

• Test body will experience **neutrino wind force** through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \ transfer} \\ \simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{{\rm g/cm^3}}\right) \left(\frac{r_{\rm t}}{\chi}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

• At present, smallest measurable acceleration $\gtrsim 10^{-13} \text{ cm/s}^2$, using conventional **Cavendish-type torsion balance**. Improvements to $\gtrsim 10^{-23} \text{ cm/s}^2$ proposed

[Hagmann '99]

 Test body will experience neutrino wind force through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer}$$
$$\simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{{\rm g/cm^3}}\right) \left(\frac{r_{\rm t}}{\lambda}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

[Hagmann '99]

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

- At present, smallest measurable acceleration $\gtrsim 10^{-13}$ cm/s², using conventional Cavendish-type torsion balance. Improvements to $\gtrsim 10^{-23}$ cm/s² proposed
- Detection possible in 30-40 years, if neutrinos are Dirac particles [Smith '03]

	$\frac{n_{\nu}}{\bar{n}_{\nu}}$	$\lambda = rac{1}{\langle p angle}$	$\langle v angle$
MWnow			
$m_{\nu} =$			
$0.6 \ \mathrm{eV}$	20	$2.3 imes10^{-2}~{ m cm}$	1.4×10^{-3}
$0.45~{\rm eV}$	10	$2.9 imes10^{-2}~{ m cm}$	1.5×10^{-3}
$0.3 \ \mathrm{eV}$	4.4	$3.7 imes10^{-2}$ cm	1.8×10^{-3}
$0.15 \ \mathrm{eV}$	1.6	$4.1 imes 10^{-2}$ cm	3.2×10^{-3}
NFWhalo			
$m_{\nu} =$			
0.6 eV	12	$2.7 imes10^{-2}~{ m cm}$	1.2×10^{-3}
$0.45~{\rm eV}$	6.4	$3.4 imes10^{-2}~{ m cm}$	1.3×10^{-3}
$0.3 \ \mathrm{eV}$	3.1	$3.9 imes10^{-2}~{ m cm}$	1.7×10^{-3}
$0.15~{\rm eV}$	1.4	$5.9 imes10^{-2}$ cm	2.2×10^{-3}

A. Ringwald (DESY)

Neutrino capture of radioactive nuclei based detection

[Irvine,Humphrey '83; Cocco,Mangano,Messina '07; Lazauskas,Vogel,Volpe '08; Blennow '08]

• Consider neutrino capture on e.g. tritium,

$$\nu_i + {}^3\mathrm{H} \to e + {}^3\mathrm{He}$$

• Capture rate of CNB neutrinos,

$$N_{i,\,\text{CNB}} \simeq 6.5 \text{ yr}^{-1} \left(100 \text{ g}^{-3} \text{H}\right)^{-1} |U_{ei}|^2 \frac{n_{\nu_i}}{\bar{n}_{\nu_i}}$$

• Signature: monoenergetic electrons with kinetic energy

$$T_{\rm kin} = Q_\beta + m_{\nu_i}$$

where $Q_{\beta} = 18.6 \text{ keV}$ is the energy release in ³H β -decay for $m_{\nu_i} = 0$

- Prospects for the Direct Detection of the CNB –
- Main challenge: Separation of signal electrons from overwhelming background of electrons from $^3{\rm H}$ $\beta{\rm -decay}$
- ⇒ Need very good energy resolution $\Delta \leq 0.5 \text{ eV}$ (degenerate masses), 0.05 eV (inverted hierarchy), 0.005 eV (normal hierarchy)

[Blennow '08]

 \Rightarrow Opportunity for KATRIN ($\Delta \sim 0.5 \, {
m eV}$) and future $^3{
m H}$ eta decay campaigns

Pauli blocking of atomic neutrino pair emission

[Yoshimura '07; Takahashi, Yoshimura '07]

• Laser irradiated neutrino pair emission from metastable ions or atoms,

$$\gamma + I^{\star} \to I^{\star \star} + \nu_i \bar{\nu}_i$$

- Signature: detection of $I^{\star\star}$; rate resonantly enhanced by tuning ω
- In presence of CNB, rate reduced near threshold due to Pauli blocking

Accelerator beam based detection

• For center-of-mass energies below W- and Z-resonances, cf.

$$\sqrt{2 m_{\nu} E} \simeq 4.5 \left(\frac{m_{\nu}}{\text{eV}}\right)^{1/2} \left(\frac{E}{10 \text{ TeV}}\right)^{1/2} \text{MeV}$$

weak interaction cross sections grow rapidly with energy

- \Rightarrow Exploit a flux of extremely energetic particles
 - accelerator beams
 - from cosmic rays [Weiler '82;...;Fodor,Katz,AR;...;Eberle,AR,Song,Weiler;...;L.Schrempp,AR;...]

for scattering on relic neutrinos as target

Exploit accelerator beams:

• Scattering rate [B. Müller '87; Melissinos '99, Weiler '01]

$$R_{\nu ZN} \simeq n_{\nu} \sigma_{\nu ZN} L I/(Z e)$$

$$\simeq 2 \times 10^{-8} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{m_{\nu}}{eV}\right) \frac{A^{2}}{Z} \left(\frac{E_{N}}{10 \text{ TeV}}\right) \left(\frac{L}{100 \text{ km}}\right) \left(\frac{I}{0.1 \text{ A}}\right) \text{ yr}^{-1}$$

 $\Rightarrow \text{ Too small to give rise to an observable effect}$ in the foreseeable future (LHC, VLHC)

⇒ Need Ultimate Large Hadron Collider

- Few elastic scattering events per year; hard to detect, due to small momentum transfers ($\sim 1 \text{ GeV}$ at $E_N \sim 10^7 \text{ TeV}$)
- Alternative: exploit inverse beta decay

$${}^{A}_{Z}N + \nu_{e} \rightarrow {}^{A}_{Z+1}N + e^{-}$$

$$\Rightarrow \det A_{Z+1}N$$
 on exit of machine

A. Ringwald (DESY)

[Melissinos '99; Zavattini unpubl]

accel.	N	E_N	L	Ι	$\frac{\pi_{\nu A}}{\left[\frac{n_{\nu}}{\bar{n}_{\nu}}\frac{m_{\nu}}{\text{eV}}\right]}$
		[TeV]	[km]	[A]	$[yr^{-1}]$
	p	7	26.7	0.6	2×10^{-8}
LHC					
	Pb	574	26.7	0.006	1×10^{-5}
	p	87.5	233	0.06	2×10^{-7}
VLHC					[
	Pb	7280	233	0.0006	1×10^{-4}
ULHC	p	10^{7}	40 000	0.1	10

3. Conclusions

- BBN, CMB, and LSS provide presently the only evidence for the CNB
- **Roadmap for direct CNB detection**

A more more direct, weak interaction based detection of the big bang relic neutrinos may proceed by measuring

- neutrino capture in β decaying nuclei Remarks: current technology 1-2 orders of magnitude off
- coherent elastic scattering of relic ν 's off nucleons in terrestrial detector Remarks: current technology 3 orders of magnitude off
- Pauli blocking effects in laser induced atomic neutrino pair emission Remarks: needs more study to estimate discovery potential
- interactions of very high energy particles from terrestrial accelerator beams with the relic neutrinos as target

Remarks: needs design of specialized accelerator (beyond our lifetime?)