The High Energy Universe:

Opportunities for Astrophysics, Particle Physics, and Cosmology

Andreas Ringwald

http://www.desy.de/~ringwald

Centre for Particle Theory Colloquium
February 21, 2006, University of Durham, Durham, UK
1. Introduction

- There is a high energy universe: **Gamma rays** have been identified up to energies \(E \lesssim \text{few} \times 10^3 \text{ GeV} \)

- Cosmic rays have been observed up to energies \(E \lesssim \text{few} \times 10^{11} \text{ GeV} \)

- It is under active observation:
 - Gamma ray observatories: e.g. H.E.S.S., MAGIC
 - Air shower detectors: e.g. Pierre Auger Observatory
 - Neutrino telescopes: e.g. IceCube

- Attack fundamental questions: What is it made of? What are the cosmic accelerators? Can we exploit them also for particle physics?
1. Introduction

- There is a high energy universe:
 - **Gamma rays** have been identified up to energies $E \lesssim \text{few} \times 10^3$ GeV
 - **Cosmic rays** have been observed up to energies $E \lesssim \text{few} \times 10^{11}$ GeV
1. Introduction

- There is a high energy universe:
 - Gamma rays have been identified up to energies \(E \lesssim \text{few} \times 10^3 \text{ GeV} \)
 - Cosmic rays have been observed up to energies \(E \lesssim \text{few} \times 10^{11} \text{ GeV} \)

- It is under active observation:
 - Gamma ray observatories: e.g. H.E.S.S., MAGIC
 - Air shower detectors: e.g. Pierre Auger Observatory
1. Introduction

• There is a high energy universe:
 Gamma rays have been identified up to energies \(E \lesssim \text{few} \times 10^3 \text{ GeV} \)
 Cosmic rays have been observed up to energies \(E \lesssim \text{few} \times 10^{11} \text{ GeV} \)

• It is under active observation:
 Gamma ray observatories: e.g. **H.E.S.S.**, **MAGIC**
 Air shower detectors: e.g. **Pierre Auger Observatory**
 Neutrino telescopes: e.g. **IceCube**

• Attack fundamental questions:
 What is it made of? What are the cosmic accelerators? Can we exploit them also for particle physics?
Outline:

2. Observations at ultrahigh energies

3. Non-observations at ultrahigh energies

4. The future ...

5. Conclusions
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties

 ⇐ low flux

 ⇐ energy from shower simulations

![Graph showing energy spectrum](Ahlers et al. '05)
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties
 - low flux
 - energy from shower simulations

- Crucial improvement by **PAO**:
 - huge size ⇒ better statistics
 - hybrid observations ⇒ better energy calibration through Fly’s Eye technique, direction from ground array

[www.auger.org]
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties
 - low flux
 - energy from shower simulations
- Crucial improvement by **PAO**:
 - huge size \(\Rightarrow\) better statistics
 - hybrid observations \(\Rightarrow\) better energy calibration through Fly’s Eye technique, direction from ground array
- It works

[Ahlers et al. ‘05]

A. Ringwald Centre for Particle Theory Colloquium, Durham, UK
2. Observations at ultrahigh energies

- **Spectrum:** Large statistical and systematic uncertainties
 - low flux
 - energy from shower simulations

- Crucial improvement by **PAO**:
 - huge size \(\Rightarrow\) better statistics
 - hybrid observations \(\Rightarrow\) better energy calibration through Fly’s Eye technique, direction from ground array

- It works

[Ahlers *et al.* ‘05]
2. Observations at ultrahigh energies

- Angular distribution: \approx isotrop

Cosmic rays above $\sim 10^{8.6}$ GeV, the "second knee", dominantly protons

Assume that CR's in $10^{8.6-11}$ GeV range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra $\propto E^{-\gamma_i} (1 + z)^n$ [Berezinsky et al. '02-'05; ...; Ahlers et al. '05]

Good fit; inelastic interactions with CMB ($e^+ + e^-$ "dip"; π "bump") visible; some post-GZK events [Greisen; Zatsepin, Kuzmin '67]

hGC

AGASA
2. Observations at ultrahigh energies

- **Angular distribution:** \approx isotrop
- **Composition:** Large uncertainty
 \leftarrow studies rely on simulations
- Cosmic rays above $\gtrsim 10^{8.6}$ GeV dominantly protons

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
2. Observations at ultrahigh energies

- **Angular distribution:** \(\approx \) isotrop

- **Composition:** Large uncertainty

\(\Leftrightarrow \) studies rely on simulations

- Cosmic rays above \(\gtrsim 10^{8.6} \) eV, the “second knee”, dominantly protons

- Assume that CR’s in \(10^{8.6,11} \) GeV range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra \(\propto E_i^{-\gamma}(1+z)^n \)

[Berezinsky...'02-'05;...;Ahlers et al. '05]

A. Ringwald Centre for Particle Theory Colloquium, Durham, UK
2. Observations at ultrahigh energies

- **Angular distribution**: \approx isotrop

- **Composition**: Large uncertainty

- Cosmic rays above $\gtrsim 10^{8.6}$ eV, the “second knee”, dominantly protons

- Assume that CR’s in $10^{[8.6,11]}$ GeV range originate from isotropically distributed extragalactic proton sources, with simple power-law injection spectra $\propto E_i^{-\gamma} (1+z)^n$

 \[[\text{Berezinsky et al. '02-'05;...;Ahlers et al. '05}] \]

 \[\Rightarrow \] Good fit; inelastic interactions with CMB (e^+e^- “dip”; π “bump”) visible; some post-GZK events?

 \[[\text{Ahlers et al. '05}] \]

A. Ringwald
Centre for Particle Theory Colloquium, Durham, UK
• Possible sources of these protons: GRB, AGN, . . .
• Possible sources of these protons: GRB, AGN, . . .

• **Shock acceleration:**
 – p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts

\[p \rightarrow \gamma, \nu, \pi, n (\text{diffusion from source}) \]

Neutrinos as diagnostic tool:
– ν’s from sources ($p\gamma \rightarrow n + \pi$) close to be measured
– Cosmogenic neutrino flux (from $p\gamma \rightarrow N\pi$) dominates above 10^9 GeV

\[
\begin{align*}
\rho &\rightarrow e^+ + e^- + \nu_{\mu} + \bar{\nu}_{\mu} \\
\pi^- &\rightarrow \mu^- + e^- + \nu_{\mu} + \bar{\nu}_{\mu}
\end{align*}
\]

[Ahlers PhD in prep.]
- Possible sources of these protons: GRB, AGN, . . .

- **Shock acceleration:**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts

Hillas-plot

(candidate sites for $E=100$ EeV and $E=1$ ZeV)

E_{max} ZBL (Fermi)

E_{max} ZBL* (Ultra-relativistic shocks-GRB)

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
• Possible sources of these protons: GRB, AGN, . . .

• **Shock acceleration:**
 - p’s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π’s and n’s through collisions of the trapped p’s with ambient plasma produces γ’s, ν’s and CR’s (n diffusion from source)

[Ahlers PhD in prep.]
• Possible sources of these protons: GRB, AGN, . . .

• **Shock acceleration:**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π's and n's through collisions of the trapped p’s with ambient plasma produces γ’s, ν’s and CR’s (n diffusion from source)

• **Neutrinos as diagnostic tool:**
 - ν’s from sources ($p\gamma \rightarrow n + \pi$’s) close to be measured
 - Cosmogenic neutrino flux (from $p\gamma_{\text{CMB}} \rightarrow N\pi$’s) dominates above 10^9 GeV

[Ahlers et al. ‘05]

Centre for Particle Theory Colloquium, Durham, UK
3. Non-observations at ultrahigh energies

- $C\nu$'s with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

\approx under control (←HERA)

\Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:

- Electroweak sphaleron production ($B^+ L$ violating processes in SM)
- Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models

[Ahlers et al. '05]
3. Non-observations at ultrahigh energies

- Cν's with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) ≈ under control (← HERA)

 [Gandhi et al. '98; Kwiecinski et al. '98; …]

- Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV-scale gravity models

 [Tu '04]

A. Ringwald Centre for Particle Theory Colloquium, Durham, UK
3. Non-observations at ultrahigh energies

- $C\nu's$ with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)

- Perturbative Standard Model (SM) \approx under control (← HERA)

 \[\text{[Gandhi et al. '98; Kwiecinski et al. '98; ...]} \]

\Rightarrow Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:

- Electroweak sphaleron production ($B + L$ violating processes in SM)

\[\text{[Fodor,Katz,AR,Tu '03; Han,Hooper '03]} \]
3. Non-observations at ultrahigh energies

- Cν’s with $E_\nu \gtrsim 10^8$ GeV probe νN scattering at $\sqrt{s_{\nu N}} \gtrsim 14$ TeV (LHC)
- Perturbative Standard Model (SM) \approx under control (← HERA)

⇒ Search for enhancements in $\sigma_{\nu N}$ beyond (perturbative) SM:
 - Electroweak sphaleron production ($B + L$ violating processes in SM)
 - Kaluza-Klein, black hole, p-brane or string ball production in TeV scale gravity models
 - . . .

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
“Model-independent” upper bounds on $\sigma_{\nu N}$

$$\frac{dN}{dt} \propto \int dE_{\nu} F_{\nu}(E_{\nu}) \sigma_{\nu N}(E_{\nu})$$

\Rightarrow Non-observation of deeply-penetrating particles, together with lower bound on F_{ν} (e.g. cosmogenic ν’s)

\Rightarrow upper bound on $\sigma_{\nu N}$

[Berezinsky, Smirnov ’74; Morris, AR ’94; Tyler, Olinto, Sigl ’01; ..]

Recent quantitative analysis:
[Anchordoqui, Fodor, Katz, AR, Tu ’04]

[Anchordoqui, Fodor, Katz, AR, Tu ’04]

A. Ringwald
Centre for Particle Theory Colloquium, Durham, UK
“Model-independent” upper bounds on $\sigma_{\nu N}$

$$\frac{dN}{dt} \propto \int dE_{\nu} F_{\nu}(E_{\nu}) \sigma_{\nu N}(E_{\nu})$$

\Rightarrow Non-observation of deeply-penetrating particles, together with lower bound on F_{ν} (e.g. cosmogenic ν’s) \Rightarrow upper bound on $\sigma_{\nu N}$

[Berezinsky,Smirnov ’74; Morris,AR ’94; Tyler,Olinto,Sigl ’01;..]

• Recent quantitative analysis:

 [Anchordoqui,Fodor,Katz,AR,Tu ’04]

 ◦ Best current limits from exploitation of RICE search results

 [Kravchenko et al. [RICE] ’02,03]

[www2.phys.canterbury.ac.nz/rice]

A. Ringwald Centre for Particle Theory Colloquium, Durham, UK
“Model-independent” upper bounds on $\sigma_{\nu N}$

$$\frac{dN}{dt} \propto \int dE_\nu F_\nu(E_\nu) \sigma_{\nu N}(E_\nu)$$

\Rightarrow Non-observation of deeply-penetrating particles, together with lower bound on F_ν (e.g. cosmogenic ν’s)

\Rightarrow upper bound on $\sigma_{\nu N}$

[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01; ...]

• Recent quantitative analysis:

 [Anchordoqui,Fodor,Katz,AR,Tu ‘04]

 ◦ Best current limits from exploitation of RICE search results

 [Kravchenko et al. [RICE] ‘02,03]

 ◦ Auger will improve these limits by one order of magnitude

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
Strongly interacting neutrino scenarios

- Bounds exploiting searches for deeply-penetrating particles applicable as long as \(\sigma_{\nu N} \lesssim (0.5 \div 1) \text{ mb} \)
- For even higher cross sections, e.g. via sphaleron or brane production:

\[\Rightarrow \text{Strongly interacting neutrino scenario for the post-GZK events} \]

[Berezinsky, Zatsepin '69]

A. Ringwald
Strongly interacting neutrino scenarios

- Bounds exploiting searches for deeply-penetrating particles applicable as long as $\sigma_{\nu N} \lesssim (0.5 \div 1) \text{ mb}$
- For even higher cross sections, e.g. via sphaleron or brane production:
 \Rightarrow Strongly interacting neutrino scenario for the post-GZK events

[Berezinsky,Zatsepin ‘69]

- Quantitative analysis:
 [Fodor,Katz,AR,Tu ‘03; Ahlers,AR,Tu ‘05]
 - Very good fit to CR data

[Ahlers,AR,Tu ‘05]
Strongly interacting neutrino scenarios

- Bounds exploiting searches for deeply-penetrating particles applicable as long as $\sigma_{\nu N} \lesssim (0.5 \div 1)$ mb
- For even higher cross sections, e.g. via sphaleron or brane production:

\Rightarrow Strongly interacting neutrino scenario for the post-GZK events

[Berezinsky,Zatsepin '69]

- Quantitative analysis:
 - Very good fit to CR data
 - Need steeply rising cross section, otherwise clash with nonobservation of deeply-penetrating particles

[Ahlers,A.R.,Tu '05]
[Han,Hooper '04] - - - sphalerons
[Anchordoqui,Feng,Goldberg '02] - - - p-branes
[Burgett,Domokos,Kovesi-Domokos '04] ...string excitations

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's

GLUE: Goldstone Lunar Ultra-high energy neutrino Experiment

[http://www.physics.ucla.edu/moonemp/public/]
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's

GLUE: Goldstone Lunar Ultra-high energy neutrino Experiment

![Diagram of cosmic ray event](image-url)

[Source: Gorham et al. '04]
4. The future ...

• Existing observatories for Extremely High Energy Cosmic ν's

FORTE: Fast On-orbit Recording of Transient Events

[nis-www.lanl.gov/nis-projects/forte/]
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's

FORTE: Fast On-orbit Recording of Transient Events

[Lehtinen et al. ‘04]

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
4. The future ...

• Existing observatories for Extremely High Energy Cosmic ν's

ANITA-LITE:
Prototype of ANtarctic Impulsive Transient Antenna

[www.phys.hawaii.edu/anita/web/index.htm]
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's

ANITA-LITE: Prototype of ANtarctic Impulsive Transient Antenna

[A. Ringwald Centre for Particle Theory Colloquium, Durham, UK]

[cosray2.wustl.edu/tiger/index.html]
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's provide sensible upper bounds on flux.

![Graph showing energy vs. flux for different observatories.

$E^2 F_{eV m^{-2} s^{-1} sr^{-1}}$ vs. E_{eV}]

$E \geq 10^{16}$ eV: \rightarrow Astrophysics of cosmic rays

$E \geq 10^{17}$ eV: \rightarrow Particle physics beyond LHC

$E \geq 10^{21}$ eV: \rightarrow Cosmology: relics of phase transitions; absorption on big bang relic neutrinos.
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

ANITA:

[www.ps.uci.edu/anita/]

Centre for Particle Theory Colloquium, Durham, UK
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν’s provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν’s

WSRT: WeSterbork Radio Telescope

[Bacelar, ARENA Workshop ‘05]
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν’s provide sensible upper bounds on flux

- Upcoming decade: progressively larger detectors for EHECν’s

LOFAR:

[www.lofar.org]
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's provide sensible upper bounds on flux.
- Upcoming decade: progressively larger detectors for EHECν's.
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's provide sensible upper bounds on flux
 - Upcoming decade: progressively larger detectors for EHECν's

$$\Rightarrow \quad E \geq 10^{16} \text{ eV} :$$
 - Astrophysics of cosmic rays

$$\Rightarrow \quad E \geq 10^{17} \text{ eV} :$$
 - Particle physics beyond LHC

A. Ringwald
Centre for Particle Theory Colloquium, Durham, UK
4. The future ...

- Existing observatories for Extremely High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

$\Rightarrow E \geq 10^{16}$ eV:
 - Astrophysics of cosmic rays
$\Rightarrow E \geq 10^{17}$ eV:
 - Particle physics beyond LHC
$\Rightarrow E \geq 10^{21}$ eV:
 - Cosmology: relics of phase transitions; absorption on big bang relic neutrinos

A. Ringwald
Top-down scenarios for EHEC neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

[Ref: Kolb, Chung, Riotto ‘98]
Top-down scenarios for EHEC neutrinos

- Existence of superheavy particles with 10^{12} GeV $\lesssim m_X \lesssim 10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 - decomposition of topological defects, formed during preheating, into their constituents

[Tkachev, Khlebnikov, Kofman, Linde '98]
Top-down scenarios for EHEC neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 \Rightarrow EHEC ν’s from decay or annihilation of superheavy dark matter (for $\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents

![Graph showing log$_{10}(E^3 I)$ vs log$_{10}(E/eV)$, with different curves for I_{ν}^{halo}, I_{ν}^{tot}, I_{γ}^{halo}, I_{ν}^{extr}.](image)

[Berezinsky, Kachelriess, Vilenkin ’97]
Top-down scenarios for EHEC neutrinos

- Existence of superheavy particles with $10^{12} \text{ GeV} \lesssim m_X \lesssim 10^{16} \text{ GeV}$, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 \Rightarrow EHEC ν’s from decay or annihilation of superheavy dark matter (for $\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents
 \Rightarrow EHEC ν’s from topological defects

[Bhattacharjee,Hill,Schramm ’92]
Top-down scenarios for EHEC neutrinos

- **Injection spectra:** fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators

![Graph showing dN/dx vs. x for photons, neutrinos, electrons, and protons with $m_X = 10^{11}$ GeV](image)
Top-down scenarios for EHEC neutrinos

- **Injection spectra:** fragmentation functions $D_i(x, \mu)\), $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
Top-down scenarios for EHEC neutrinos

- **Injection spectra**: fragmentation functions $D_i(x, \mu), i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

\[[\text{Fodor,Katz '01}] \]
Top-down scenarios for EHEC neutrinos

- **Injection spectra:** fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

\Rightarrow Reliably predicted!

[Aloisio, Berezinsky, Kachelriess '04]

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
Top-down scenarios for EHEC neutrinos

- **Injection spectra**: fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

\Rightarrow Reliably predicted!

- **Spectra at Earth**:
 - for superheavy dark matter, injection nearby: $j_\nu \sim j_\gamma \sim j_p$

[Aloisio, Berezinsky, Kachelriess '04]
Top-down scenarios for EHEC neutrinos

- **Injection spectra:** fragmentation functions $D_i(x, \mu)$, $i = p, e, \gamma, \nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

 \Rightarrow Reliably predicted!

- **Spectra at Earth:**
 - for superheavy dark matter, injection nearby: $j_\nu \sim j_\gamma \sim j_p$
 - for topological defects, injection far away: $j_\nu \gg j_\gamma \sim j_p$

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK

[Aloisio, Berezinsky, Kachelriess '04]
Top-down scenarios for EHEC neutrinos

- How natural?
 - **Superheavy dark matter**: need symmetry to prevent fast X decay
 - gauge \Rightarrow X stable
 - discrete \Rightarrow stable or quasi-stable
Top-down scenarios for EHEC neutrinos

• **How natural?**
 - **Superheavy dark matter:** need symmetry to prevent fast X decay
 * gauge \Rightarrow X stable
 * discrete \Rightarrow stable or quasi-stable
 - **Topological defects:** generic prediction of symmetry breaking (SB) in GUT’s, including fundamental string theory, e.g.
 * $G \rightarrow H \times U(1)$ SB: monopoles
 * $U(1)$ SB: ordinary or superconducting strings

[Rajantie '03]
Top-down scenarios for EHEC neutrinos

- **How natural?**
 - **Superheavy dark matter:** need symmetry to prevent fast X decay
 - gauge \Rightarrow X stable
 - discrete \Rightarrow stable or quasi-stable
 - **Topological defects:** generic prediction of symmetry breaking (SB) in GUT’s, including fundamental string theory, e.g.
 - $G \rightarrow H \times U(1)$ SB: monopoles
 - $U(1)$ SB: ordinary or superconducting strings
 - $G \rightarrow H \times U(1) \rightarrow H \times Z_N$ SB: monopoles connected by strings
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for
 - Particle physics
 - Cosmology

[Figure showing the energy distribution of EHEC neutrinos with energy E and flux F in units of $E^2 F$ for different years (2005 and 2015).]

[Fodor, Katz, AR, Weiler, Wong, in prep.]
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 - cosmology

[Fodor, Katz, AR, Weiler, Wong, in prep.]

A. Ringwald

Centre for Particle Theory Colloquium, Durham, UK
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 - cosmology

[Barbot, Drees '02]
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for

 - **particle physics**
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg$ LHC

 - **cosmology**

![Graph](Tu '04)
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg$ LHC
 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background ($C\nu B$)
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for
 - particle physics
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg \text{LHC}$
 - cosmology
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background ($C\nu B$)

[Fodor, Katz, AR, Weiler, Wong, in prep.]
Top-down scenarios for EHEC neutrinos

- Strong impact of measurement for
 - **particle physics**
 * GUT parameters, e.g. m_X
 * particle content of the desert, e.g. SM vs. MSSM
 * νN scattering at $\sqrt{s} \gg$ LHC
 - **cosmology**
 * window on early phase transition
 * Hubble expansion rate $H(z)$
 * existence of the big bang relic neutrino background ($C_{\nu B}$)

[Fodor,Katz,AR,Weiler,Wong,in prep.]

A. Ringwald
Centre for Particle Theory Colloquium, Durham, UK
5. Conclusions

• Exciting times for extremely high energy cosmic rays and neutrinos:
 – many observatories under construction
 ⇒ appreciable event samples

• Expect strong impact on
 – astrophysics
 – particle physics
 – cosmology