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1. Introduction

• There is a high energy universe:

Gamma rays have been identified up
to energies E <∼ few × 103 GeV

Cosmic rays have been observed up
to energies E <∼ few × 1011 GeV

• It is under active observation:

Gamma ray observatories: e.g.

H.E.S.S., MAGIC

Air shower detectors: e.g. Pierre

Auger Observatory

Neutrino telescopes: e.g. IceCube

• Attack fundamental questions:

What is it made of? What are the
cosmic accelerators? Can we exploit
them also for particle physics?

[M. Martinez ’05]
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• There is a high energy universe:
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Cosmic rays have been observed up
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• It is under active observation:
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Outline:

2. Ultrahigh energy cosmic rays and neutrinos

3. TeV scale physics with ultrahigh energy neutrinos

4. GUT scale physics with extremely energetic neutrinos

5. Conclusions
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2. Ultrahigh energy cosmic rays and neutrinos

• CR spectrum: Large statistical and
systematic uncertainties

⇐ low flux
⇐ energy from shower simulations

• Crucial improvement by PAO:

⇐ huge size ⇒ better statistics
⇐ hybrid observations ⇒ better

energy calibration through Fly’s
Eye technique, direction from
ground array

• It works
[Ahlers et al. ‘05]
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2. Ultrahigh energy cosmic rays and neutrinos

• CR angular distribution: ≈ isotrop

• CR composition: Large uncertainty

⇐ studies rely on simulations

• Cosmic rays above >∼ 108.6 GeV, the
“second knee”, dominantly protons

• Assume that CR’s in 10[8.6,11] GeV
range originate from isotropically dis-
tributed extragalactic proton sources,
with simple power-law injection spec-
tra ∝ E

−γ
i (1 + z)n

[Berezinsky,..’02-’05;...;Ahlers et al. ‘05]

⇒ Good fit; inelastic interactions with
CMB (e+e− “dip”; π “bump”) visi-
ble; some post-GZK events?

[Greisen;Zatsepin,Kuzmin ‘67]
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• Possible sources of these protons:
GRB, AGN, . . .

• Shock acceleration:

– p’s, confined by magnetic fields,
accelerate through repeated scat-
tering by plasma shock fronts

– production of π’s and n’s through
collisions of the trapped p’s with
ambient plasma produces γ’s, ν’s
and CR’s (n diffusion from source)

• Neutrinos as diagnostic tool:

– ν’s from sources (pγ → n + π’s)
close to be measured

– Cosmogenic neutrino flux (from
pγCMB → Nπ’s) dominates above
109 GeV

A. Ringwald (DESY) Seminar, Dortmund, June 2006
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3. TeV scale physics with ultrahigh energy neutrinos

• Cν’s with Eν >∼ 108 GeV probe νN

scattering at
√

sνN >∼ 14 TeV (LHC)

• Perturbative Standard Model (SM)
≈ under control (← HERA)

[Gandhi et al. ’98; Glück et al. ’98; ...]

⇒ Search for enhancements in σνN

beyond (perturbative) SM:

⋄ Electroweak sphaleron production
(B + L violating processes in SM)
⋄ Kaluza-Klein, black hole, p-brane

or string ball production in TeV
scale gravity models
⋄ . . . [Ahlers et al. ‘05]
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“Model-independent” upper bounds on σνN

dN

dt
∝

∫
dEν Fν(Eν)σνN(Eν)

⇒ Non-observation of deeply-penetra-
ting particles, together with lower
bound on Fν (e.g. cosmogenic ν’s)
⇒ upper bound on σνN

[Berezinsky,Smirnov ‘74; Morris,AR ‘94; Tyler,Olinto,Sigl ‘01;..]

• Recent quantitative analysis:
[Anchordoqui,Fodor,Katz,AR,Tu ‘04]

⋄ Best current limits from exploi-
tation of RICE search results

[Kravchenko et al. [RICE] ‘02,03]

⋄ Auger will improve these limits by
one order of magnitude [Anchordoqui,Fodor,Katz,AR,Tu ‘04]
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Strongly interacting neutrino scenarios

• Bounds exploiting searches for dee-
ply-penetrating particles applicable
as long as σνN <∼ (0.5÷ 1) mb

• For even higher cross sections, e.g.
via sphaleron or brane production:

⇒ Strongly interacting neutrino sce-
nario for the post-GZK events

[Berezinsky,Zatsepin ‘69]

• Quantitative analysis:
[Fodor,Katz,AR,Tu ‘03; Ahlers,AR,Tu ‘05]

– Very good fit to CR data
– Need steeply rising cross section,

otherwise clash with nonobservati-
on of deeply-penetrating particles

A. Ringwald (DESY) Seminar, Dortmund, June 2006
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excitations
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Long-lived staus at IceCube

• In most SUSY extensions of SM,
lightest superpartner (LSP) stable

– neutralino dark matter
– gravitino dark matter

• Gravitino LSP interacts only gravi-
tationally ⇒ next-to-lightest SUSY
particle (NLSP) long-lived

• If NLSP charged, e.g. stau τ̃ , it
can possibly be collected in collider
experiments. Observation of stau
decays ⇒ indirect discovery of the
gravitino [Buchmüller et al. ‘04,...,Feng et al. ‘04,...].

[Ahlers,Kersten,AR ‘06]
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Long-lived staus at IceCube

• Long-lived stau NLSPs resulting from
cosmic νN interactions inside Earth
can be detected in ice or water
Cherenkov neutrino telescopes
[Albuquerque,Burdman,Chacko ‘03; Ahlers,Kersten,AR ‘06;...]

• SUSY cross-section smaller than SM

• Stau has small energy loss in matter
⇒ effective detection volume for stau
much larger than for muon

• Staus always produced in pairs ⇒
nearly parallel muon-like tracks in the
detector, in contrast to SM, where
single muons dominate

• IceCube: Up to 50 τ̃ pair events/yr

[Ahlers,Kersten,AR ‘06]
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4. GUT scale physics with extremely energetic neutrinos

• Existing observatories for Extremely
High Energy Cosmic neutrinos pro-
vide upper bounds up to GUT scale

• Upcoming decade: Improved sensiti-
vity by many orders of magnitude

⇒ E ≥ 107 GeV:

→ Astrophysics of cosmic rays

⇒ E ≥ 108 GeV:

→ Particle physics beyond LHC

⇒ E ≥ 1012 GeV:

→ Cosmology: relics of GUT phase
transitions; absorption on big bang
relic neutrinos [AR,L.Schrempp ‘06]
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Top-down scenarios for super-GZK neutrinos

• Existence of superheavy particles
with 1012 GeV <∼mX <∼ 1016 GeV,
produced during and after inflation
through e.g.

– particle creation in time-varying
gravitational field

⇒ super-GZK ν’s from decay or anni-
hilation of superheavy dark matter
(for τX >∼ τU)

– decomposition of topological de-
fects, formed during preheating,
into their constituents

⇒ super-GZK ν’s from topological
defects [Kolb,Chung,Riotto ‘98]
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Top-down scenarios for super-GZK neutrinos

• Existence of superheavy particles
with 1012 GeV <∼mX <∼ 1016 GeV,
produced during and after inflation
through e.g.
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gravitational field
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[Berezinsky,Kachelriess,Vilenkin ‘97]
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Top-down scenarios for super-GZK neutrinos

• Existence of superheavy particles
with 1012 GeV <∼mX <∼ 1016 GeV,
produced during and after inflation
through e.g.

– particle creation in time-varying
gravitational field

⇒ super-GZK ν’s from decay or anni-
hilation of superheavy dark matter
(for τX >∼ τU)

– decomposition of topological de-
fects from late phase transitions
into their constituents

⇒ super-GZK ν’s from constituent
decay [Bhattacharjee,Hill,Schramm ‘92]
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Top-down scenarios for super-GZK neutrinos

• Injection spectra: fragmentation
functions Di(x, µ), i = p, e, γ, ν, de-
termined via

– Monte Carlo generators
– DGLAP evolution from experi-

mental initial distributions at e.g.
µ = mZ to µ = mX

⇒ Reliably predicted!

• Spectra at Earth:

– for superheavy dark matter, injec-
tion nearby: jν ∼ jγ ∼ jp

– for topological defects, injection
far away: jν ≫ jγ ∼ jp
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[Particle Data Group ‘04]
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Top-down scenarios for super-GZK neutrinos

• Injection spectra: fragmentation
functions Di(x, µ), i = p, e, γ, ν, de-
termined via

– Monte Carlo generators
– DGLAP evolution from experi-

mental initial distributions at e.g.
µ = mZ to µ = mX

⇒ Reliably predicted!

• Spectra at Earth:

– for superheavy dark matter, injec-
tion nearby: jν ∼ jγ ∼ jp

– for topological defects, injection
far away: jν ≫ jγ ∼ jp
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Top-down scenarios for super-GZK neutrinos

• Injection spectra: fragmentation
functions Di(x, µ), i = p, e, γ, ν, de-
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– Monte Carlo generators
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Top-down scenarios for super-GZK neutrinos

• Injection spectra: fragmentation
functions Di(x, µ), i = p, e, γ, ν, de-
termined via

– Monte Carlo generators
– DGLAP evolution from experi-

mental initial distributions at e.g.
µ = mZ to µ = mX

⇒ Reliably predicted!

• Spectra at Earth:

– for superheavy dark matter, injec-
tion nearby: jν ∼ jγ ∼ jp

– for topological defects, injection
far away: jν ≫ jγ ∼ jp
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Top-down scenarios for super-GZK neutrinos

• How generic?

– Superheavy dark matter: need
symmetry to prevent fast X decay
∗ gauge ⇒ X stable
∗ discrete⇒ stable or quasi-stable

– Topological defects: generic pre-
diction of symmetry breaking (SB)
in GUT’s, including fundamental
string theory, e.g.
∗ G→ H×U(1) SB: monopoles
∗ U(1) SB: ordinary or supercon-

ducting strings
∗ G→ H×U(1)→ H× ZN SB:

monopoles connected by strings

A. Ringwald (DESY) Seminar, Dortmund, June 2006



– Looking Beyond the Standard Model – 43

Top-down scenarios for super-GZK neutrinos

• How generic?

– Superheavy dark matter: need
symmetry to prevent fast X decay
∗ gauge ⇒ X stable
∗ discrete⇒ stable or quasi-stable

– Topological defects: generic pre-
diction of symmetry breaking (SB)
in GUT’s, and even fundamental
string theory, e.g.
∗ G→ H×U(1) SB: monopoles
∗ U(1) SB: ordinary or supercon-

ducting strings
∗ G→ H×U(1)→ H× ZN SB:

monopoles connected by strings

x

y

z

Reφ

Imφ

[Rajantie ‘03]

A. Ringwald (DESY) Seminar, Dortmund, June 2006



– Looking Beyond the Standard Model – 44

Top-down scenarios for super-GZK neutrinos

• How generic?

– Superheavy dark matter: need
symmetry to prevent fast X decay
∗ gauge ⇒ X stable
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Top-down scenarios for super-GZK neutrinos

• How generic?

– Superheavy dark matter: need
symmetry to prevent fast X decay
∗ gauge ⇒ X stable
∗ discrete⇒ stable or quasi-stable

– Topological defects: generic pre-
diction of symmetry breaking (SB)
in GUT’s, including fundamental
string theory, e.g.
∗ G→ H×U(1) SB: monopoles
∗ U(1) SB: ordinary or supercon-

ducting strings
∗ G→ H×U(1)→ H× ZN SB:

monopoles connected by strings

SO(10)
1

−→ 4C 2L 2R

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

1
−→ 3C 2L 2R 1B−L

8<: 1
−→ 3C 2L 1R 1B−L

2 (2)
−→ GSM (Z2)

2′ (2)
−→ GSM (Z2)
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1 (1,2)
−→ GSM (Z2)

[Jeannerot,Rocher,Sakellariadou ‘03]
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Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

– particle physics

∗ GUT parameters, e.g. mX

∗ particle content of the desert,
e.g. SM vs. MSSM
∗ νN scattering at

√
s≫ LHC

– cosmology

∗ window on early phase transition
∗ Hubble expansion rate H(z)
∗ existence of the big bang relic

neutrino background

[Fodor,Katz,AR,Weiler,Wong,in prep.]
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Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

– particle physics

∗ GUT parameters, e.g. mX

∗ particle content of the desert,
e.g. SM vs. MSSM
∗ νN scattering at

√
s≫ LHC

– cosmology

∗ window on early phase transition
∗ Hubble expansion rate H(z)
∗ existence of the big bang relic

neutrino background [Barbot,Drees ‘02]
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Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

– particle physics

∗ GUT parameters, e.g. mX

∗ particle content of the desert,
e.g. SM vs. MSSM
∗ νN scattering at

√
s≫ LHC

– cosmology

∗ window on early phase transition
∗ Hubble expansion rate H(z)
∗ existence of the big bang relic

neutrino background
[Tu ‘04]
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Top-down scenarios for super-GZK neutrinos

• Strong impact of measurement for

– particle physics

∗ GUT parameters, e.g. mX

∗ particle content of the desert,
e.g. SM vs. MSSM
∗ νN scattering at

√
s≫ LHC

– cosmology

∗ window on early phase transition
∗ Hubble expansion rate H(z)
∗ existence of the big bang relic

neutrino background (CνB)

[AR,L. Schrempp ‘06]
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5. Conclusions

• Exciting times for ultrahigh energy
cosmic rays and neutrinos:

– many observatories under con-
struction

⇒ appreciable event samples

• Expect strong impact on

– astrophysics
– particle physics
– cosmology
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