

http://www.desy.de/~ringwald

ECFA/BENE Workshop on The future of accelerator neutrino experiments in Europe DESY, Hamburg, D, November 2-3, 2004

1. Introduction

 Neutrino experiments and observatories have told us a great deal about neutrino masses and mixings:

 \diamond Tritium β decay: [Lobashev '02, Weinheimer '03]

$$m_{\beta} \equiv \sqrt{\sum_{j} |U_{ej}|^2 m_{\nu_j}^2} < 2.2 \text{ eV}$$

[Weinheimer '03]

DESY, Hamburg, D

1. Introduction

- Neutrino experiments and observatories have told us a great deal about neutrino masses and mixings:
 - \diamond Tritium β decay: [Lobashev '02, Weinheimer '03]

$$m_{\beta} \equiv \sqrt{\sum_{j} |U_{ej}|^2 m_{\nu_j}^2} < 2.2 \text{ eV}$$

 \diamond Solar, atmospheric, and reactor ν 's:

parameter	best fit	3σ range
$\Delta m^2_{21} [10^{-5} \; { m eV}^2]$	8.1	7.2–9.1
$\Delta m^2_{31} [10^{-3} \ { m eV}^2]$	2.2	1.4–3.3
$\sin^2 heta_{12}$	0.30	0.23–0.38
$\sin^2 heta_{23}$	0.50	0.34–0.68
$\sin^2 heta_{13}$	0.000	\leq 0.047

A. Ringwald (DESY)

[Maltoni et al. '04]

• Only limited information on absolute **neutrino mass** scale and $\sin^2 \theta_{13}$:

$0.04~{\rm eV}\!\lesssim$	$m_{ u_3}$	$\lesssim 2.2 \ {\rm eV}$
$0.007~{\rm eV}\!\lesssim$	$m_{ u_2}$	$\lesssim 2.2 \ {\rm eV}$
$0~{\rm eV}{\lesssim}$	$m_{ u_1}$	$\lesssim 2.2 \ {\rm eV}$
$0 \leq$	$\sin^2 heta_{13}$	≤ 0.047

• Only limited information on absolute neutrino mass scale and $\sin^2 \theta_{13}$:

$0.04~{\rm eV}\!\lesssim$	$m_{ u_3}$	$\lesssim 2.2 \ {\rm eV}$
$0.007~{\rm eV}\!\lesssim$	$m_{ u_2}$	$\lesssim 2.2 \ {\rm eV}$
$0~{\rm eV}\!\lesssim$	$m_{ u_1}$	$\lesssim 2.2 \ {\rm eV}$
0 <	$\sin^2 heta_{13}$	< 0.047

[Bilenky et al. '04]

A. Ringwald (DESY)

• Only limited information on absolute neutrino mass scale and $\sin^2 \theta_{13}$:

$0.04~{\rm eV}\!\lesssim$	$m_{ u_3}$	$\lesssim 2.2 \ {\rm eV}$
$0.007~{\rm eV}\!\lesssim$	$m_{ u_2}$	$\lesssim 2.2 \ {\rm eV}$
$0~{\rm eV}{\lesssim}$	$m_{ u_1}$	$\lesssim 2.2 \ {\rm eV}$
0 <	$\sin^2 heta_{13}$	< 0.047

- No information on *CP* violation
- Improved by upcoming experiments

[Bilenky et al. '04]

- Neutrinos in the Universe -
- Only limited information on absolute neutrino mass scale and $\sin^2 \theta_{13}$:

$0.04~{\rm eV}\!\lesssim$	$m_{ u_3}$	$\lesssim 2.2~{\rm eV}$
$0.007~{\rm eV}\!\lesssim$	$m_{ u_2}$	$\lesssim 2.2 \ {\rm eV}$
$0~{\rm eV}\!\lesssim$	$m_{ u_1}$	$\lesssim 2.2 \ {\rm eV}$
$0 \leq$	$\sin^2 heta_{13}$	≤ 0.047

- No information on *CP* violation
- Improved by upcoming experiments
- ⇒ Impact of neutrino masses and leptonic CP violation on our understanding of the universe?
- 2. Cosmic Neutrino Background and Structure in the Universe
- **3. Baryogenesis via Leptogenesis** A. Ringwald (DESY)

[Bilenky *et al.* '04] DESY, Hamburg, D

2. $C\nu B$ and Structure in Universe

- Big Bang cosmology:
 - \Rightarrow Cosmic microwave background (CMB)
 - \Rightarrow Cosmic neutrino background (C ν B)

[CERN] DESY, Hamburg, D

2. $C\nu B$ and Structure in Universe

- Big Bang cosmology:
 - \Rightarrow Cosmic microwave background (CMB)
 - \Rightarrow Cosmic neutrino background (C ν B)

⇒ Big bang relic neutrinos \approx as abundant as relic photons [ratio $(6 \times 3)/22 = 9/11$]

2. $C\nu B$ and Structure in Universe

- Big Bang cosmology:
 - \Rightarrow Cosmic microwave background (CMB)
 - \Rightarrow Cosmic neutrino background (C ν B)
- Firm prediction:

$$\underbrace{\bar{n}_{\nu_i 0} = \bar{n}_{\bar{\nu}_i 0}}_{\mathbf{C}\nu\mathbf{B}} = \frac{3}{22} \underbrace{\bar{n}_{\gamma 0}}_{\mathbf{C}\mathbf{M}\mathbf{B}} = 56 \text{ cm}^{-3}$$
$$\underbrace{\bar{p}_{\nu_i 0} = \bar{p}_{\bar{\nu}_i 0}}_{\mathbf{C}\nu\mathbf{B}} = 3\left(\frac{4}{11}\right)^{1/3} \underbrace{T_{\gamma 0}}_{\mathbf{C}\mathbf{M}\mathbf{B}} = 5 \times 10^{-4} \text{ eV}$$

- ⇒ Big bang relic neutrinos ≈ as abundant as relic photons [ratio $(6 \times 3)/22 = 9/11$]
- ⇒ Relic neutrinos non-relativistic as long as $m_{\nu_i} \gg 5 \times 10^{-4} (1+z) \text{ eV}$

• CvB and large scale structure:

 \diamond At very early time, neutrino freestreaming tends to suppress structure formation on small scales $\lambda \ll \lambda_{\rm fs}$,

$$\lambda_{\rm fs} \simeq 4.2 ~\left(rac{(1+z)}{\Omega_m}
ight)^{1/2} \left(rac{{
m eV}}{m_
u}
ight) ~h^{-1}\,{
m Mpc}$$

 \diamond At $\lambda \ll \lambda_{\rm fs}$, present matter power spectrum suppressed by $(k = 2\pi/\lambda)$

$$rac{ riangle P(k)}{P(k)} \simeq -8 rac{\Omega_{
u}}{\Omega_m} \equiv -8 f_{
u}$$

where Ω_{ν} fractional neutrino density $\Omega_{\nu} h^2 = 1.08 \times 10^{-2} \sum_i (m_{\nu_i}/\text{eV})$

[Tegmark '04]

DESY, Hamburg, D

• CvB and large scale structure:

 \diamond At very early time, neutrino freestreaming tends to suppress structure formation on small scales $\lambda \ll \lambda_{\rm fs}$,

$$\lambda_{\rm fs} \simeq 4.2 ~ \left(rac{(1+z)}{\Omega_m}
ight)^{1/2} \left(rac{{
m eV}}{m_
u}
ight) ~ h^{-1}\,{
m Mpc}$$

 \diamond At $\lambda \ll \lambda_{\rm fs}$, present matter power spectrum suppressed by $(k = 2\pi/\lambda)$

$$rac{ riangle P(k)}{P(k)} \simeq -8 rac{\Omega_{
u}}{\Omega_m} \equiv -8 f_{
u}$$

where Ω_{ν} fractional neutrino density $\Omega_{\nu} h^2 = 1.08 \times 10^{-2} \sum_i (m_{\nu_i}/\text{eV})$

[Tegmark '04]

• CvB and large scale structure:

 \diamond At very early time, neutrino freestreaming tends to suppress structure formation on small scales $\lambda \ll \lambda_{\rm fs}$,

$$\lambda_{\rm fs} \simeq 4.2 ~ \left(rac{(1+z)}{\Omega_m}
ight)^{1/2} \left(rac{{
m eV}}{m_
u}
ight) ~ h^{-1}\,{
m Mpc}$$

 \diamond At $\lambda \ll \lambda_{\rm fs}$, present matter power spectrum suppressed by $(k = 2\pi/\lambda)$

$$rac{ riangle P(k)}{P(k)} \simeq -8 rac{\Omega_{
u}}{\Omega_m} \equiv -8 f_{
u}$$

where Ω_{ν} fractional neutrino density $\Omega_{\nu} h^2 = 1.08 \times 10^{-2} \sum_i (m_{\nu_i}/\text{eV})$

[Tegmark '04]

• CvB and large scale structure:

 \diamond At very early time, neutrino freestreaming tends to suppress structure formation on small scales $\lambda \ll \lambda_{\rm fs}$,

$$\lambda_{\rm fs} \simeq 4.2 ~ \left(\frac{(1+z)}{\Omega_m}\right)^{1/2} \left(\frac{{
m eV}}{m_\nu}\right) ~ h^{-1} \,{
m Mpc}$$

 \diamond At $\lambda \ll \lambda_{\rm fs}$, present matter power spectrum suppressed by $(k = 2\pi/\lambda)$

$$rac{ riangle P(k)}{P(k)} \simeq -8 rac{\Omega_{
u}}{\Omega_m} \equiv -8 f_{
u}$$

where Ω_{ν} fractional neutrino density $\Omega_{\nu} h^2 = 1.08 \times 10^{-2} \sum_i (m_{\nu_i}/\text{eV})$

- ⇒ Constraints from LSS and CMB
- $\Rightarrow {\rm Less \ \ cosmological \ \ parameters \ \ if} \\ \sum m_{\nu} m_{\nu} {\rm \ known \ from \ lab \ experiments} \\ {\rm A. \ Ringwald \ (DESY)} \end{cases}$

Ref.	$\sum m_ u$ bound	Data used
[Spergel <i>et al.</i>]	0.69 eV	2dF,WMAP,CMB,
		σ_8 , H_0
[Hannestad]	1.01 eV	2dF,WMAP,CMB,
		H_0
[Allen <i>et al.</i>]	$0.56^{+0.30}_{-0.26}$ eV	2dF,WMAP,CMB,
	0.20	σ_8 , H_0
[Tegmark <i>et al.</i>]	1.8 eV	SDSS,WMAP
[Barger <i>et al.</i>]	0.75 eV	2dF,SDSS,WMAP,
		CMB, H_0
[Crotty <i>et al.</i>]	1.0 eV	2dF,SDSS,WMAP,
_		CMB, H_0

• CvB gravitational clustering:

 At late time, non-relativistic neutrinos cluster gravitationally on cold dark matter (CDM) and baryonic structures

• CvB gravitational clustering:

- At late time, non-relativistic neutrinos cluster gravitationally on cold dark matter (CDM) and baryonic structures
- Study neutrino clustering in CDM halos

[Navarro et al. '04]

• CvB gravitational clustering:

- At late time, non-relativistic neutrinos cluster gravitationally on cold dark matter (CDM) and baryonic structures
- Study neutrino clustering in CDM halos
- \diamond Improved clustering for big m_{ν} a/o $M_{\rm vir}$:
 - * Local universe:
 - · Overdensity $\approx 1000 \ (\approx 100)$ for $m_{\nu} = 0.6 \text{ eV} \ (= 0.15 \text{ eV})$ for inner part ($\leq 100 \text{ kpc}$) of Virgo and Centaurus clusters ($\approx 10^{15} M_{\odot}$)
 - * Local neighbourhood of Earth:
 - · Overdensity $\approx 20 \ (\approx 2)$ for $m_{\nu} = 0.6 \text{ eV} \ (= 0.15 \text{ eV})$
- \Rightarrow Knowledge of m_{ν} fixes huge uncertainty in relic neutrino clustering

[AR,Wong '04]

A. Ringwald (DESY)

3. Baryogenesis via Leptogenesis

[Fukugita, Yanagida '86]

• (Minimal, Type I) See-saw mechanism:

[Minkowski '77; Yanagida '79; Gell-Mann,Ramond,Slansky '79] Introduce three right-handed Majorana neutrinos N_i with mass $M_{\rm M} \Rightarrow$ small Majorana m_{ν} through large $M_{\rm M}$,

$$m_
u = -m_{
m D} rac{1}{M_{
m M}} m_{
m D}^T$$

3. Baryogenesis via Leptogenesis

[Fukugita, Yanagida '86]

• (Minimal, Type I) See-saw mechanism:

[Minkowski '77; Yanagida '79; Gell-Mann,Ramond,Slansky '79] Introduce three right-handed Majorana neutrinos N_i with mass $M_{\rm M} \Rightarrow$ small Majorana m_{ν} through large $M_{\rm M}$,

$$m_
u = -m_{
m D} rac{1}{M_{
m M}} m_{
m D}^T$$

• CP and L violating out-of-equilibrium decays of heavy Majorana neutrino Ninto light leptons l and Higgs bosons ϕ

 $\Gamma(N \to l\phi) = (1 + \varepsilon) \Gamma/2$

 $\Gamma(N \to \bar{l}\bar{\phi}) = (1 - \varepsilon)\Gamma/2$

3. Baryogenesis via Leptogenesis

[Fukugita, Yanagida '86]

• (Minimal, Type I) See-saw mechanism:

[Minkowski '77; Yanagida '79; Gell-Mann,Ramond,Slansky '79] Introduce three right-handed Majorana neutrinos N_i with mass $M_{\rm M}$ \Rightarrow small Majorana m_{ν} through large $M_{\rm M}$,

$$m_
u = -m_{
m D} rac{1}{M_{
m M}} m_{
m D}^T$$

• *CP* and *L* violating out-of-equilibrium decays of heavy Majorana neutrino N into light leptons l and Higgs bosons ϕ

 $\Rightarrow Y_L \neq 0$

3. Baryogenesis via Leptogenesis

[Fukugita, Yanagida '86]

• (Minimal, Type I) See-saw mechanism:

[Minkowski '77; Yanagida '79; Gell-Mann,Ramond,Slansky '79] Introduce three right-handed Majorana neutrinos N_i with mass $M_{\rm M}$ \Rightarrow small Majorana m_{ν} through large $M_{\rm M}$,

$$m_
u = -m_{
m D} rac{1}{M_{
m M}} m_{
m D}^T$$

- *CP* and *L* violating out-of-equilibrium decays of heavy Majorana neutrino *N* into light leptons l and Higgs bosons ϕ
- $\Rightarrow Y_L \neq 0$ which, by means of electro-weak instanton/sphaleron processes,
- \Rightarrow Baryon asymmetry

$$Y_B = c \, Y_L = c \, \kappa \, \varepsilon / g_*$$

DESY, Hamburg, D

- Constraints on neutrino parameters from requirement of successful leptogenesis?
 - Robust mass bounds in models exploiting thermal leptogenesis based on
 - $\oplus\,$ minimal, i.e. type I, see-saw
 - \oplus hierarchical N's, $M_1 < \mathcal{O}(2) M_{2,3}$:

[Buchmüller,di Bari,Plümacher \geq '02]

$$M_1 \gtrsim 4 imes 10^8 {
m GeV}$$

$$m_{
u_i} \lesssim 0.1 \ {
m eV}$$

 \Rightarrow May be confronted with lab determination of m_{ν_i}

$$\left[\widetilde{m}_1 = \frac{(m_{\rm D}^{\dagger}m_{\rm D})_{11}}{M_1} \ge m_{\nu_1}\right]$$

A. Ringwald (DESY)

- Constraints on neutrino parameters from requirement of successful leptogenesis?
 - Robust mass bounds in models exploiting thermal leptogenesis based on
 - $\oplus\,$ minimal, i.e. type I, see-saw
 - \oplus hierarchical *N*'s, $M_1 < \mathcal{O}(2) M_{2,3}$: [Buchmüller,di Bari,Plümacher > '02]

 $M_1 \gtrsim 4 imes 10^8 {
m GeV}$

 $m_{\nu_i} \lesssim 0.1 \text{ eV}$

- \Rightarrow May be confronted with lab determination of m_{ν_i}
- ◇ CP violation in neutrino oscillations and in leptogenesis are unrelated unless symmetry light ↔ heavy sector

[Pascoli,Petcov,Rodejohann '03]

- Constraints on neutrino parameters from requirement of successful leptogenesis?
 - Robust mass bounds in models exploiting thermal leptogenesis based on
 - \oplus minimal, i.e. type I, see-saw
 - \oplus hierarchical N's, $M_1 < \mathcal{O}(2) M_{2,3}$:

[Buchmüller,di Bari,Plümacher \geq '02]

 $M_1 \gtrsim 4 \times 10^8 {
m GeV}$

 $m_{
u_i} \lesssim 0.1 \ {
m eV}$

- \Rightarrow May be confronted with lab determination of $m_{
 u_i}$
- ◇ CP violation in neutrino oscillations and in leptogenesis are unrelated unless symmetry light ↔ heavy sector
- \diamond For sizeable mixing $\sin^2 heta_{13} \sim 0.01$ expect preferred mass spectrum $0.01 \text{ eV} \lesssim m_{
 u_i} \lesssim 0.1 \text{ eV}$

DESY, Hamburg, D

4. Conclusions

- Precise knowledge of neutrino parameters, i.e. masses, mixing, *CP* violating phases, has profound impact on our understanding of the universe
 - Precise determination of cosmological parameters
 - Amount of relic neutrino clustering
 - Test/falsify specific models of baryogenesis from leptogenesis