Opportunities for Subdominant Dark Matter Candidates

A. Ringwald

http://www.desy.de/~ringwald

Seminar, Institut de Física d'Altes Energies, Universitat Autònoma de Barcelona, June 17, 2004, Barcelona, E

0. Introduction

- Progress in observational cosmology
- \Rightarrow Composition of today's universe

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_C$	
Ordinary matter	p,n,e	MeV-GeV	10^{78}	5 %	\checkmark
Radiation	γ	$0.1 \mathrm{meV}$	10 ⁸⁷	0.005 %	\checkmark
Hot Dark Matter	Neutrinos	> 0.04 eV < 0.6 eV	10^{87}	> 0.1 % < 3 %	
Cold Dark Matter	Wimps? Axions?	$\gtrsim\!100~{ m GeV}$ \lesssim meV	$\lesssim 10^{77}$ $\gtrsim 10^{91}$	25 %	\checkmark
Dark Energy	?	10^{-33} eV	?	70 %	\checkmark

⇒ How to detect the **Cosmic Neutrino Back**ground $(C\nu B)$?

 \Rightarrow Do wimps (SUSY \leftarrow LHC) or axions exist?

0. Introduction

• Progress in observational cosmology

⇒ **Composition** of today's universe

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_{C}$	
Ordinary matter	p,n,e	MeV-GeV	10^{78}	5 %	\checkmark
Radiation	γ	$0.1 \mathrm{meV}$	10^{87}	0.005 %	\checkmark
Hot Dark Matter	Neutrinos	> 0.04 eV < 0.6 eV	10^{87}	> 0.1 % < 3 %	
Cold Dark Matter	Wimps? Axions?	$\gtrsim 100~{ m GeV}$	$\lesssim 10^{77}$ $\gtrsim 10^{91}$	25 %	\checkmark
Dark Energy	?	$10^{-33} { m eV}$?	70 %	\checkmark

⇒ How to detect the **Cosmic Neutrino Back**ground $(C\nu B)$?

 $\Rightarrow Do wimps (SUSY \leftarrow LHC) or axions exist?$ A. Ringwald (DESY)

History of the Universe

[CERN]

Seminar, IFAE, UAB, Barcelona, E

0. Introduction

• Progress in observational cosmology

⇒ **Composition** of today's universe

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_{C}$	
Ordinary matter	p,n,e	MeV-GeV	10 ⁷⁸	5 %	\checkmark
Radiation	γ	$0.1 \mathrm{meV}$	10^{87}	0.005 %	\checkmark
Hot Dark Matter	Neutrinos	> 0.04 eV < 0.6 eV	10^{87}	> 0.1 % < 3 %	
Cold Dark Matter	Wimps? Axions?	$\gtrsim\!100~{ m GeV}$ \lesssim meV	$\lesssim 10^{77}$ $\gtrsim 10^{91}$	25 %	~
Dark Energy	?	10^{-33} eV	?	70 %	~

 \Rightarrow Do wimps (SUSY \leftarrow LHC) or axions exist?

Seminar, IFAE, UAB, Barcelona, E

0. Introduction

- Progress in observational cosmology
- \Rightarrow Composition of today's universe

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_{C}$	
Ordinary matter	p,n,e	MeV-GeV	10^{78}	5 %	\checkmark
Radiation	γ	$0.1 \mathrm{meV}$	10^{87}	0.005 %	\checkmark
Hot Dark Matter	Neutrinos	> 0.04 eV < 0.6 eV	10^{87}	> 0.1 % < 3 %	
Cold Dark Matter	Wimps? Axions?	$\gtrsim 100~{ m GeV}$ $\lesssim~{ m meV}$	$\lesssim 10^{77}$ $\gtrsim 10^{91}$	25 %	\checkmark
Dark Energy	?	10^{-33} eV	?	70 %	\checkmark

[DESY]

- ⇒ How to detect the **Cosmic Neutrino Back**ground $(C\nu B)$?
- \Rightarrow Do wimps (SUSY \leftarrow LHC) or axions exist?

0. Introduction

- Progress in observational cosmology
- \Rightarrow Composition of today's universe

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_{C}$	
Ordinary matter	p,n,e	MeV-GeV	10^{78}	5 %	\checkmark
Radiation	γ	$0.1 \mathrm{meV}$	10^{87}	0.005 %	\checkmark
Hot Dark Matter	Neutrinos	> 0.04 eV < 0.6 eV	10^{87}	> 0.1 % < 3 %	
Cold Dark Matter	Wimps? Axions?	$\gtrsim\!100~{ m GeV}$ $\lesssim~{ m meV}$	$\lesssim 10^{77}$ $\gtrsim 10^{91}$	25 %	\checkmark
Dark Energy	?	10^{-33} eV	?	70 %	\checkmark

⇒ How to detect the **Cosmic Neutrino Back**ground $(C\nu B)$?

 $\Rightarrow Do wimps (SUSY \leftarrow LHC) or axions exist?$ A. Ringwald (DESY)

[DESY] Seminar, IFAE, UAB, Barcelona, E

- Opportunities for subdominant dark matter candidates -
- Discuss here:
 - 1. Relic neutrino absorption spectroscopy
 - B. Eberle, AR, L. Song, T. Weiler, hep-ph/0401203, PRD 2. Production and detection of axions after HERA (LHC) AR, Phys. Lett. 569 (2003) 51

6

1. Relic neutrino absorption spectroscopy

- Neutrinos amongst elementary particles with weakest interactions
- ⇒ Direct detection of $C\nu B$ ("neutrino wind") within upcoming decade seems hopeless.

[AR '03]

[Weiler '82]

- \Rightarrow Indirect detection possibility?
 - Resonant annihilation of extremely high energy cosmic ν's (EHECν's) on big bang relic ν's (and vice versa) into Z-bosons

[Fermilab]

1. Relic neutrino absorption spectroscopy

- Neutrinos amongst elementary particles with weakest interactions
- ⇒ Direct detection of $C\nu B$ ("neutrino wind") within upcoming decade seems hopeless.

[AR '03]

- \Rightarrow Indirect detection possibility?
 - Resonant annihilation of extremely high energy cosmic ν's (EHECν's) on big bang relic ν's (and vice versa) into Z-bosons

[Weiler '82]

1. Relic neutrino absorption spectroscopy

- **Neutrinos** amongst elementary particles with weakest interactions
- ⇒ Direct detection of $C\nu B$ ("neutrino wind") within upcoming decade seems hopeless.

[AR '03]

[Weiler '82]

- \Rightarrow Indirect detection possibility?
 - Resonant annihilation of extremely high energy cosmic ν's (EHECν's) on big bang relic ν̄'s (and vice versa) into Z-bosons

• Large cross-section at **resonant energies**

$$E_{\nu_i}^{\text{res}} = M_Z^2 / (2 m_{\nu_i}) = 4 \times 10^{22} \text{ eV} (0.1 \text{ eV} / m_{\nu_i})$$

leading to a "short" mean free path

$$\ell_{\nu_i 0} = \left(\langle n_{\nu_i} \rangle_0 \langle \sigma_{\mathrm{ann}} \rangle \right)^{-1} \simeq 10^5 \,\mathrm{Mpc}$$

- $\nu_{\text{EHEC}} + \bar{\nu}_{\text{C}\nu\text{B}}$ annihilation mechanism:
 - unique process sensitive to $C\nu B$
 - opportunity to determine m_{ν_i}

- Opportunities for subdominant dark matter candidates -
- Significant advances in cosmology, neutrino physics, and EHECR and EHECν physics

$$\diamond 0.04 \text{ eV} \lesssim \sqrt{\Delta m_{\text{atm}}^2} \lesssim m_{\nu_3} \lesssim 0.6 \text{ eV} \Rightarrow$$
$$10^{22} \text{ eV} \lesssim \frac{E_{\nu_3}^{\text{res}}}{10^{23}} \approx 10^{23} \text{ eV}$$

♦ Remote possibility to associate related emission features (Z-bursts) (p's or γ 's from hadronic Z-decay) with the mysterious EHECR events above $E_{GZK} = 4 \times 10^{19} \text{ eV}$

[Fargion, Mele, Salis '99; Weiler '99]

Requires very large flux, but neutrino mass window for this scenario coincides with present knowledge [Fodor,Katz,AR '01;'02; Gelmini *et al.* '04]

⇒ Prospects of $C\nu B$ absorption spectroscopy in the upcoming decade? [Eberle,AR,Song,Weiler '04]

- Opportunities for subdominant dark matter candidates -
- Significant advances in cosmology, neutrino physics, and EHECR and EHECν physics

$$\diamond 0.04 \text{ eV} \lesssim \sqrt{\Delta m_{\text{atm}}^2} \lesssim m_{\nu_3} \lesssim 0.6 \text{ eV} \Rightarrow$$
$$10^{22} \text{ eV} \lesssim E_{\nu_3}^{\text{res}} \lesssim 10^{23} \text{ eV}$$

♦ Remote possibility to associate related emission features (Z-bursts) (p's or γ 's from hadronic Z-decay) with the mysterious EHECR events above $E_{GZK} = 4 \times 10^{19}$ eV

[Fargion,Mele,Salis '99; Weiler '99]

Requires very large flux, but neutrino mass window for this scenario coincides with present knowledge [Fodor,Katz,AR '01;'02; Gelmini *et al.* '04]

 $\Rightarrow \text{ Prospects of } \mathbf{C}\nu\mathbf{B} \text{ absorption spectroscopy} \\ \text{ in the upcoming decade? } [Eberle, AR, Song, Weiler '04]}$

[Fodor,Katz,AR '01,'02]

⇒ Prospects of $C\nu B$ absorption spectroscopy in the upcoming decade? [Eberle,AR,Song,Weiler '04]

Requires very large flux, but neutrino mass window for this scenario coincides with present knowledge [Fodor,Katz,AR '01;'02; Gelmini *et al.* '04]

[Fargion, Mele, Salis '99; Weiler '99]

♦ Remote possibility to associate related emission features (Z-bursts) (p's or γ 's from hadronic Z-decay) with the mysterious EHECR events above $E_{GZK} = 4 \times 10^{19}$ eV

 $\diamond 0.04 \text{ eV} \lesssim \sqrt{\Delta m_{\text{atm}}^2} \lesssim m_{\nu_3} \lesssim 0.6 \text{ eV} \Rightarrow$ $10^{22} \text{ eV} \lesssim \frac{E_{\nu_2}^{\text{res}}}{10^{23}} \text{ eV}$

- Opportunities for subdominant dark matter candidates -

• Neutrino flux of flavor $\alpha = e, \mu, \tau$ at Earth:

$$F_{\nu\alpha}(E) \simeq \frac{1}{4\pi} \int_{0}^{\infty} \frac{\mathrm{d}z}{H(z)} \times \\ \times \sum_{\beta,s} \underbrace{P_{\alpha\beta}(E(1+z),z)}_{\text{survival probability}} \underbrace{\eta^{(s)}(z)}_{\text{src. activity}} \underbrace{J_{\nu\beta}^{(s)}(E(1+z))}_{\text{src. inj. spectr.}}$$

• For **sources**, **case studies** based on:

$$\eta^{(s)}(z) = \eta_0^{(s)} (1+z)^{n^{(s)}} \theta(z_{\max}^{(s)} - z)$$
$$J_{\nu_\beta}^{(s)}(E) = j_{\nu_\beta}^{(s)} E^{-\alpha^{(s)}} \theta(E_{\max}^{(s)} - E)$$

accel.: $n \gtrsim 3, z_{\max} \lesssim 10, \alpha \gtrsim 2, E_{\max} \simeq 0.05 E_{p \max}$ top. def.: $n \simeq 1.5, z_{\max} \gg 10, \alpha \simeq 1.5, E_{\max} \simeq 0.1 M_X$

> \Rightarrow Absorption dips with a depth $(10 \div 20)$ % at $(0.1 \div 0.5) E_{
> u_i}^{
> m res} \gtrsim 10^{21} \ {
> m eV}$

A. Ringwald (DESY)

Seminar, IFAE, UAB, Barcelona, E

- Existing EHEC
 i observatories have recently put sensible upper limits on flux in relevant energy range
- New generation of large EHEC ν detectors may provide event sample above 10^{21} eV within this decade
- ⇒ Is there any hope of detection of absorption dips in the next decade or beyond?
- \Rightarrow Study benchmark flux scenarios

[Eberle,AR,Song,Weiler '04]

- Existing **EHEC** ν observatories have recently put sensible upper limits on flux in relevant energy range
- New generation of large EHEC ν detectors may provide event sample above 10^{21} eV within this decade
- ⇒ Is there any hope of detection of absorption dips in the next decade or beyond?
- ⇒ Study benchmark flux scenarios

[Eberle,AR,Song,Weiler '04]

- Most optimistic scenario: flux saturates observational limit
- ⇒ Secondary fluxes of p's (and γ 's) from Zdecay of right order of magnitude to explain cosmic rays above GZK energy by Z-bursts
- For 3- σ evidence (5- σ discovery) of dip, in $10^{21 \div 22}$ eV interval in year 2013, need depth of 11 % (19%)
- \Rightarrow Easily achievable, if neutrinos quasidegenerate ($m_{\nu_1} \gtrsim 0.1 \text{ eV}$)
- Source scenario? Has to avoid cascade limit (
 EGRET)
 - Topological defects ($M_X \gtrsim 10^{14}$ GeV) which couple only to hidden sector

[Berezinsky, Vilenkin '00]

– Hidden accelerators, i.e. opaque to $p\,{\rm 's}$ and $\gamma\,{\rm 's},$ with $E_{p~{\rm max}}\,{\gtrsim}\,10^{23}~{\rm eV}$

- Less optimistic scenario: flux saturates cascade limit
- For a 3-sigma evidence of an absorption dip, in $10^{21 \div 22}$ eV interval in year 2013, need depth of 48 %
- ⇒ Dips in this category possible for extreme activities of the sources and a quasi-degenerate $(m_{\nu_1} \gtrsim 0.1 \text{ eV})$ neutrino spectrum
 - Increase in statistics by factor 10 reduces required depth to 15% (25%) for 3- σ evidence (5- σ discovery)
 - Source scenario?
 - Neutrinos from $p\gamma_{
 m CMB}$ pion production
 - Accelerators with $E_{p~{\rm max}}\!\gtrsim\!10^{23}~{\rm eV}$
 - Topological defects ($M_X \gtrsim 10^{14} \text{ GeV}$)

 $\rm sr^{-1}$ 10⁹ 2003 108 s^{-1} 107 cascade limi 2008 [eV m⁻² 106 2013 105 top. defect 됴 10^{4} cosmogenic Б2 1017101810191020102110221023102410251026 [eV] sr^{-1} $m_{\mu} = (0.002 \div 0.4) \text{ eV}$ - N 10-4 m^{-2} ²√5×10⁻⁵ top. defect sources E1.5 F 1025 1019 1020 1021 1023 1024 E [eV] Seminar, IFAE, UAB, Barcelona, E

2. Production and detection of axions after HERA (LHC)

• Axion:

[Peccei, Quinn (1977); S. Weinberg (1978); Wilczek (1978)]

- Hypothetical, very light, weakly coupled (pseudo-)scalar particle, A^0 : "pseudo Nambu-Goldstone boson"
- Natural solution of strong *CP* problem: Why is the effective θ -parameter in the QCD Lagrangean

$$\mathcal{L}_{\theta} = \theta_{\text{eff}} \frac{\alpha_s}{8\pi} F^{\mu\nu a} \tilde{F}_{\mu\nu a}$$

so small, $\theta_{\text{eff}} \leq 10^{-9}$ (\Leftarrow electric dipol moment of neutron)? - Peccei-Quinn scale f_A determines mass,

$$m_A = 0.62 \cdot 10^{-3} \text{ eV} \times \left(\frac{10^{10} \text{ GeV}}{f_A}\right)$$

- Opportunities for subdominant dark matter candidates -
 - Interactions with Standard Model particles model dependent, e.g. axion-photon coupling,

$$\mathcal{L}_{WW} = -g_{A\gamma} A \mathbf{E} \cdot \mathbf{B}; \qquad g_{A\gamma} = \frac{\alpha}{2\pi f_A} \left(\frac{E}{N} - 1.92\right)$$

[Raffelt . . .]

- Candidate for dark matter ($f_A \gtrsim 10^{10}$ GeV)
- Astrophysical constraints
 - Axions are generated in hot plasmas and lead there to energy losses
 - Observed limits of star evolution scales \Rightarrow constraints on interaction strengths with photons, electrons, nucleons \Rightarrow constraints on $g_{A\gamma}$ (\Rightarrow f_A and m_A)

Experimental limits:

Strongest bounds: Production in early universe or in astrophysical sources; detection in laboratory:

- Search for **dark matter**
 - * Microwave-cavity-experiments
- Search for solar axions
 - * Solar-magnetic (CAST: Improvement by one order in 2004)

[GeV-1

* Solar-Germanium

Much looser: **Pure laboratory experiments** (detection and production in laboratory):

- Laser experiments

[PDG (2002); AR '03]

Photon regeneration

- Production: Polarised laser beam in superconducting dipole magnet, such that E || B ⇒ conversion γ → A
- Absorb laser beam in wall
- Detection: Detect photons behind the wall from back conversion $(A \rightarrow \gamma)$ in second magnetic field

$$ext{Rate} \propto rac{1}{16} \left(rac{g_{A\gamma} B \, \ell}{\mu}
ight)^4 \, rac{\langle P
angle}{\omega} \, \epsilon^{P^2_{\gamma \leftrightarrow A}}$$

Coherence condition (in vacuum)

$$m_A \ll 1.1 \cdot 10^{-4} \ \mathrm{eV} \ \left(rac{\hbar\omega}{1 \ \mathrm{eV}} rac{1 \ \mathrm{m}}{\ell}
ight)^{1/2}$$

A. Ringwald (DESY)

"Light shining through a wall"

[Ansel'm (1985); Van Bibber et al. (1987)]

Pilot experiment:

[Cameron *et al.* (1993)]

$$B = 3.7 \text{ T}, \ell = 4.4 \text{ m}, \langle P \rangle = 3 \text{ W}, \lambda = 514 \text{ nm}$$

 $\Rightarrow g_{A\gamma} < 6.7 \cdot 10^{-7} \text{ GeV}^{-1} \text{ for } m_A < 10^{-3} \text{ eV}$

Seminar, IFAE, UAB, Barcelona, E

- Unique opportunity for searches for light scalar or pseudoscalar particles:
 - End of 2006, HERA will be decommissioned.
 - ⇒ Its ≈ 400 superconducting **dipole** magnets, each of which achieving B = 5 T and having $\ell = 10$ m, can be **recycled** and
 - ⇒ used for a photon regeneration experiment. [AR '03]

Seminar, IFAE, UAB, Barcelona, E

- Opportunities for subdominant dark matter candidates -
- Projected sensitivities of photon regeneration exploiting decommissioned HERA magnets
 - in HERA tunnel:
 - $B=5~\mathrm{T}, \ell=(17+17)\times 10~\mathrm{m}$
 - in XFEL tunnel:

 $B = 5 \text{ T}, \ell = (200 + 200) \times 10 \text{ m}$

- May extend sensitivity to larger masses by filling in buffer gas
- ⇒ Competitive with astrophysical limits and CAST sensitivity
 - Exploiting LHC magnets: improvement by factor ten ⇒ probes axion ~ dominant CDM

Seminar, IFAE, UAB, Barcelona, E

3. Conclusions

• Opportunities for dark matter candidates:

– $C\nu B$ absorption spectroscopy:

- * Detection of dips within next decade needs huge ν flux and $m_{\nu_1}\!\gtrsim\!0.1~{\rm eV}$
- * If pre-2008 observatories do not see any ν flux in $10^{21 \div 23}$ eV region \Rightarrow absorption dips won't be observed within next $10 \div 20$ y!
- Axion production and detection with lasers:
 - * Recycling of HERA magnets allows to improve current pure laboratory limits on $g_{A\gamma}$ by $3 \div 4$ orders of magnitude within the upcoming decade \Rightarrow competitive with pure/halfway astrophysical limits
 - * Recycling of LHC magnets will probe parameter range in $(g_{A\gamma}, m_A)$ in which axion \sim dominant CDM

⇒ Not guaranteed, but exciting!