Extremely High Energy Neutrinos

A. Ringwald

http://www.desy.de/~ringwald

6th National Astroparticle Physics Symposium February 3, 2006, Vrije Universiteit, Amsterdam, Netherlands

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's

[baikalweb.jinr.ru/] Astroparticle Physics Symposium, Amsterdam, Netherlands

– Extremely h

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's

AMANDA: Antarctic Muon And Neutrino

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's **ANTARES:** Astronomy with a Neutrino Telescope and Abyss environmental **RES**earch

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's

[www2.phys.canterbury.ac.nz/rice]

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's **GLUE:** Goldstone Lunar Ultra-high energy

neutrino Experiment

[http://www.physics.ucla.edu/ moonemp/public/]

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's

[Gorham et al. '04]

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's

FORTE: Fast On-orbit Recording of Transient Events

[nis-www.lanl.gov/nis-projects/forte/]

Astroparticle Physics Symposium, Amsterdam, Netherlands

A. Ringwald (DESY)

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's

FORTE: Fast On-orbit Recording of Transient Events

[Lehtinen et al. '04]

1. Introduction

ANITA-LITE:

Prototype of ANtarctic Impulsive Transient Antenna

 Existing observatories for (Extremely) High Energy Cosmic ν's

[www.phys.hawaii.edu/ anita/web/index.htm] Astroparticle Physics Symposium, Amsterdam, Netherlands

1. Introduction

• Existing observatories for (Extreme-

ly) High Energy Cosmic ν 's

ANITA-LITE:

Prototype of ANtarctic Impulsive

Transient Antenna

0° 30.11 30.E S.F. M.06 90°E 130.2 120.11 150 W 180° GMT 2004 Jan 04 11:15:00 LDB_Anterotics_TIGER

[cosray2.wustl.edu/tiger/index.html]

1. Introduction

 Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

PAO: Pierre Auger Observatory

[www.auger.org]

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

IceCube:

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

ANITA:

[www.ps.uci.edu/ anita/]

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

WSRT: WeSterbork Radio Telescope

[Bacelar, ARENA Workshop '05]

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively la ger detectors for EHECν's

[Bacelar, ARENA Workshop '05]

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

LOFAR:

[www.lofar.org]

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's
- $\Rightarrow E \ge 10^{16} \text{ eV}$:
 - $\rightarrow~$ Astrophysics of cosmic rays
- $\Rightarrow E \ge 10^{17} \text{ eV}$:
 - \rightarrow Particle physics beyond LHC

1. Introduction

- Existing observatories for (Extremely) High Energy Cosmic ν's provide sensible upper bounds on flux
- Upcoming decade: progressively larger detectors for EHECν's
- $\Rightarrow E \ge 10^{16} \text{ eV}$:
 - $\rightarrow~$ Astrophysics of cosmic rays
- $\Rightarrow E \ge 10^{17} \text{ eV}$:
 - $\rightarrow~$ Particle physics beyond LHC
- $\Rightarrow E \ge 10^{21} \text{ eV}$:
 - → **Cosmology:** relics of phase transitions; absorption on big bang relic neutrinos

A. Ringwald (DESY)

• Further content:

- 2. Sources and fluxes of EHEC neutrinos
- 3. Fun with EHEC neutrinos
- 4. Conclusions

• Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's

23

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's and CR's (n diffusion from source)

24

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's and CR's (n diffusion from source)

Hillas: $E_p \lesssim 10^{21} \text{ eV}$

[Pierre Auger Observatory] Astroparticle Physics Symposium, Amsterdam, Netherlands

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through τ collisions of the trapped p's with ν ambient plasma produces γ 's, ν 's γ and CR's (n diffusion from source)

Hillas:
$$E_p \lesssim 10^{21} \text{ eV} \Rightarrow E_{\nu} \lesssim 10^{20} \text{ eV}$$

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - *p*'s, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's and CR's (n diffusion from source)

Hillas: $E_p \lesssim 10^{21} \text{ eV} \Rightarrow E_{\nu} \lesssim 10^{20} \text{ eV}$

- \Rightarrow EHEC ($E_{\nu} \gtrsim 10^{20}$ eV) neutrinos
 - $\leftarrow \text{ yet unknown acceleration sites}$
 - \leftarrow other acceleration mechanism
 - ← decay of superheavy particles

- Paradigm for **astrophysical** extragalactic source of protons and neutrinos: **shock acceleration**
 - p's, confined by magnetic fields, accelerate through repeated scattering by plasma shock fronts
 - production of π 's and n's through collisions of the trapped p's with ambient plasma produces γ 's, ν 's and CR's (n diffusion from source)

Hillas: $E_p \lesssim 10^{21} \text{ eV} \Rightarrow E_{\nu} \lesssim 10^{20} \text{ eV}$

- \Rightarrow EHEC ($E_{\nu} \gtrsim 10^{20}$ eV) neutrinos
 - $\leftarrow \text{ yet unknown acceleration sites}$
 - $\leftarrow \ \text{other acceleration mechanism}$
 - ← decay of superheavy particles

Astroparticle Physics Symposium, Amsterdam, Netherlands

A. Ringwald (DESY)

- Existence of superheavy particles with $10^{12}~{\rm GeV}\,{\lesssim}\,m_X\,{\lesssim}\,10^{16}~{\rm GeV},$ produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

[Kolb,Chung,Riotto '98]

- Existence of superheavy particles with $10^{12}~{\rm GeV}\,{\lesssim}\,m_X\,{\lesssim}\,10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field

 decomposition of topological defects, formed during preheating, into their constituents

[Tkachev,Khlebnikov,Kofman,Linde '98]

- Existence of superheavy particles with 10^{12} GeV $\leq m_X \leq 10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 - $\Rightarrow \mathsf{EHEC} \ \nu's \text{ from decay or anni-hilation of superheavy dark matter}$ $(for <math>\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents

[Berezinsky,Kachelriess,Vilenkin '97]

- Existence of superheavy particles with $10^{12}~{\rm GeV}\,{\lesssim}\,m_X\,{\lesssim}\,10^{16}$ GeV, produced during and after inflation through e.g.
 - particle creation in time-varying gravitational field
 - $\Rightarrow \mathsf{EHEC} \ \nu's \text{ from decay or anni-hilation of superheavy dark matter}$ $(for <math>\tau_X \gtrsim \tau_U$)
 - decomposition of topological defects, formed during preheating, into their constituents
 - $\Rightarrow\,$ EHEC $\nu{}'{\rm s}$ from topological defects

[Bhattacharjee,Hill,Schramm '92]

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g.

Astroparticle Physics Symposium, Amsterdam, Netherlands

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$

Astroparticle Physics Symposium, Amsterdam, Netherlands

A. Ringwald (DESY)

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
- \Rightarrow Reliably predicted!

[Aloisio,Berezinsky,Kachelriess '04]

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
- \Rightarrow Reliably predicted!
 - Spectra at Earth:
 - for superheavy dark matter, injection nearby: $j_{\nu} \sim j_{\gamma} \sim j_p$

[Aloisio, Berezinsky, Kachelriess '04]

- Injection spectra: fragmentation functions $D_i(x,\mu)$, $i=p,e,\gamma,\nu$, determined via
 - Monte Carlo generators
 - DGLAP evolution from experimental initial distributions at e.g. $\mu = m_Z$ to $\mu = m_X$
- \Rightarrow Reliably predicted!
- Spectra at Earth:
 - for superheavy dark matter, injection nearby: $j_{\nu}\sim j_{\gamma}\sim j_{p}$
 - for topological defects, injection far away: $j_{\nu} \gg j_{\gamma} \sim j_p$

A. Ringwald (DESY)

Top-down scenarios for EHEC neutrinos

- How natural?
 - Superheavy dark matter: need symmetry to prevent fast X decay
 - * gauge $\Rightarrow X$ stable
 - * discrete \Rightarrow stable or quasi-stable

- How natural?
 - Superheavy dark matter: need symmetry to prevent fast X decay * gauge $\Rightarrow X$ stable
 - * discrete \Rightarrow stable or quasi-stable
 - Topological defects: generic prediction of symmetry breaking (SB) in GUT's, including fundamental string theory, e.g.
 - * $G \to H \times U(1)$ SB: monopoles
 - * U(1) SB: ordinary or superconducting strings

Top-down scenarios for EHEC neutrinos

- How natural?
 - Superheavy dark matter: need symmetry to prevent fast X decay * gauge $\Rightarrow X$ stable
 - * discrete \Rightarrow stable or quasi-stable
 - Topological defects: generic prediction of symmetry breaking (SB) in GUT's, including fundamental string theory, e.g.
 - * $G \to H \times U(1)$ SB: monopoles
 - * U(1) SB: ordinary or superconducting strings
 - * $\mathbf{G} \to \mathbf{H} \times \mathbf{U}(1) \to \mathbf{H} \times \mathbf{Z}_N$ SB: monopoles connected by strings

[Berezinsky '05]

Astroparticle Physics Symposium, Amsterdam, Netherlands

A. Ringwald (DESY)

3. Fun with EHEC neutrinos

- EHEC ν 's in reach!
- Strong impact of measurement for
 - particle physics

cosmology

3. Fun with EHEC neutrinos

- EHEC ν 's in reach!
- Strong impact of measurement for
 - particle physics
 - \ast GUT parameters, e.g. m_X

cosmology

3. Fun with EHEC neutrinos

- EHEC ν 's in reach!
- Strong impact of measurement for
 - particle physics
 - * GUT parameters, e.g. m_X
 - * particle content of the desert,e.g. SM vs. MSSM
 - cosmology

[Barbot, Drees '02]

3. Fun with EHEC neutrinos

- EHEC ν 's in reach!
- Strong impact of measurement for
 - particle physics
 - \ast GUT parameters, e.g. m_X
 - * particle content of the desert,e.g. SM vs. MSSM
 - * νN scattering at $\sqrt{s}\gg {\rm LHC}$
 - cosmology

Astroparticle Physics Symposium, Amsterdam, Netherlands

3. Fun with EHEC neutrinos

- EHEC ν 's in reach!
- Strong impact of measurement for
 - particle physics
 - \ast GUT parameters, e.g. m_X
 - * particle content of the desert,e.g. SM vs. MSSM
 - * νN scattering at $\sqrt{s}\gg {\rm LHC}$

cosmology

- * window on early phase transition
- * Hubble expansion rate H(z)
- * existence of the big bang relic neutrino background (C ν B)

• At the resonance energies

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\rm eV}{m_{\nu}}\right)$$

EHEC neutrinos annihilate with relic neutrinos into Z bosons

• At the resonance energies

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\rm eV}{m_{\nu}}\right)$$

EHEC neutrinos annihilate with relic neutrinos into ${\cal Z}$ bosons

 \Rightarrow Absorption dips in EHEC neutrino spectra

• At the resonance energies

[Eberle, AR, Song, Weiler '04]

 m_{ν} (eV) • At the resonance energies 10¹ 10⁻¹ 10-3 10^{-2} 10-4 10^{-5} 1 1 11111 0.8 ν_{e} $E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\rm eV}{m_{\nu}}\right) \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong}} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong}} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\cong} \stackrel{\text{(i)}}{\underset{\text{(i)}}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\underset{(i)}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\underset{\text{(i)}}{\underset{(i)}}{\underset{(i)}}$ 1018 10^{11} 1012 1013 1014 1015 1016 1017 10^{1} 10^{-1} 10-2 10-3 10^{-4} 10^{-5} EHEC neutrinos annihilate with relic 1 1 mm neutrinos into Z bosons 0.8 ν_{μ} ([^][^]∃)_d 0.6 0.4 \Rightarrow Absorption dips in EHEC neutrino 0.2 1 1 1 1 1 1 1 1 1 Ω spectra 1012 1011 1013 10^{14} 1015 1 \ 1 16 1017 1018 101 10^{-1} 10-2 10^{-5} 10-3 10 1 0.8 ν_{τ} P(E,) 0.6 0.4 0.2 1.1.1111 Ω 1012 1015 10^{13} 10^{14} 1018 10^{11} 10^{16} 10^{17} E_{ν} (GeV)

[Barenboim, Mena, Quigg '05]

50

• At the resonance energies

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\rm eV}{m_{\nu}}\right)$$

EHEC neutrinos annihilate with relic neutrinos into ${\cal Z}$ bosons

 \Rightarrow Absorption dips in EHEC neutrino spectra

Astroparticle Physics Symposium, Amsterdam, Netherlands

• At the resonance energies

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\rm eV}{m_{\nu}}\right)$$

EHEC neutrinos annihilate with relic neutrinos into Z bosons

- \Rightarrow Absorption dips in EHEC neutrino spectra
 - Detectable within next decade if
 - $m_X\!\gtrsim\!10^{15}~{\rm GeV}$
 - EHEC neutrino flux close to current observational bounds

[Fodor,Katz,AR,Weiler,Wong,in prep.]

• At the resonance energies

$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\rm eV}{m_{\nu}}\right)$$

EHEC neutrinos annihilate with relic neutrinos into Z bosons

- \Rightarrow Absorption dips in EHEC neutrino spectra
 - Detectable within next decade if
 - $m_X\!\gtrsim\!10^{15}~{\rm GeV}$
 - EHEC neutrino flux close to current observational bounds

[Fodor,Katz,AR,Weiler,Wong,in prep.]

• At the resonance energies

• Z-bursts as EHEC recovery

$$E_{\nu}^{\text{res}} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \text{ eV} \left(\frac{\text{eV}}{m_{\nu}}\right) \qquad \qquad 10^{29} \qquad \qquad 10^{29} \qquad \qquad 3 \times 0.15 \text{ eV} \qquad M_{\chi} = 10^{19} \text{ GeV} \qquad \qquad 10^{27} \qquad \qquad \text{mod } \text{URB} \qquad 2_{\min} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB} \qquad 2_{\max} = 0.03 \qquad \qquad \text{mod } \text{URB$$

[Fodor,Katz,AR,Weiler,Wong,in prep.]

Astroparticle Physics Symposium, Amsterdam, Netherlands

A. Ringwald (DESY)

 \Rightarrow

4. Conclusions

- Exciting times for EHEC neutrinos:
 - many observatories under construction
 - \Rightarrow appreciable event samples
- Expect strong impact on
 - astrophysics
 - particle physics
 - cosmology

