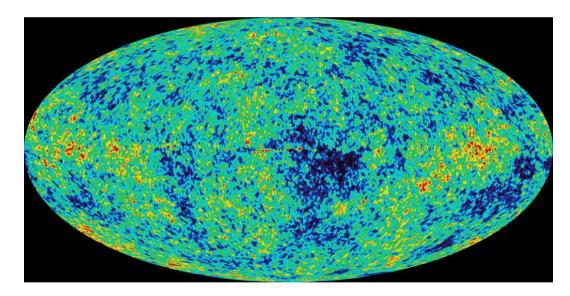
Andreas Ringwald

http://www.desy.de/~ringwald

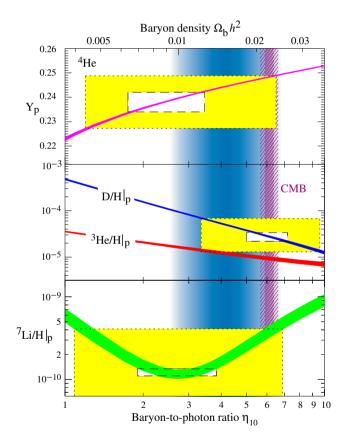

with: B. Eberle, Z. Fodor, S. Katz, L. Song, T. Weiler, Y. Wong

Theorie Seminar April 21, 2005, Aachen, Germany

0. Introduction

• Progress in observational cosmology

Cosmic Microwave Background:

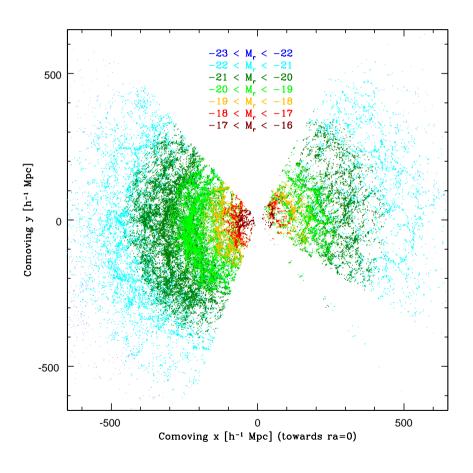


 $\mathsf{Aachen}/\mathsf{D}$

0. Introduction

• Progress in observational cosmology

Big Bang Nucleosynthesis:

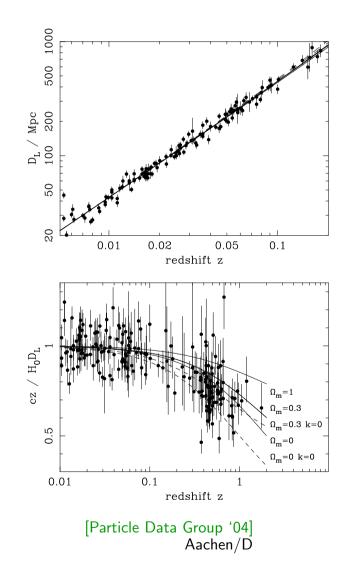

[Particle Data Group '04]

 $\mathsf{Aachen}/\mathsf{D}$

0. Introduction

• Progress in observational cosmology

Large Scale Structure:



[Sloan Digital Sky Survey '04] Aachen/D

0. Introduction

• Progress in observational cosmology

0. Introduction

• Progress in observational cosmology

\Rightarrow Cosmic recipe emerged:

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_{C}$	Obs.	0.01% Cosmic Microwave Background
Radiation	γ	$0.1 \; {\rm meV}$	10^{87}	0.01%	CMB	0.1%-5% Neutrinos
Hot Dark Matter	Neutrinos	> 0.04 eV < 0.6 eV	10^{87}	> 0.1 % < 2 %	BBN CMB LSS	Cosmic Microwave Big Bang formation of light nuclei Expansion vs. time: Pattern and growth of cosmic
Ordinary Matter	p,n,e	MeV-GeV	10^{78}	5 %	BBN CMB	Laboratory searches Dark Energy
Cold Dark Matter	WIMPs? Axions?	$\gtrsim 100 { m GeV}$ $\lesssim { m meV}$	$\lesssim 10^{77}$ $\gtrsim 10^{91}$	25 %	LSS CMB	[Connecting quarks cosmos]
Dark Energy	?	$10^{-33} { m eV}$?	70 %	SN CMB	

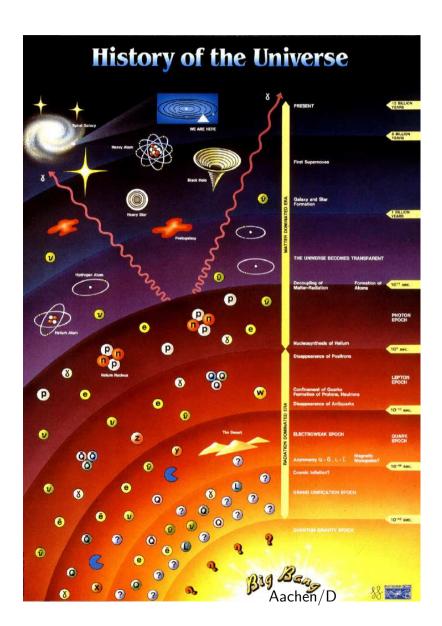
0. Introduction

- Progress in observational cosmology
- \Rightarrow Cosmic recipe emerged:

Material	Particles	$\langle E angle$ or m	N	$\langle ho angle / ho_{C}$	Obs.	0.01% Cosmic Microwave Background
Radiation	γ	$0.1 \; { m meV}$	10^{87}	0.01 %	СМВ	Cosmic Microwave Big Bang formation of light nuclei 3-5% Ordinary Matter 0.02% C.N., OFeU
Hot Dark Matter	Neutrinos	$> 0.04 \; \mathrm{eV}$	10^{87}	> 0.1 %	BBN CMB	Expansion vs. time: Pattern and growth of cosmic Expansion vs. time: Pattern and time: Cosmic Expansion vs. time: Pattern and time: Cosmic Expansion vs. time: Cosmic Expansion vs.
Ordinary		$< 0.6 \; { m eV}$		< 2 %	LSS BBN	structure Laboratory searches
Matter	p,n,e	MeV-GeV	10^{78}	5 %	СМВ	Dark Ene
Cold Dark Matter	WIMPs?	$\gtrsim\!100~{\rm GeV}$	$\lesssim 10^{77}$	25 %	LSS CMB	
	Axions?	\lesssim meV	$\gtrsim 10^{91}$			[Connecting quarks cosmos]
Dark Energy	?	10^{-33} eV	?	70 %	SN CMB	

⇒ Direct, weak interaction based detection of the Cosmic Neutrino Background ($C\nu B$)? A. Ringwald (DESY)

 $\mathsf{Aachen}/\mathsf{D}$

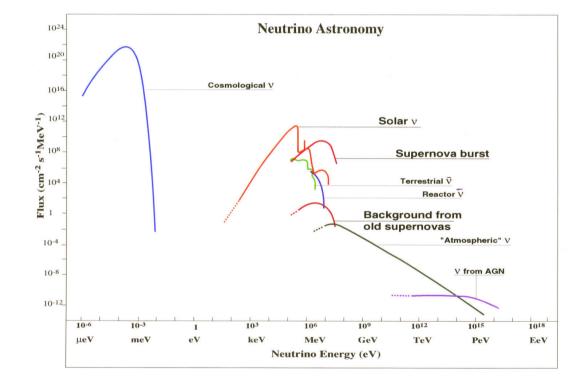

- Evidence for/inference about $C\nu B$ from cosmological measurements:
 - **BBN**: $1.3 \le N_{\nu} \le 7.1$
 - **CMB**: $0.9 \le N_{\nu} \le 8.3$
 - LSS (together with CMB): $\sum m_{\nu_i} \leq 1.8 \text{ eV}$
- $C\nu B$ has not been detected in laboratory:
 - ← Neutrinos interact only weakly
 - $\Leftrightarrow \mathsf{Smallness} \mathsf{ of neutrino mass} \Leftrightarrow \mathsf{small momentum-transfer}$
- Design of direct, weak interaction based detection experiment
 - \leftarrow Need phase space distribution of relic neutrinos
 - ← Theoretically known better than ever!

Further content:

- 1. How many, how fast?
- 2. How to detect?
- 3. Conclusions

1. How many, how fast?

• Relic neutrinos decoupled at $t\sim 1~{\rm s}$



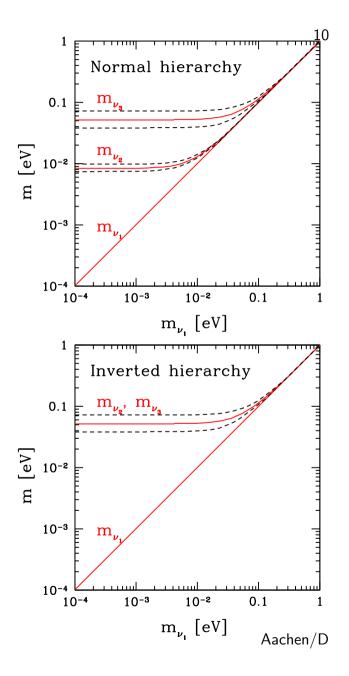
1. How many, how fast?

- Relic neutrinos decoupled at $t\sim 1~{\rm s}$
- Firm predictions:

$$\underbrace{\bar{n}_{\nu_i \, 0} = \bar{n}_{\bar{\nu}_i \, 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma \, 0}}_{CMB} = 56 \text{ cm}^{-3}$$

relic neutrinos $\approx \#$ relic photons

1. How many, how fast?


- Relic neutrinos decoupled at $t\sim 1~{\rm s}$
- Firm predictions:

$$\underbrace{\bar{n}_{\nu_i 0} = \bar{n}_{\bar{\nu}_i 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma 0}}_{CMB} = 56 \text{ cm}^{-3}$$

relic neutrinos $\approx \#$ relic photons

$$\underbrace{\bar{p}_{\nu_i 0} = \bar{p}_{\bar{\nu}_i 0}}_{C\nu B} = 3\left(\frac{4}{11}\right)^{1/3} \underbrace{T_{\gamma 0}}_{CMB} = 5 \times 10^{-4} \text{ eV}$$

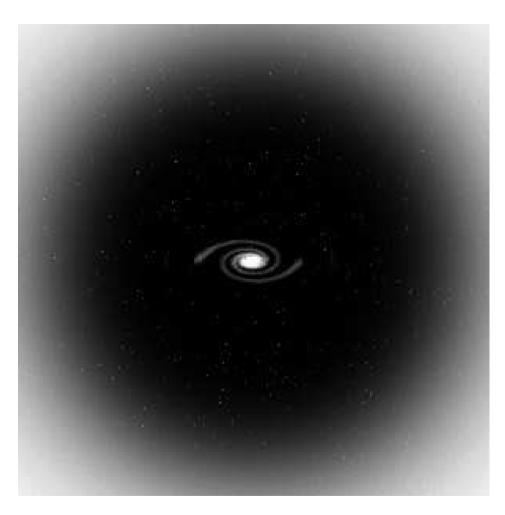
At least two neutrino mass eigenstates nonrelativistic ($m_{\nu_i} \gg 5 \times 10^{-4} \text{ eV}$)

A. Ringwald (DESY)

1. How many, how fast?

- Relic neutrinos decoupled at $t\sim 1~{\rm s}$
- Firm predictions:

$$\underbrace{\bar{n}_{\nu_i 0} = \bar{n}_{\bar{\nu}_i 0}}_{C\nu B} = \frac{3}{22} \underbrace{\bar{n}_{\gamma 0}}_{CMB} = 56 \text{ cm}^{-3}$$


relic neutrinos $\approx \#$ relic photons

$$\underbrace{\bar{p}_{\nu_i 0} = \bar{p}_{\bar{\nu}_i 0}}_{C\nu B} = 3\left(\frac{4}{11}\right)^{1/3} \underbrace{T_{\gamma 0}}_{CMB} = 5 \times 10^{-4} \text{ eV}$$

At least two neutrino mass eigenstates nonrelativistic ($m_{\nu_i} \gg 5 \times 10^{-4} \text{ eV}$)

- \Rightarrow Gravitational clustering on CDM
- ⇒ Density enhanced in galactic halos
 A. Ringwald (DESY)

[archive.ncsa.uiuc.edu]

Neutrino clustering in cold dark matter halos from ACDM simulations [Singh,Ma '03; **AR, Yvonne Y. Wong, JCAP 0412 (2004) 005 [hep-ph/0408241]**]

- In context of flat ΛCDM model, neutrino component \approx perturbation
 - \Rightarrow CDM component ρ_m dominates in gravitational potential ϕ
 - \Rightarrow Study clustering in ρ_m profiles from ΛCDM N-body simulations

Neutrino clustering in cold dark matter halos from ACDM simulations [Singh,Ma '03; **AR, Yvonne Y. Wong, JCAP 0412 (2004) 005 [hep-ph/0408241]**]

- In context of flat ΛCDM model, neutrino component \approx perturbation
 - \Rightarrow CDM component ρ_m dominates in gravitational potential ϕ \Rightarrow Study clustering in ρ_m profiles from Λ CDM N-body simulations
- Neutrino phase space distributions $f_{\nu_i}(\boldsymbol{x}, \boldsymbol{p}, \tau)$, depending on $\boldsymbol{x} = \boldsymbol{r}/a(t)$, $\boldsymbol{p} = am_{\nu_i}\dot{\boldsymbol{x}}$, $d\tau = dt/a(t)$, obey the Vlasov equation, $\frac{Df_{\nu_i}}{D\tau} \equiv \frac{\partial f_{\nu_i}}{\partial \tau} + \dot{\boldsymbol{x}} \cdot \frac{\partial f_{\nu_i}}{\partial \boldsymbol{x}} \underbrace{-am_{\nu_i}\nabla\phi}_{\dot{\boldsymbol{x}}} \cdot \frac{\partial f_{\nu_i}}{\partial \boldsymbol{p}} = 0$

Neutrino clustering in cold dark matter halos from ACDM simulations [Singh,Ma '03; **AR, Yvonne Y. Wong, JCAP 0412 (2004) 005 [hep-ph/0408241]**]

- In context of flat ΛCDM model, neutrino component \approx perturbation
 - \Rightarrow CDM component ρ_m dominates in gravitational potential ϕ \Rightarrow Study clustering in ρ_m profiles from Λ CDM N-body simulations
- Neutrino phase space distributions $f_{\nu_i}(\boldsymbol{x}, \boldsymbol{p}, \tau)$, depending on $\boldsymbol{x} = \boldsymbol{r}/a(t)$, $\boldsymbol{p} = am_{\nu_i}\dot{\boldsymbol{x}}$, $d\tau = dt/a(t)$, obey the Vlasov equation, $\frac{Df_{\nu_i}}{D\tau} \equiv \frac{\partial f_{\nu_i}}{\partial \tau} + \dot{\boldsymbol{x}} \cdot \frac{\partial f_{\nu_i}}{\partial \boldsymbol{x}} \underbrace{-am_{\nu_i}\nabla\phi}_{\dot{\boldsymbol{x}}} \cdot \frac{\partial f_{\nu_i}}{\partial \boldsymbol{p}} = 0$
- Poisson equation

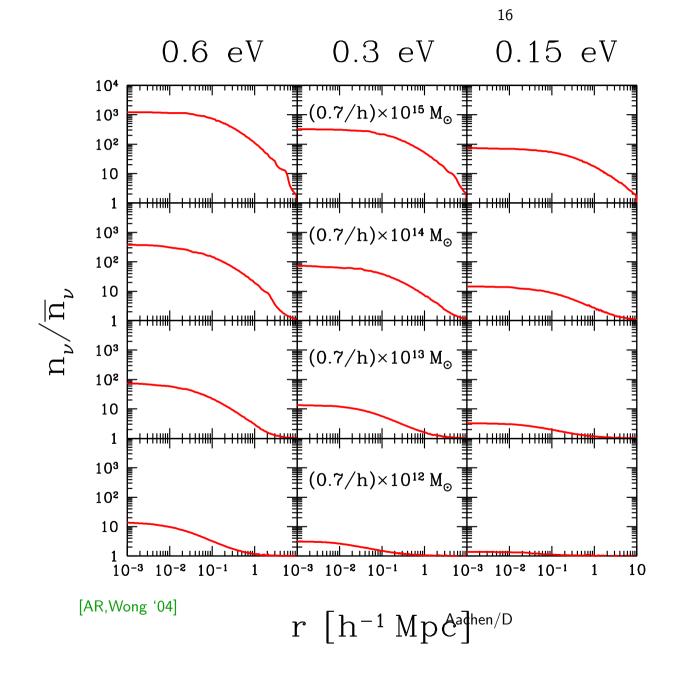
$$\nabla^2 \phi = 4\pi G a^2 \underbrace{\left(\rho_m(\boldsymbol{x},\tau) - \overline{\rho}_m(\tau)\right)}_{\delta_m(\boldsymbol{x},\tau) \, \overline{\rho}_m(\tau)}$$

relates ϕ to density fluctuation δ_m with respect to physical mean $\bar{\rho}_m$

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

• Use Navarro Frenk White CDM halo profiles,

$$\rho_m(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$$

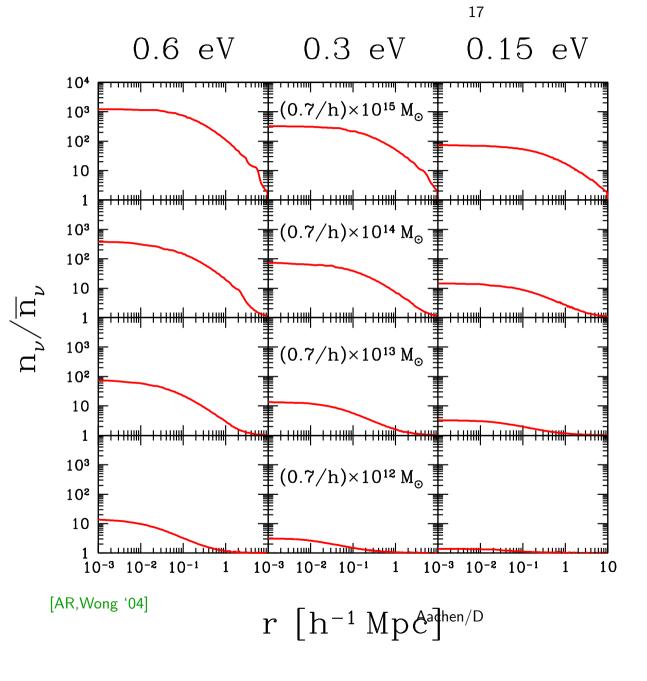


Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

• Use Navarro Frenk White CDM halo profiles,

$$\rho_m(r) = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2}$$

• Find improved clustering for big $M_{\rm vir}$ and/or m_{ν} :

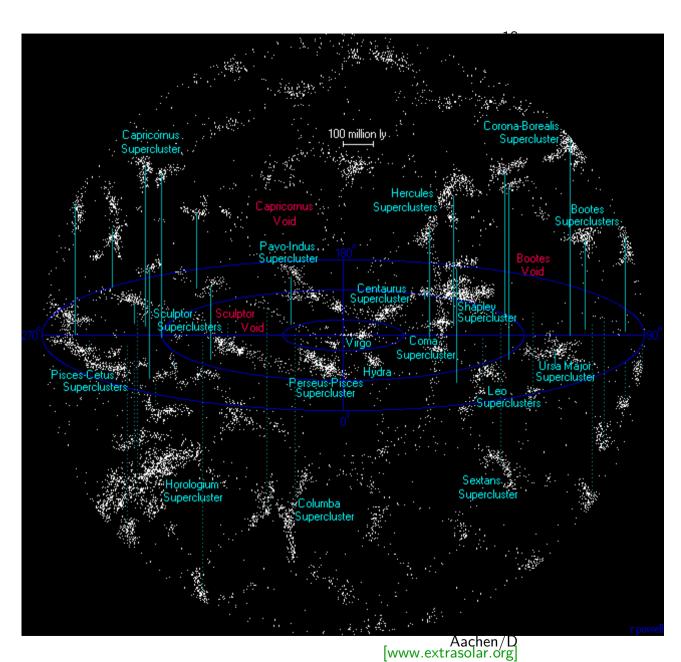

A. Ringwald (DESY)

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

• Use Navarro Frenk White CDM halo profiles,

$$\rho_m(r) = rac{
ho_s}{(r/r_s)(1+r/r_s)^2}$$

- Find improved clustering for big $M_{\rm vir}$ and/or m_{ν} :
 - Superclusters (10^{15} M_{\odot}): $n_{
 u}/ar{n}_{
 u}pprox 10^{2-3}$

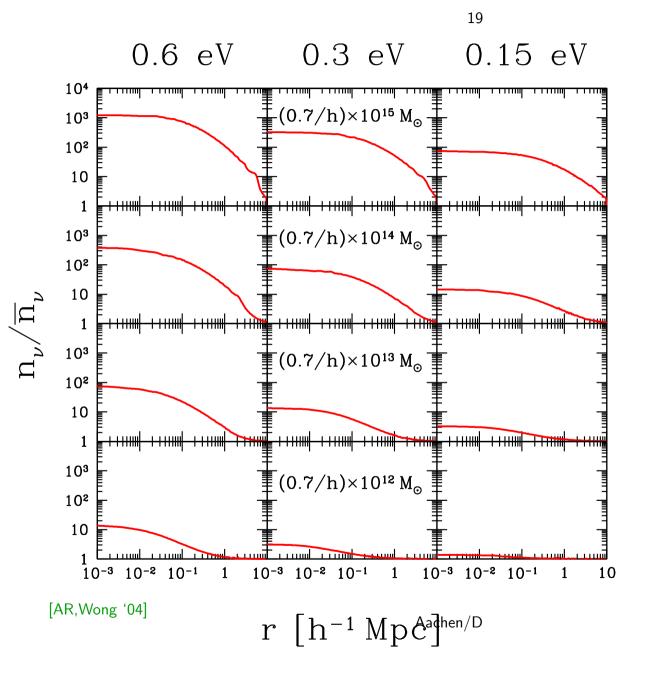

A. Ringwald (DESY)

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

 Use Navarro Frenk White CDM halo profiles,

$$\rho_m(r) = rac{r_s}{(r/r_s)(1+r/r_s)^2}$$

- Find improved clustering for big $M_{\rm vir}$ and/or m_{ν} :
 - Superclusters (10^{15} M_{\odot}): $n_{
 u}/ar{n}_{
 u}pprox 10^{2-3}$

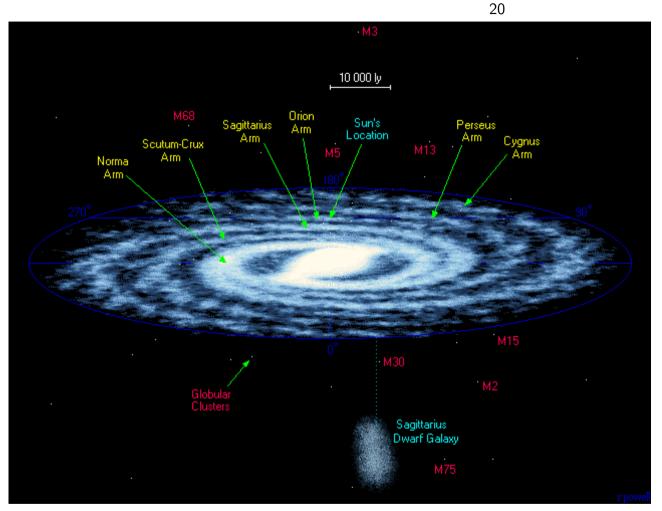

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

• Use Navarro Frenk White CDM halo profiles,

 $\rho_m(r) = rac{
ho_s}{(r/r_s)(1 + r/r_s)^2}$

- Find improved clustering for big $M_{\rm vir}$ and/or m_{ν} :
 - Superclusters (10^{15} M_{\odot}): $n_{
 u}/ar{n}_{
 u}pprox 10^{2-3}$
 - Galaxies ($10^{12} M_{\odot}$):

 $n_
u/ar{n}_
u pprox 1-20$

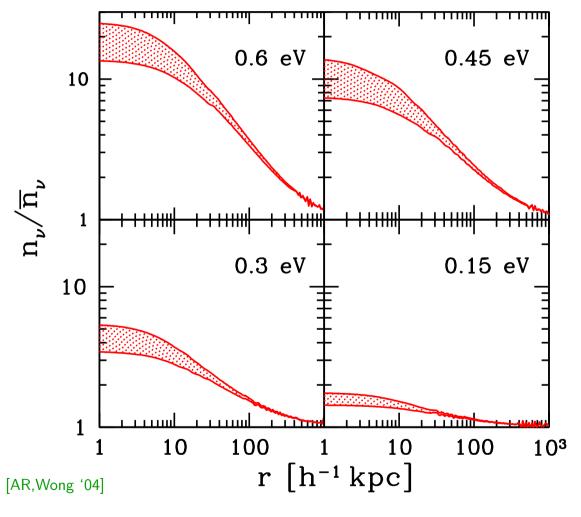

A. Ringwald (DESY)

Comparative analysis for various $\{m_{
u}, M_{
m vir}\}$:

 Use Navarro Frenk White CDM halo profiles,

$$\rho_m(r) = rac{r_s}{(r/r_s)(1 + r/r_s)^2}$$

- Find improved clustering for big $M_{\rm vir}$ and/or m_{ν} :
 - Superclusters (10^{15} M_{\odot}): $n_{
 u}/ar{n}_{
 u}pprox 10^{2-3}$
 - Galaxies (10^{12} $_{M_{\odot}}$): $n_{
 u}/ar{n}_{
 u}pprox 1-20$

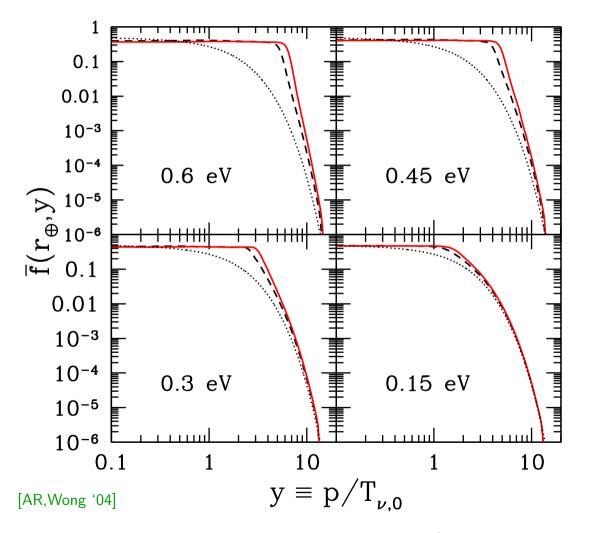

[www.extrasolar.org]

A. Ringwald (DESY)

 $\mathsf{Aachen}/\mathsf{D}$

Relic neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8 \text{ kpc}$):

• Overdensity $\approx 1-20$


Aachen/D

Relic neutrinos in neighbourhood of Earth ($r_{\oplus} \approx 8 \text{ kpc}$):

- Overdensity $\approx 1-20$
- Momentum distribution:
 - almost isotropic
 - flat at low momenta
 - turning point at \simeq

$$p_{\rm esc} \equiv m_{\nu} v_{\rm esc} \equiv m_{\nu} \sqrt{2|\phi(r_{\oplus})|}$$

 matches Fermi-Dirac at high momenta

A. Ringwald (DESY)

Aachen/D

2. How to detect?

- Gravitational clustering of relic neutrinos significant for their detection?
- Consider detection methods based on **scattering processes**, involving the relic neutrinos either as a **beam** or as a **target**:
 - Coherent elastic scattering of the relic neutrino flux off target matter in a terrestrial detector (flux detection)
 - Scattering of extremely energetic particles (accelerator beams or cosmic rays) off the relic neutrinos as a target (target detection)

Flux detection

 Low average momentum of relic neutrinos corresponds to a (reduced) de Broglie wavelength of macroscopic dimension,

 $\dot{\mathbf{x}} = 1/\langle p \rangle = 0.12 \ \mathrm{cm}/\langle y \rangle$

 \Rightarrow Envisage scattering processes in which many target atoms act coherently over a macroscopic volume $\lambda^3 \Rightarrow$ elastic scattering rate enhanced by

$$\frac{N_A}{A} \rho_{\rm t} \, \dot{\lambda}^3 \simeq 6 \times 10^{18} \, \left(\frac{100}{A}\right) \left(\frac{\rho_{\rm t}}{\rm g/cm^3}\right) \left(\frac{\dot{\lambda}}{0.1 \, \rm cm}\right)^3$$

compared to case where neutrinos are elastically scattered coherently only on the individual nuclei of the target [Shvartsman *et al.* '82; Smith,Lewin '83]

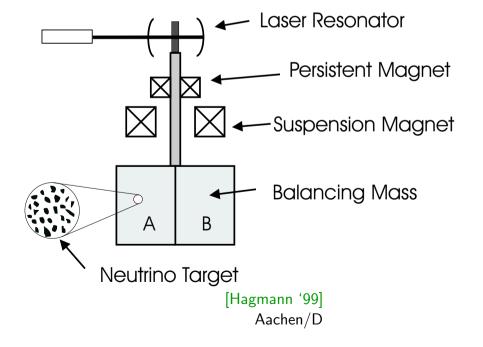
 Test body will experience neutrino wind force through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer}$$
$$\simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{g/{\rm cm}^3}\right) \left(\frac{r_{\rm t}}{\lambda}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

• Test body will experience **neutrino wind force** through random neutrino scattering:


[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \ transfer} \\ \simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{{\rm g/cm^3}}\right) \left(\frac{r_{\rm t}}{\chi}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

• At present, smallest measurable acceleration $\gtrsim 10^{-13} \text{ cm/s}^2$, using conventional **Cavendish-type torsion balance**. Improvements to $\gtrsim 10^{-23} \text{ cm/s}^2$ proposed

[Hagmann '99]

• Test body will experience **neutrino wind force** through random neutrino scattering:

[Shvartsman et al. '82; Smith,Lewin '83; ...; Duda et al. '01]

$$a_{\rm t} \simeq \sum_{\nu,\bar{\nu}} \underbrace{n_{\nu} v_{\rm rel}}_{\rm flux} \frac{4\pi}{3} N_A^2 \rho_{\rm t} r_{\rm t}^3 \sigma_{\nu N} \underbrace{2 m_{\nu} v_{\rm rel}}_{\rm mom. \, transfer}$$
$$\simeq 2 \times 10^{-28} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{10^{-3} c}{v_{\rm rel}}\right) \left(\frac{\rho_{\rm t}}{g/{\rm cm}^3}\right) \left(\frac{r_{\rm t}}{\chi}\right)^3 \frac{{\rm cm}}{{\rm s}^2}$$

[Hagmann '99]

Majorana neutrinos: suppressed by factor $(v_{
m rel}/c)^2$

- At present, smallest measurable acceleration $\gtrsim 10^{-13}$ cm/s², using conventional Cavendish-type torsion balance. Improvements to $\gtrsim 10^{-23}$ cm/s² proposed
- ⇒ Detection possible in 30-40 years, if neutrinos are Dirac particles [Smith '03]

	$\frac{n_{\nu}}{\bar{n}_{\nu}}$	$\lambda = \frac{1}{\langle p \rangle}$	$\langle v angle$
MWnow			
$m_{\nu} =$			
0.6 eV	20	$2.3 imes 10^{-2}$ cm	1.4×10^{-3}
$0.45~{\rm eV}$	10	$2.9 imes10^{-2}$ cm	1.5×10^{-3}
$0.3 \ \mathrm{eV}$	4.4	$3.7 imes10^{-2}~{ m cm}$	1.8×10^{-3}
$0.15 \ \mathrm{eV}$	1.6	$4.1 imes 10^{-2}$ cm	3.2×10^{-3}
NFWhalo			
$m_{\nu} =$			
0.6 eV	12	$2.7 imes10^{-2}~{ m cm}$	1.2×10^{-3}
$0.45~{\rm eV}$	6.4	$3.4 imes 10^{-2}$ cm	1.3×10^{-3}
$0.3 \ \mathrm{eV}$	3.1	$3.9 imes 10^{-2}$ cm	1.7×10^{-3}
$0.15 \ \mathrm{eV}$	1.4	$5.9 imes10^{-2}~{ m cm}$	2.2×10^{-3}

A. Ringwald (DESY)

Aachen/D

Target detection

• For center-of-mass energies below W- and Z-resonances, cf.

$$\sqrt{2 m_{\nu} E} \simeq 4.5 \left(\frac{m_{\nu}}{\text{eV}}\right)^{1/2} \left(\frac{E}{10 \text{ TeV}}\right)^{1/2} \text{MeV}$$

weak interaction cross sections grow rapidly with energy

- $\Rightarrow\,$ Exploit a flux of extremely energetic particles
 - accelerator beams
 - from cosmic rays

for scattering on relic neutrinos as target

Exploit accelerator beams:

• Scattering rate [B. Müller '87; Melissinos '99, Weiler '01]

$$R_{\nu \frac{A}{Z}N} \simeq \sum_{\nu,\bar{\nu}} n_{\nu} \sigma_{\nu \frac{A}{Z}N} L I/(Z e)$$

$$\simeq 2 \times 10^{-8} \left(\frac{n_{\nu}}{\bar{n}_{\nu}}\right) \left(\frac{m_{\nu}}{eV}\right) \frac{A^{2}}{Z} \left(\frac{E_{N}}{10 \text{ TeV}}\right) \left(\frac{L}{100 \text{ km}}\right) \left(\frac{I}{0.1 \text{ A}}\right) \text{ yr}^{-1}$$

 $\Rightarrow \text{ Too small to give rise to an observable effect}$ in the foreseeable future (LHC, VLHC)

⇒ Need Ultimate Large Hadron Collider

- Few elastic scattering events per year; hard to detect, due to small momentum transfers ($\sim 1 \text{ GeV}$ at $E_N \sim 10^7 \text{ TeV}$)
- Alternative: exploit inverse beta decay

$${}^{A}_{Z}N + \nu_{e} \rightarrow {}^{A}_{Z+1}N + e^{-}$$

$$\Rightarrow$$
 detect ${}^{A}_{Z+1}N$ on exit of machine

A. Ringwald (DESY)

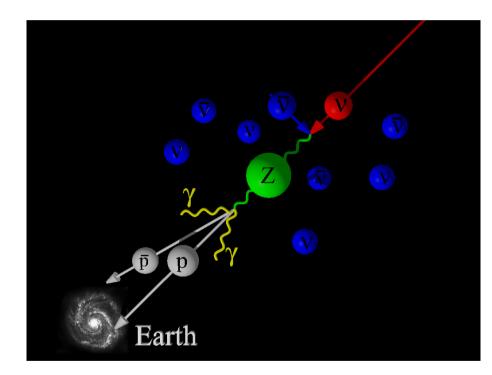
[Melissinos '99; Zavattini unpubl]

accel.	N	E_N	L	Ι	$\frac{R_{\nu A}}{\left[\frac{n_{\nu}}{\bar{n}_{\nu}}\frac{m_{\nu}}{\text{eV}}\right]}$
		[TeV]	[km]	[A]	[yr ⁻¹]
LHC	p	7	26.7	0.6	2×10^{-8}
_	Pb	574	26.7	0.006	1×10^{-5}
VLHC	p	87.5	233	0.06	2×10^{-7}
	Pb	7280	233	0.0006	1×10^{-4}
ULHC	p	10^{7}	40000	0.1	10

Aachen/D

Exploit cosmic rays:

 Before ULHC: target detection only via extremely energetic cosmic rays

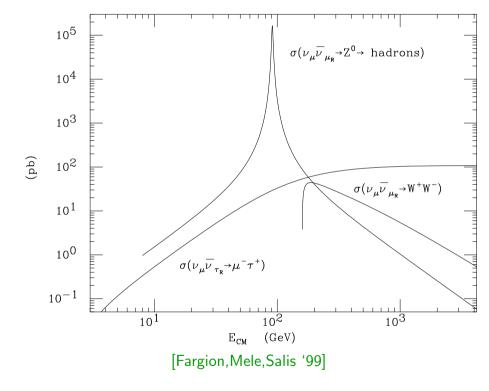

Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHEC ν)

$$E_{\nu}^{\mathrm{res}} = rac{m_Z^2}{2m_{
u}} \simeq 4 imes 10^{21} \left(rac{\mathrm{eV}}{m_{
u}}
ight) \,\,\mathrm{eV}$$

with relic $\bar{\nu}$ into Z-bosons

[Weiler '82]


Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHEC ν)

$$E_{\nu}^{\mathrm{res}} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \left(\frac{\mathrm{eV}}{m_{\nu}}\right) \mathrm{eV}$$

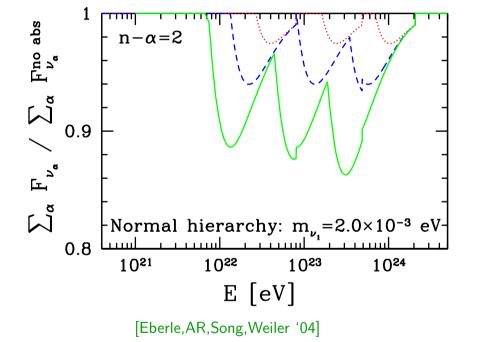
with relic $\bar{\nu}$ into Z-bosons

[Weiler '82]

Exploit cosmic rays:

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHECv)

$$E_{\nu}^{\mathrm{res}} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \left(\frac{\mathrm{eV}}{m_{\nu}}\right) \mathrm{eV}$$

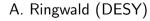

with relic $\bar{\nu}$ into **Z**-bosons

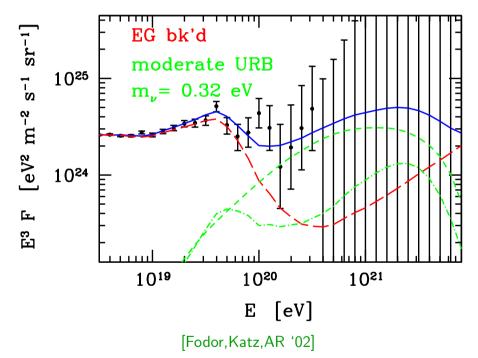
[Weiler '82]

Absorption dips in ${\sf EHEC}\nu$ spectrum

[Weiler'82;...;Eberle,AR,Song,Weiler'04;Barenboim,Requejo,Quigg'04]

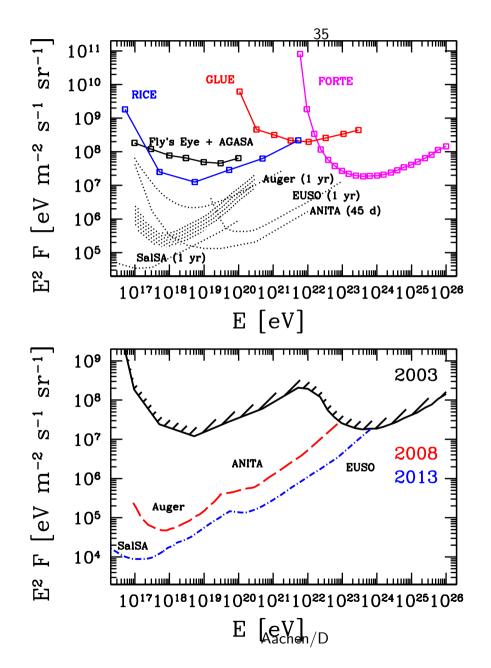
Exploit cosmic rays:

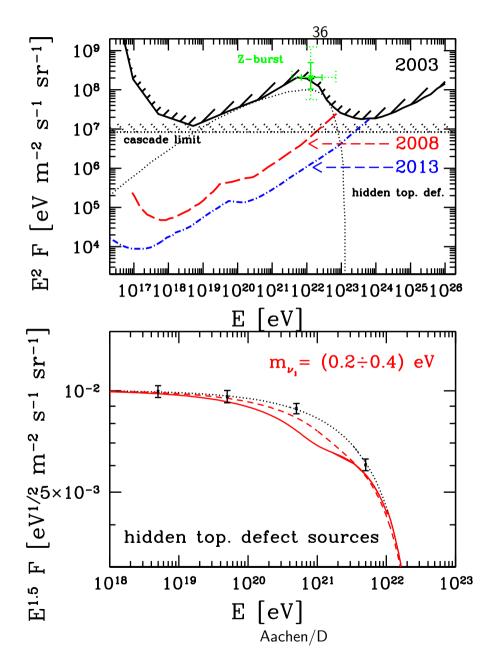

- Before **ULHC**: target detection only via extremely energetic cosmic rays
- Unique: resonant annihilation of extremely energetic cosmic neutrinos (EHECv)


$$E_{\nu}^{\rm res} = \frac{m_Z^2}{2m_{\nu}} \simeq 4 \times 10^{21} \left(\frac{\rm eV}{m_{\nu}}\right) \ \rm eV$$

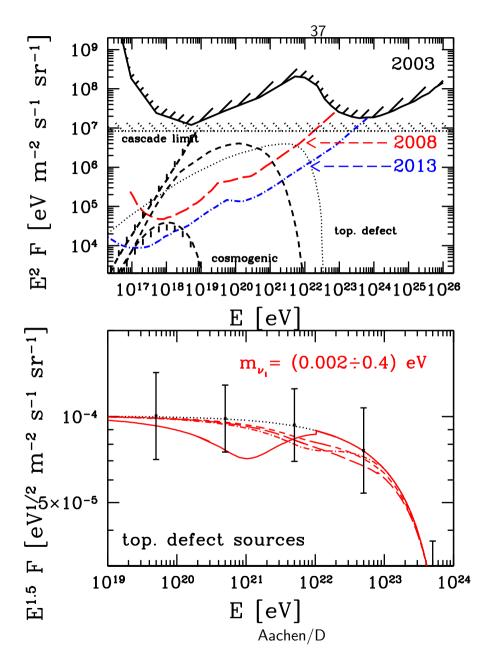
with relic $\bar{\nu}$ into **Z**-bosons

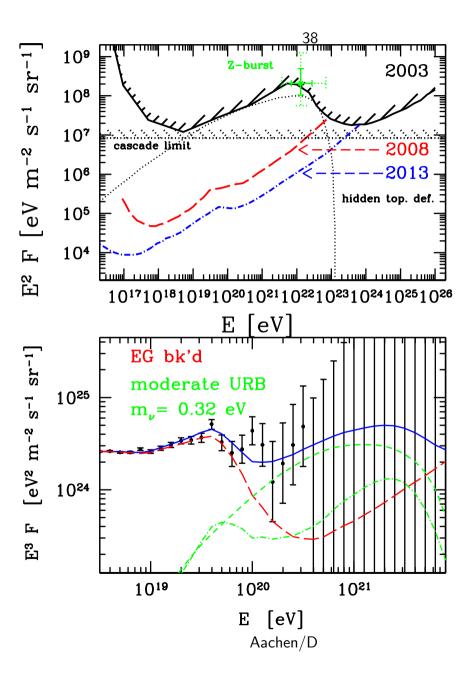
[Weiler '82]


♦ Absorption dips in EHEC ν spectrum [Weiler '82;...; Eberle, AR, Song, Weiler '04]
♦ Emission features (Z-bursts): [Fargion et al. '99; Weiler '99;...; Fodor, Katz, AR '01, '02]
protons and photons with energies above the predicted Greisen–Zatsepin–Kuzmin (GZK) cutoff at $E_{GZK} \simeq 4 \times 10^{19}$ eV [Greisen '66; Zatsepin, Kuzmin '66]

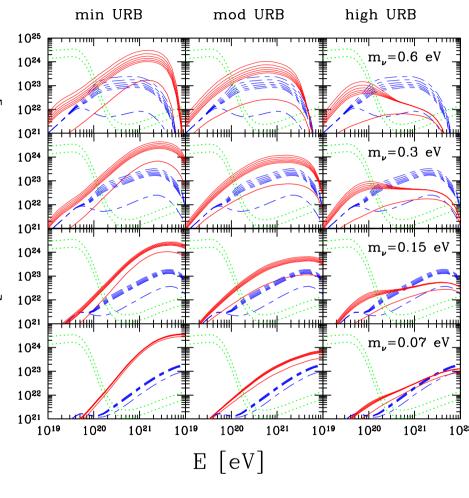


Absorption spectroscopy: [Eberle, AR, Song, Weiler '04]


 Presently planned EHEC
 v detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided


- Presently planned EHEC
 it detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - $\Leftrightarrow \begin{array}{l} \textbf{EHEC} \nu \ \text{flux at resonant energies close} \\ \text{to current observational bounds} \end{array}$
 - \diamond neutrino mass sufficiently large, $m_{
 u} \gtrsim 0.1 \text{ eV}$

- Presently planned EHEC
 v detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - $\diamondsuit \ \mathsf{EHEC}\nu \ \mathsf{flux} \ \mathsf{at} \ \mathsf{resonant} \ \mathsf{energies} \ \mathsf{close} \\ \mathsf{to} \ \mathsf{current} \ \mathsf{observational} \ \mathsf{bounds} \\ \end{aligned}$
 - \diamond neutrino mass sufficiently large, $m_{\nu} \gtrsim 0.1 \text{ eV}$

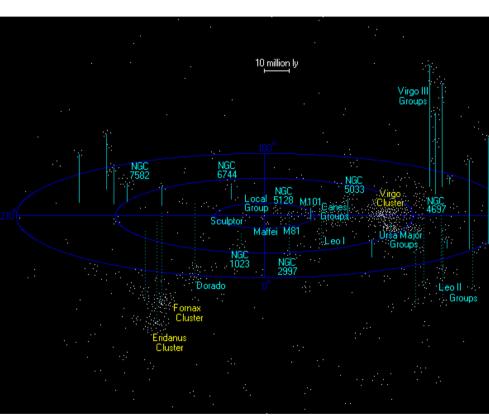


- Presently planned EHECv detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - EHEC ν flux at resonant energies close to current observational bounds
 - neutrino mass sufficiently large, $m_{
 u} \gtrsim 0.1 \ {\rm eV}$
- In this case, the associated Z-bursts likely to be seen as post-GZK events at the planned cosmic ray detectors

Absorption spectroscopy: [Eberle, AR, Song, Weiler '04]

- Presently planned EHEC ν detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino 'n absorption spectroscopy, provided
 - **EHEC** ν flux at resonant energies close γ to current observational bounds
 - large, 🂫 – neutrino sufficiently mass $m_{\nu} \gtrsim 0.1 \text{ eV}$
- In this case, the associated Z-bursts likely to be seen as post-GZK events at the planned cosmic ray detectors , with significant rate enhancement from direction of nearby Virgo cluster

[AR,Weiler,Wong '05]


 $\overline{\mathbf{v}}$

Н

БЦ

Aachen/D

- Presently planned EHEC
 v detectors appear to be sensitive enough to lead us, within the next decade, into an era of relic neutrino absorption spectroscopy, provided
 - EHEC ν flux at resonant energies close to current observational bounds
 - neutrino mass sufficiently large, $m_{
 m u}\gtrsim 0.1~{
 m eV}$
- In this case, the associated Z-bursts likely to be seen as post-GZK events at the planned cosmic ray detectors, with significant rate enhancement from direction of nearby Virgo cluster

3. Conclusions

- **BBN** and **CMB** provide presently the only evidence for the $C\nu B$
- Roadmap for Big Bang Relic Neutrino Detection

A more more direct, weak interaction based detection of the big bang relic neutrinos may proceed by measuring

- Z-bursts in cosmic ray and absorption dips in cosmic neutrino spectra Remarks: not guaranteed (need ν flux at resonance energies); now!
- coherent elastic scattering of relic ν 's off nucleons in terrestrial detector Remarks: current technology 3 orders of magnitude off; > 30 yr?
- interactions of very high energy particles from terrestrial accelerator beams with the relic neutrinos as target Remarks: need ULHC;