Channels & Challenges – New Physics at LHC

Jürgen Reuter

Carleton University, Ottawa

Southampton, 15. January 2007

The success of the Standard Model

Standard Model describes microcosm

gauge interactions:

- strong
- electroweak broken to electromagnetic

Higgs mechanism

Measurement Fit m₂ (GeV) 91.1875 ± 0.0021 91,1874 Γ₇ [GeV] 2.4952 ± 0.0023 2.4957 σ⁰_{bod} [nb] 41.540 ± 0.037 41.477 20.767 ± 0.025 20 744 R, A^{0,I} 0.01714 ± 0.00095 0.01640 A(P_) R R A A A A 0.21629 ± 0.00066 0.21585 0.1722 0.1721 ± 0.0030 0 1037 0.0992 ± 0.0016 0.0741 0.0707 ± 0.0035 0.923 ± 0.020 0.935 0.670 ± 0.027 0.668 0.1513 ± 0.0021 0.1479 m., (GeV 80.392 ± 0.029 80.371 Fw [GeV] 2.147 ± 0.060 2.091 m, [GeV] 171.7 171.4 ± 2.1 0 2

Standard Model tested better than 1 % No significant deviations found since 1970s

Theory and Experiment agree

Why New Physics?

- ? Electroweak Symmetry Breaking, Higgs
- ? Dark Matter: $m_{DM} \sim 100 \, {\rm GeV}$
- ? 28 free parameters
- ? 3 families
- ? unification, gravity

Hierarchy/Fine-Tuning Problem

Quantum corrections to Higgs mass are sensitive for cut-off $\boldsymbol{\Lambda}$

 $\delta M_{H}^{2} \propto \Lambda^{2}$

Protective Symmetry ?

Why New Physics?

- ? Electroweak Symmetry Breaking, Higgs
- ? Dark Matter: $m_{DM} \sim 100 \, {\rm GeV}$
- ? 28 free parameters
- ? 3 families
- ? unification, gravity

Hierarchy/Fine-Tuning Problem

Quantum corrections to Higgs mass are sensitive for cut-off $\boldsymbol{\Lambda}$

 $\delta M_{H}^{2} \propto \Lambda^{2}$

Protective Symmetry ?

Supersymmetry

Spin-statistics: Corrections from bosons and fermions cancel

connects gauge and space-time symmetries

multiplets of equal-mass fermions & bosons \Rightarrow SUSY broken

 M_H protected to all orders

embedded in grand unified theory

R-parity: dark matter

Little Higgs

Global symmetries: Corrections from like-statistics particles cancel

Higgs: Goldstone-Boson of spontan. broken global symmetry

collective breaking of global symmetries protects Higgs mass

 M_H protected at first order

strongly interacting @10 TeV

T-parity: dark matter

Characteristics of Standard Model Extensions

<u>Scale Λ </u>: "hidden sector", symmetry breaking

Scale F: new particles

<u>Scale v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Rich spectrum of new particles @ Terascale, complicated decay structures

Constraints on new models?

Flavour structure: Meson mixing & rare decay modes. CP violation Astrophysical constraints: relic abundance Gauge structure: electroweak precision observables

Constraints on new models?

Flavour structure: Meson mixing & rare decay modes, CP violation Astrophysical constraints: relic abundance Gauge structure: electroweak precision observables

New particle scale $F \gtrsim 1 - 3$ TeV

Direct Searches: Large Hadron Collider

LHC @ CERN: from 2007/08 pp collider $\sqrt{s} = 14 \,\text{TeV}$

The Challenge of LHC

Partonic subprocesses: *qq*, *qg*, *gg* No fixed partonic energy

High event rates for $t, W/Z, H, \Rightarrow$ huge backgrounds

Cuts for background reduction

The Challenge of LHC

Partonic subprocesses: *qq*, *qg*, *gg* No fixed partonic energy

High event rates for $t, W/Z, H, \Rightarrow$ huge backgrounds

Cuts for background reduction

New Physics: Observables/Precision Measurements

Signals for New Physics: E_T , high- p_T jets, many hard leptons, but: Which model?

- Cascade decays: mass differences from endpoints of decay spectra
- Spin of new particles: Angular distribution, ...
- Determining the model: Measurement of coupling constants
- ⇒ Precise prediction for signal and background
 - Consideration of cuts

Distributions: $d\sigma/dX$, $X = \cos \theta, \eta, p_T, \dots$

- Multi-particle final states: $2 \rightarrow 4$ bis $2 \rightarrow 10$
- Quantum corrections: real and virtual

Simulations: O'Mega Ω / Whizard \checkmark

Matrix Element Generator O'Mega:

Ohl, 2000/01; M.Moretti/Ohl/JR, 2001

Multi-purpose Event Generator Whizard:

- Ohl, 1996; Kilian, 2000; Kilian/Ohl/JR, 2007
- Multi-Channel adaptive Monte-Carlo integration
- very well tested

JR et al., 2006; Hagiwara/.../Krauss/Plehn/JR/..., 2006

Virtual Corrections: NLO Monte Carlo

NLO MC for $e^+e^- o {\tilde \chi}^+_1 {\tilde \chi}^-_1$ Kilian/JR/Robens, 2006

Arbitrary distributions @ NLO

Sbottom production at LHC

Hagiwara/..., JR/..., 2006

$$ilde{b}_1$$
 production with subsequent decay $ilde{b}_1 o ilde{\chi}_1^0 b$

Process $A_1A_2 \rightarrow P^{(*)} \rightarrow F_1F_2$, 3 different levels:

Narrow Width $\sigma(A_1A_2 \rightarrow P) \times \mathsf{BR}(P \rightarrow F_1F_2)$ Breit-Wigner $\sigma(A_1A_2 \rightarrow P) \times \frac{M_P^2\Gamma_P^2}{(s-M_P^2)^2 + \Gamma_P^2M_P^2} \times \mathsf{BR}(P \rightarrow F_1F_2)$ Full matrix element $\sigma(A_1A_2 \rightarrow F_1F_2)$

 $pp \rightarrow b \bar{b} \tilde{\chi}_1^0 \tilde{\chi}_1^0$ Main background: $gg \rightarrow b \bar{b} \nu \bar{\nu}$

Signal jets harder

Off-Shell effects at LHC:

PS: Harder jet more central

Off-Shell effects $(b\overline{b}Z^*)$: only for low $p_{T,b} \longrightarrow$ is cut out

Not generally guaranteed

Prozeß	$\sigma \times BR$ [fb]	BR [fb] σ_{BW} [fb]		
Zh	1.342	1.335	0.009	
HA	0.320	0.314	0.003	
$ ilde{\chi}_1^0 ilde{\chi}_2^0$	13.078	13.954	0.458	
$ ilde{\chi}_1^0 ilde{\chi}_3^0$	3.675	4.828	0.454	
$\tilde{\chi}_1^{\bar{0}}\tilde{\chi}_4^{\bar{0}}$	0.061	0.938	0.937	
$\tilde{b}_1 \tilde{b}_1^*$	0.759	0.757	0.451	
Sum	19.238	22.129	2.314	
Exact		19.624	0.487	

ILC:

 $e^+e^-
ightarrow bar{b} \tilde{\chi}^0_1 \tilde{\chi}^0_1$ [800 GeV] Cuts for $M_{bar{b}}$ eliminate other resonances

Real corrections: bottom-jet radiation

K. Hagiwara/.../JR/..., 2006

 $g \rightarrow b\bar{b}$ -splitting, b-ISR als combinatorial background

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 diagrams, 22 color flows, ~ 4000 PS channels

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb} \longrightarrow \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$

Forward discrimination between ISR and decay-b jets difficult:

Only the most forward b jet considerably softer

Real corrections: bottom-jet radiation

K. Hagiwara/.../JR/..., 2006

- $g \rightarrow b\bar{b}$ -splitting, b-ISR als combinatorial background
- $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 diagrams, 22 color flows, ~ 4000 PS channels
- $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb} \longrightarrow \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$

Only minor differences in $p_{T,b}$, PDF: maximum for smaller value

shifted to smaller p_T : light particles balance out the event

What if not SUSY?

Pseudo-Axions in Little Higgs

- gauged U(1) group: $Z' \longleftrightarrow$ ungauged: η
- couples to fermions like a pseudoscalar
- $-m_n \lesssim 400 \,\mathrm{GeV}$
- SM singlet, couplings to SM particles v/F suppressed
- $-\eta$ axion-like particle:

Kilian/Rainwater/JR, 2004, 2006; JR, 2007

- U(1) explicitly broken \Rightarrow Axion limits from astroparticle physics not applicable

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon fusion, diphoton signal für $m_\eta\gtrsim$ 200 GeV, 7 σ possible

LHC: $T \rightarrow t\eta$ Godfrey/Rainwater/JR

ILC: $e^+e^- \rightarrow t\bar{t}\eta$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon fusion, diphoton signal für $m_\eta\gtrsim$ 200 GeV, 7 σ possible

LHC: $T \to t\eta$ Godfrey/Rainwater/JR

ILC: $e^+e^- \rightarrow t\bar{t}\eta$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon fusion, diphoton signal für $m_\eta\gtrsim$ 200 GeV, 7 σ possible

LHC: $T
ightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^-
ightarrow t ar t\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon fusion, diphoton signal für $m_\eta\gtrsim$ 200 GeV, 7 σ possible

LHC: $T \to t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon fusion, diphoton signal für $m_\eta\gtrsim$ 200 GeV, 7 σ possible

LHC: $T
ightarrow t \eta$ Godfrey/Rainwater/JR ILC: $e^+e^-
ightarrow t ar t \eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon fusion, diphoton signal für $m_\eta\gtrsim$ 200 GeV, 7 σ possible

LHC: $T
ightarrow t\eta$ Godfrey/Rainwater/JR ILC: $e^+e^-
ightarrow t ar t\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Outlook

- LHC: new era of physics
- Higgs mechanism
- New particles, symmetries: SUSY, Little Higgs
- Pheno: precision calculations/simulations of multi-particle final states
- Exciting times ahead!

Outlook

- LHC: new era of physics
- Higgs mechanism
- New particles, symmetries: SUSY, Little Higgs
- Pheno: precision calculations/simulations of multi-particle final states
- Exciting times ahead!
- There is light at the end of the tunnel!

I. Reuter

Ideas for New Physics since 1970

(1) New Ingredients

- Technicolour: Higgs a bound state of strongly-interacting particles

(2) Symmetries for cancellation of quantum corrections

- Supersymmetry: Spin-statistics \Rightarrow corrections from bosons and fermions cancel each other
- Little Higgs models: Global symmetries \Rightarrow corrections from like-statistics particles cancel each other

(3) Nontrivial Space-time structure eliminates hierarchy

- Additional space dimensions: gravity appears only week
- Noncommutative space-time: coarse-grained space-time

(4) Ignoring the Hierarchy

 Anthropic Principle: parameters have their values, *because* we (can) measure them

Constraints on new models?

- Flavour structure: K, D, B mixing, rare K, D, B decay modes
- CP violation: CP asymmetries, electric dipole moments
- Astrophysical constraints: relic abundance
- Gauge structure: electroweak precision observables

Constraints on new models?

Tree-Level mixing Z, Z' induces big corrections

Scale $F \gtrsim 1 - 3$ TeV

Higgs compensates for Z'

Naturally heavy Higgs in Little Higgs Models Kilian/JR, 2003 \Rightarrow

Tests and Checks: Example MSSM

JR et al., 2005; K. Hagiwara/W. Kilian/F. Krauss/T. Ohl/T. Plehn/D. Rainwater/JR/S. Schumann, 2006

- MSSM: spectrum doubled, 100 parameters, 5000 vertices
 - Implementation enforces tests and consistency checks
- Unitarity check: $\sigma(2 \rightarrow 2, s), \sigma(2 \rightarrow 3, s) \sim const$ or 1/s
- Gauge invariance: Ward- and Slavnov-Taylor identities
- Supersymmetry: Ward-/Slavnov-Taylor identities 🗸 JR, 2002; OhIJR, 2002
- Comparison of independent codes ($\mathcal{O}(600)$ processes): JR et al., 2005;

K. Hagiwara/.../JR/..., 2006

Reference:

http://www-ttp.physik.uni-karlsruhe.de/~reuter/susy_comparison.html

$ff \to X$									
Process	stat.	Madgraph/Helas		Whizard/O'Mega		Sherpa/A'Megic			
		0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV		
$uu \rightarrow \tilde{u}_L \tilde{u}_L$		_	716.9(1)	—	716.973(4)	—	716.99(4)		
$uu \rightarrow \tilde{u}_R \tilde{u}_R$	•	_	679.6(1)	_	679.627(4)	_	679.54(4)		
$uu \rightarrow \tilde{u}_L \tilde{u}_R$	•	—	1212.52(6)	—	1212.52(5)	_	1212.60(6)		
$dd \rightarrow \tilde{d}_L \tilde{d}_L$	•	_	712.6(1)	—	712.668(4)	—	712.68(4)		
$dd \rightarrow \tilde{d}_R \tilde{d}_R$	•	—	667.4(1)	—	667.448(4)	—	667.38(3)		
$dd \rightarrow \tilde{d}_L \tilde{d}_R$	•	—	1206.22(6)	_	1206.22(5)	-	1206.30(7)		

Gauge couplings run: $\frac{dg_a}{d \log \mu} = \frac{g_a^3}{16\pi^2} B_a$, B_a depends on field content

Sparticles make couplings unify

e.g.: $SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y$

Doublet-triplet splitting problem: Proton decay by Higgs partner *D*

Gauge couplings run: $\frac{dg_a}{d\log \mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a depends on field content

Sparticles make couplings unify e.g.: $SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y$

Doublet-triplet splitting problem: Proton decay by Higgs partner *D*

 $Dqq, D\ell q$

Gauge couplings run: $\frac{dg_a}{d\log \mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a depends on field content

Sparticles make couplings unify e.g.: $SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y$

Doublet-triplet splitting problem: Proton decay by Higgs partner *D*

Dqq, $D\ell q$

Kilian/JR, 2006

Gauge couplings run: $\frac{dg_a}{d \log \mu} = \frac{g_a^3}{16\pi^2} B_a$, B_a depends on field content

Sparticles make couplings unify

e.g.: $SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y$

Dqq, $D\ell q$ Kilian/JR, 2006

Extended MSSM Higgs sector

- relaxed Higgs bounds (light pseudoscalars)
- possibly large invisible decay ratio
- ► lightest unhiggs: *H* parity protected dark matter
- dark matter mix: interesting relic abundance (relaxes all neutralino bounds!)
- Pair production of unhiggses/unhiggsinos, cascade decays

Gauge couplings run: $\frac{dg_a}{d \log \mu} = \frac{g_a^3}{16\pi^2} B_a$, B_a depends on field content

- 3 generations at TeV scale
- produced in gluon fusion, single production
- final states: $t\tau, b\nu_{\tau}, \tilde{t}\tau, \dots$
- ▶ if flavor symmetry leaves traces: $gq \rightarrow D\ell$ enhanced, decays $t\mu, te$

Extended neutralino sector like in NMSSM