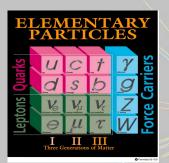
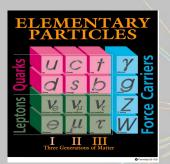
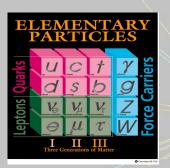

New Physics at the LHC and the ILC

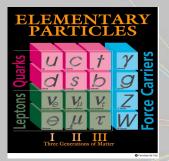
Jürgen Reuter

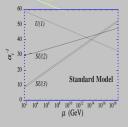
DESY, Hamburg

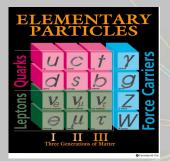

Swindon, 01.Feb.2006


 Standard Model provides concise picture of the microcosm


- Standard Model provides concise picture of the microcosm
- Never completely confirmed: Mechanism of Electroweak Symmetry breaking, scalar Higgs particle ?
- Neutrino masses: Part of SM or not?

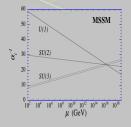

- Standard Model provides concise picture of the microcosm
- Never completely confirmed: Mechanism of Electroweak Symmetry breaking, scalar Higgs particle ?
- Neutrino masses: Part of SM or not?
- Picture is not complete!


- Standard Model provides concise picture of the microcosm
- Never completely confirmed: Mechanism of Electroweak Symmetry breaking, scalar Higgs particle ?
- Neutrino masses: Part of SM or not?
- Picture is not complete!
- Loose Ends: Cold Dark Matter, Gravity ?, Quantum Stability of Scalar Particles? 28 free parameters?



- Standard Model provides concise picture of the microcosm
- Never completely confirmed: Mechanism of Electroweak Symmetry breaking, scalar Higgs particle ?
- Neutrino masses: Part of SM or not?
- Picture is not complete!

- Loose Ends: Cold Dark Matter, Gravity ?, Quantum Stability of Scalar Particles? 28 free parameters?
- Grand Unification? Hierarchies?



- Standard Model provides concise picture of the microcosm
- Never completely confirmed: Mechanism of Electroweak Symmetry breaking, scalar Higgs particle ?
- Neutrino masses: Part of SM or not?
- Picture is not complete!

- Loose Ends: Cold Dark Matter, Gravity ?, Quantum Stability of Scalar Particles? 28 free parameters?
- Grand Unification? Hierarchies?

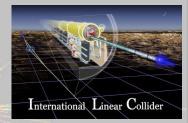
Experiments:

Neutrino, flavour, cosmic ray experiments

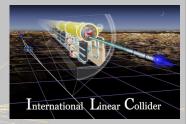
L Beuter

New Developments – Theory and Experiment

Experiments:


- Neutrino, flavour, cosmic ray experiments
- "High Energy Frontier"
 Collider Experiments: Tevatron (pp̄, 1.96 TeV), LHC (pp, 14 TeV), ILC (e⁺e⁻, 1 TeV), CLIC (e⁺e⁻, 3-5 TeV)

Experiments:

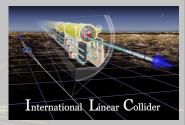

- Neutrino, flavour, cosmic ray experiments
- "High Energy Frontier"
 Collider Experiments: Tevatron (pp̄, 1.96 TeV), LHC (pp, 14 TeV), ILC (e⁺e⁻, 1 TeV), CLIC (e⁺e⁻, 3-5 TeV)

Experiments:

- Neutrino, flavour, cosmic ray experiments
- "High Energy Frontier"
 Collider Experiments: Tevatron (pp̄, 1.96 TeV), LHC (pp, 14 TeV), ILC (e⁺e⁻, 1 TeV), CLIC (e⁺e⁻, 3-5 TeV)

Theory:

Supersymmetry: Symmetry between bosons and fermions


Wess/Zumino, '74; Dimopoulos/Georgi, '81

- Extra Dimensions Arkani-Hamed/Dimopoulos/Dvali, '00
- Little Higgs Models: new strong interactions @ TeV scale Arkani-Hamed et al., '01

Experiments:

- Neutrino, flavour, cosmic ray experiments
- "High Energy Frontier"
 Collider Experiments: Tevatron (pp̄, 1.96 TeV), LHC (pp, 14 TeV), ILC (e⁺e⁻, 1 TeV), CLIC (e⁺e⁻, 3-5 TeV)

Theory:

Supersymmetry: Symmetry between bosons and fermions

Wess/Zumino, '74; Dimopoulos/Georgi, '81

- Extra Dimensions Arkani-Hamed/Dimopoulos/Dvali, '00
- Little Higgs Models: new strong interactions @ TeV scale Arkani-Hamed et al., '01

Generically: New particles/interactions at the TeV scale, rich phenomenology

Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

Noncommutative Geometries Resolving power: Polarization, Astrophysical bounds Ohi/JR, '04; Ohi/Pās/JR, in prep.

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR/Rainwater, (04): Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.

Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.

- Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.
- Extra Dimensions Plehn/JR, in prep.
- Model-Independent Searches
 Deviations from Standard Model observables

Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

Noncommutative Geometries

Resolving power: Polarization, Astrophysical bounds Oh/JR, '04; Oh/Päs/JR, in prep.

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR, '03; Kilian/JR/Rainwater, (04); Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.

Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.

- Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.
- Extra Dimensions Plehn/JR, in prep.
- Model-Independent Searches
 Deviations from Standard Model observables

Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

Noncommutative Geometries Resolving power: Polarization, Astrophysical bounds Ohi/JR, '04; Ohi/Pās/JR, in prep.

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR/Rainwater, (04); Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.

Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.

- Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.
- Extra Dimensions Plehn/JR, in prep.
- Model-Independent Searches
 Deviations from Standard Model observables

Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

Noncommutative Geometries Resolving power: Polarization, Astrophysical bounds Ohl/JR, '04; Ohl/Päs/JR, in prep.

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR/Rainwater, (04): Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.

Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.

Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.

- Extra Dimensions Plehn/JR, in prep.
- Model-Independent Searches
 Deviations from Standard Model observables

Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

Noncommutative Geometries Resolving power: Polarization, Astrophysical bounds Ohi/JB, '04; Ohi/Päs/JB, in prep.

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR/Rainwater, (04): Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.

- Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.
- Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.
- Extra Dimensions Plehn/JR, in prep.
- Model-Independent Searches
 Deviations from Standard Model observables

Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

Noncommutative Geometries Resolving power: Polarization, Astrophysical bounds Ohi/JB, '04; Ohi/Päs/JB, in prep.

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR/Rainwater, (04): Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.

Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.

- Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.
- Extra Dimensions

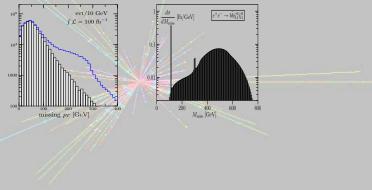
Plehn/JR, in prep.

Model-Independent Searches
 Deviations from Standard Model observables

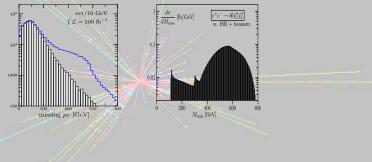
Supersymmetry

precision spectroscopy, extraction of fundamental parameters (SPA), synergy of colliders (LHC/ILC WG) JR, '02; Ohl/JR, '02; JR et al. '05; Hagiwara/JR/Plehn et al. '05

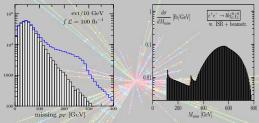
Noncommutative Geometries Resolving power: Polarization, Astrophysical bounds Ohi/JB, '04; Ohi/Päs/JB, in prep.

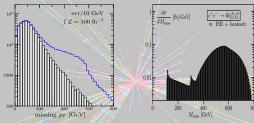

Little Higgs Models

precision spectroscopy, new light pseudoscalar particles ("axions"), cold dark matter Kilian/JR/Rainwater, (04): Kilian/JR/Rainwater, in prep.; Rainwater/JR/Schmaltz, in prep.


Additional Gauge Interactions at the TeV Scale Discrimination of new Z' states, precision spectroscopy Han/JR, in prep.

- Phenomenology of Grand Unified Theories, e.g. E₆: lots of new particles, interesting flavour structure Choi/Kilian/JR/Plehn/Zerwas, in prep.
- Extra Dimensions Plehn/JR, in prep.
- Model-Independent Searches
 Deviations from Standard Model observables





- Monte Carlo event generators: complicated scattering matrix elements, numerical phase space integration
- Need for code with optimized elimination of redundancies O'MEGA Moretti/Ohl/JR ('01), Kilian/Ohl/JR ('06), Ohl/JR/Schwinn WHIZARD Kilian ('01), Kilian/JR

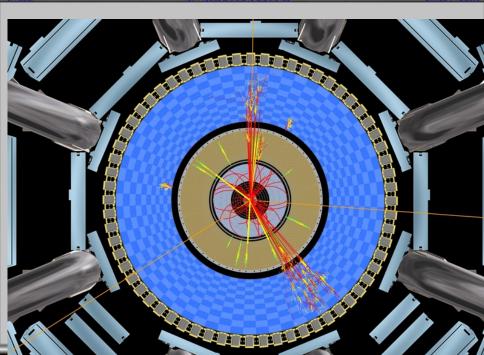
- Monte Carlo event generators: complicated scattering matrix elements, numerical phase space integration
- Need for code with optimized elimination of redundancies O'MEGA Moretti/Ohl/JR ('01), Kilian/Ohl/JR ('06), Ohl/JR/Schwinn WHIZARD Kilian ('01), Kilian/JR
- Future projects: Versatile tool for new physics models, inclusion of quantum corrections Kilian/JR/Robens, Kilian/Kleinschmidt/JR

- LHC offers discovery range in the TeV region
- New data at the "High Energy Frontier" !

Swindon, 1.2.2006

- LHC offers discovery range in the TeV region
- New data at the "High Energy Frontier" !
- Mechanism of Electroweak Symmetry Breaking revealed
- Standard Model completed and / or extended
- If something new is seen —

Swindon, 1.2.2006


- LHC offers discovery range in the TeV region
- New data at the "High Energy Frontier" !
- Mechanism of Electroweak Symmetry Breaking revealed
- Standard Model completed and / or extended
- If something new is seen crucial to distinguish different models
- Interface between Experimental Data and Model Building

Swindon, 1.2.2006

- LHC offers discovery range in the TeV region
- New data at the "High Energy Frontier" !
- Mechanism of Electroweak Symmetry Breaking revealed
- Standard Model completed and / or extended
- If something new is seen crucial to distinguish different models
- Interface between Experimental Data and Model Building
- Interesting times ahead ...

