LHC Phenomenology of SUSY multi-step GUTs

Jürgen Reuter

Albert-Ludwigs-Universität Freiburg

W. Kilian, JR, PL **B642** (2006), 81; arXiv:0709.4202; work in progress (with F. Braam, K. Mallot, D. Wiesler)

PHENO 09, Madison, May 12, 2009

Motivation for (SUSY) Unification

Incompleteness/Theoretical Dissatisfaction

EWSB, H, m_{ν} , DM, hierarchy,, reducible representation:

 $q\,(\mathbf{3},\mathbf{2})_{\frac{1}{3}} \ \oplus \ell\,(\mathbf{1},\mathbf{2})_{-1} \oplus \, u^c\,(\overline{\mathbf{3}},\mathbf{1})_{-\frac{4}{3}} \ \oplus d^c\,(\overline{\mathbf{3}},\mathbf{1})_{\frac{2}{3}} \oplus \, e^c\,(\mathbf{1},\mathbf{1}) \ \oplus H\,(\mathbf{1},\mathbf{2})_1$

Supersymmetry: consistent extrapolation to high scales

- \Rightarrow unification quantitatively testable
- \Rightarrow two Higgs doublets H^u, H^d
- ⇒ TeV-scale SM-superpartners

Bottom-Up Approach: just MSSM

Unification verification only with megatons? What about colliders?

- SPA: super precision accurately
- Look for chiral exotics
- Physics beyond MSSM provides handle to GUT scale

The Doublet-Triplet Splitting Problem MSSM Higgses included in $5_H \oplus \overline{5}_H$

$$\mathbf{5}_{H} = (\mathbf{3}, \mathbf{1})_{-\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{1} : \begin{pmatrix} D \\ H_{u} \end{pmatrix} \qquad \overline{\mathbf{5}}_{H} = (\overline{\mathbf{3}}, \mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1} : \begin{pmatrix} D^{c} \\ \epsilon H_{d} \end{pmatrix}$$

 D, D^c colored triplet Higgses with charges $\pm \frac{1}{3}$ (EW singlet) colored Dirac fermion \tilde{D} with charge -1/3 (EW singlet)

Unification requires omitting colored part of SU(5) Higgs $\mathbf{5}_{H}, \mathbf{\bar{5}}_{H}$

1) **Doublet-triplet splitting problem** $(m_H \sim 100 \,\text{GeV}, m_D \sim 10^{16} \,\text{GeV})$

Welcome, since SU(5)-symmetric Higgs interactions would read

Generating SM masses \Rightarrow leptoquark *and* diquark coupl. for D, D^c \Rightarrow triggers rapid proton decay

Doublet-Triplet Splitting

Possible scenarios:

- 1. Colored singlets are heavy (GUT scale) = doublet-triplet splitting
 - enables exact unification near 10¹⁶ GeV, excludes rapid proton decay
 - Proton decay may still be too fast (depends on superpotential)
 - Doublet-triplet splitting is not trivially available
- 2. Colored singlets are light (TeV scale)
 - ▶ Simple unification no longer happens near 10¹⁶ GeV, nor elsewhere

Proton-decay coupl. must be excluded: consistent with GUT symmetry?

Further MSSM Issues

- 2) μ problem: SUSY μ -term $\mu H_u H_d$, not related to soft breaking Why $\mu \sim \mathcal{O}(100 \text{ GeV})$, not $\mathcal{O}(10^{16} \text{ GeV})$?
 - \Rightarrow Possible extension as a solution: singlet Higgs S with superpotential

 $\lambda S H_u H_d \to \lambda \langle S \rangle H_u H_d = \mu H_u H_d$

 \Rightarrow NMSSM: $\langle S \rangle$ should be somehow related to soft-breaking

Large top Yukawa coupl. drives effective H_u mass squared negative:

This mechanism may also be responsible for $\langle S \rangle$ in the NMSSM

- requires existence of vectorlike pair of chiral superfields
 - for instance, D and D^c (colored) with SDD^c
 - ... as required by SU(5), if SH_uH_d is present, gives Dirac mass to D
- Without tree-level quartic coupl., the CW mechanism implies

 $\langle S \rangle \sim 4\pi m_{\rm soft}, \, {\rm SO} \, \langle S \rangle \gg \langle H \rangle.$

- Higgs-matter unification: Why only one family of Higgs matter? E₆ unifies Higgs fields with SM matter... Possible scenarios:
 - 1. Omit one bi-triplet D, D^c family \Rightarrow doublet-triplet splitting
 - 2. Add one extra MSSM Higgs family \Rightarrow ESSM
 - 3. Different unification pattern

S.King et al., 2005/6

[Braam/JR/W.Kilian, 2006/2009]

Running Couplings: PSSSM

- Additional particles spoil simple unification
- Gauge couling unification below Λ_{Planck} due to intermediate Pati-Salam

 $SU(4) \times SU(2)_L \times SU(2)_R[\times U(1)_{\chi}]$

symmetry at $\sim 10^{16}~{\rm GeV}$

Running Couplings: PSSSM

- Additional particles spoil simple unification
- Gauge couling unification below Λ_{Planck} due to intermediate Pati-Salam

 $SU(4) \times SU(2)_L \times SU(2)_R[\times U(1)_{\chi}]$

symmetry at $\sim 10^{16}~{\rm GeV}$

- SU(2)_R and SU(2)_L: identical particle content
- ⇒ Identical running

[Braam/JR/W.Kilian, 2006/2009]

 Crossing of SU(4) and SU(2)_{L/R} couplings determines E₆ breaking scale

E_6 unification with intermediate Pati-Salam Symmetry

The quantum numbers of the **27** under the Pati-Salam gauge group are

$$\mathbf{Q}_{R} = ((u^{c}, d^{c}), (\nu^{c}, e^{c})) = (\bar{\mathbf{4}}, \mathbf{1}, \mathbf{2})_{\frac{1}{2}}$$

$$\mathbf{Q}_L = ((Q, L)) = (\mathbf{4}, \mathbf{2}, \mathbf{1})_{\frac{1}{2}}$$

$$\mathbf{H} = (H^u, H^d) = (\mathbf{1}, \mathbf{2}, \mathbf{2})_{-1}$$

$$\mathbf{D} = (D, D^c) = (\mathbf{6}, \mathbf{1}, \mathbf{1})_{-1}$$

 ${f S} = ({f 1},{f 1},{f 1})_2$

► Lepton number becomes 4th color

$$\blacktriangleright T^{15}_{SU(4)} \propto \frac{B-L}{2}$$

$$\blacktriangleright Y = \frac{B-L}{2} + T_R^3$$

- Integrating out ν^c
- \Rightarrow appropriate breaking
- ⇒ see-saw mechanism (i.e. naturally small neutrino masses)

Flavor Symmetry

Proton decay?

► Triplets included: PS-symmetric superpotential contains leptoquark and diquark couplings $DQ_RQ_R = \epsilon_{\alpha\beta\gamma}\epsilon_{jk}D_\alpha(Q_R)_{\beta j}(Q_R)_{\gamma k}$

Possible solution: extra flavor symmetry $SU(3)_F$ (or $SO(3)_F$)

 \Rightarrow D diquark coupling with $SU(2)_R, SU(3)_c, SU(3)_F$:

 $DQ_RQ_R = \epsilon^{abc} \epsilon_{\alpha\beta\gamma} \epsilon_{jk} D^a_\alpha (Q_R)^b_{\beta j} (Q_R)^c_{\gamma k}$

Vanishes due to total antisymmetry \Rightarrow **no proton decay** Analogous for $\epsilon^{abc} \epsilon_{\alpha\beta\gamma} \epsilon_{jk} (D^c)^a_{\alpha} (Q_L)^b_{\beta j} (Q_L)^c_{\gamma k}$

Leptoquark coupling of D not affected

Eff. superpotential from (spontan.) breaking of LR and/or flavor symm.:

- Exclude spurions $\propto \epsilon_{\alpha\beta\gamma}$ (color space) \Rightarrow diquark couplings absent
- baryon number as low-energy symmetry, flavor symmetry not (necessarily)

The LHC phenomenology

[Braam/JR/Wiesler]

Next step: Provide a viable low-energy spectrum

At LHC:

- 1) 1-3 pairs of scalar leptoquarks D_L, D_R .
 - $\blacktriangleright\,$ probably heavy $\lesssim 1~{\rm TeV}$ (but hierarchy is possible)
 - pair-produced in gg fusion at LHC
 - decay into lu and vd:
 - generation-diagonal, or just third-generation: au t and u b or
 - generation-crossed (flavor symmetry!): $ec, eb, \mu d, te, t\mu \dots gq \rightarrow D\ell$ production enhanced
 - or, if *R*-parity is violated, may mix with down-type squarks.
- 2) 1-3 fermionic leptoquarkinos \tilde{D}
 - are probably heavy as well, but somewhat lighter than scalars (because $m^2 = \lambda \langle S \rangle^2 + m_{\rm soft}^2$)
 - ► are also pair produced (maybe singly if *R*-parity is violated)
 - decay into $\tilde{\ell}j$, or $\ell\tilde{q}$, or $\nu\tilde{q}$
 - rich signatures!
 - spin measurement distinguishes from ordinary squarks

A little bit of Pheno

- 3) (non)"standard" MSSM Higgs
 - Relaxed Higgs bounds (like in NMSSM)
 - Possibly large invisible decay ratio ($\tilde{\chi}^0, a$)
- 4) 2-4 doublets of unhiggses
 - probably only pair-produced: Drell-Yan, maybe Higgs decays (singlets involved)

- missing-energy signatures, unique identification could be difficult: ILC?
- 5) 1-3 singlet scalars + pseudoscalars
 - masses, properties?
- 6) and all associated neutralinos (≤ 11) and charginos (≤ 4)
 - large and complicated chargino/neutralino mixing matrices. Decay chains at LHC become difficult to understand.
- 7) Either heavy Z' (gauged NMSSM) or light pseudo-axion(s) η corresponding to extra U(1)

Conclusion: LHC phenomenology rich

and confusing

Investigation Of The Parameter Space

- # free parameters ~ $\mathcal{O}(100)$, additional assumptions:
 - Unified SSB-parameters Flavor structur
 - \Rightarrow Limitation on 14 free parameters
- Constraints:
 - (1) Experimental lower bounds on masses of new particles
 - (2) Running parameters perturbative up to Λ_{E_6}
 - (3) Scalar (non-Higgs) mass terms have to remain positive
 - $(\Leftrightarrow No unwanted symmetry breaking)$

- 14-dim parameter space
- \Rightarrow grid scanning $\rightarrow 10^{28}$ points
- \blacktriangleright Investigation per point (RGE, Higgs potential minimization, calculation of masses) $\sim 5~{\rm s}$
- Sol: Monte-Carlo Markov-Chain through parameter space
 - \Rightarrow Effective search for sensible parameter tupels

Predictions for Collider Experiments

- Collider phenomenology with event generator WHIZARD [Kilian/Ohl/JR]
- Implementation of leptoquark/leptoquarkino + Higgs/weak ino sector
- First analyses: BRs, cross sections for scalar leptoquarks, S/B
- In progress: leptoquarkino pheno

2 .	Leptoquark Single Production
§ 10	$u+g \rightarrow e^* + D_L$
	$\bullet u + g \to e' + D_g$
§101	$ d + g \rightarrow v + D_g $
10-2	
10-3	
10-1	
10 ⁻²	2000 2500 3000
	Leptoquark mass M [GeV]

Cuts		Background	$m_D = 0.6 \text{ TeV}$		$m_D = 0.8 \text{ TeV}$		$m_D = 1.0 \text{ TeV}$	
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Predictions for Collider Experiments

- Collider phenomenology with event generator WHIZARD [Kilian/Ohl/JR]
- Implementation of leptoquark/leptoquarkino + Higgs/weak ino sector
- First analyses: BRs, cross sections for scalar leptoquarks, S/B
- In progress: leptoquarkino pheno

Cuts		Background	$m_D = 0.6 \text{ TeV}$		$m_D = 0.8 \text{ TeV}$		$m_D = 1.0 \text{ TeV}$	
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Dark Matter

MSSM Higgses: H_u^f, H_d^f with f = 1, 2, 3

- * VEV selects single direction (taken as f = 3) in family space
 - \Rightarrow 1 gen. MSSM Higgses, 2 gen. "unhiggses" Ellis et al., 1985; Campbell et al., 1986

(2 bi-doublets = 8 charged and 8 neutral scalars + fermion superpartners)

In gauge interactions, unhiggses are pair-produced, thus suppressed in precision data, ... but also Yukawa interactions

1) FCNC 2) resonant single production in $q\bar{q}$ or e^+e^- annihilation

Unhiggses very heavy or artificially aligned or suppressed

 \Rightarrow (approximate?) *H* parity: odd for unhiggses, even otherwise

And why not? Flavor symmetry removes the need for R parity anyway.

If H parity is exact:

- ► lightest unhiggs: *H* parity protected dark matter
- Pair production of unhiggses/unhiggsinos, cascade decays
- \ldots and R parity is exact:
 - dark matter mix: interesting relic abundance (relaxes all neutralino bounds!)

Summary/Outlook

3 independent building blocks for exotic SUSY phenomenology

Color-triplet leptoquark/inos are present in the low-energy spectrum

- multi-step unification (PSSSM: E₆ with PS symmetry)
- favoring PS symmetry above the R-neutrino mass scale

Flavor symmetry prohibits proton decay

- instead of (or in addition to) R parity
- Superpotential terms are due to GUT- and flavor-breaking
- ... therefore do not exhibit GUT relations

Higgs sector is flavored

- Unhiggses (1st and 2nd generation) carry conserved quantum number
- Unhiggses dark matter candidates
- Ordinary MSSM stuff might decay via *R*-parity violation

Investigation of the parameter space \Rightarrow Input for WHIZARD Leptoquark phenomenology could hint toward GUT Further Studies:

- \blacktriangleright PS-symmetry breaking, U(1)-mixing, threshold corrections
- ▶ More LHC pheno (leptoquarkinos, Higgs, weak inos, Z' ...)

1/14 J. Reuter

Backup: E_6 Particle Content

- Unifies Higgs and matter fields
- Contains $SU(3)_c \times SU(2)_L \times U(1)_Y [\times U(1)'] \Rightarrow$ additional Z'
- Ansatz: all new particles in the spectrum at TeV scale
- SM $\times U(1)'$ quantum numbers of the fundamental 27:

Notation: $(SU(3), SU(2))_{Y,Q'}$

- $H^{u} = (\mathbf{1}, \mathbf{2})_{\frac{1}{2}, Q'_{H^{u}}}$ $H^{d} = (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}, Q'_{H^{d}}}$ $S = (\mathbf{1}, \mathbf{1})_{0, Q'_{S} \neq 0}$

$$D = (\mathbf{3}, \mathbf{1})_{-\frac{1}{3}, Q'_D}$$
$$D^c = (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}, -Q'_D}$$

Backup: Sample Implementation

Toy Model (no dynamics!)

- Extend $E_6 \times SU(3)_F$ to E_8
 - ... by implementing N = 2 supersymmetry:
 - We have: matter $\mathbf{27}_3$ and gauge $\mathbf{78}_1 + \mathbf{1}_8$.
 - Add: mirror matter 27₃
 - supersymmetrize by adding *matter* $78_1 + 1_8$ and *gauge* $27_3 + \overline{27}_{\overline{3}}$.

Decomposition of reps. in $E_8 \rightarrow E_6 \times SU(3)_F$:

$$\mathbf{248} = \mathbf{27}_{\mathbf{3}} \oplus \overline{\mathbf{27}}_{\overline{\mathbf{3}}} \oplus \mathbf{78}_{\mathbf{1}} \oplus \mathbf{1}_{\mathbf{8}}$$

Result: matter 248 and gauge 248 (fundamental = adjoint)

Backup: Sample Implementation — Top Down

1. Somewhat below M_{Planck}

- ► $N = 2 \rightarrow 1$ breaking removes mirror matter: $\langle (\mathbf{27}_3)_i^a (\overline{\mathbf{27}}_{\bar{3}})_j^b \rangle = \delta^{ab} \delta_{j,i+1}$
- E₆ zero mode of chiral matter 27₃, maybe adjoint matter 78₁ and 1₈
- ► Flavor SU(3) on the zero modes (would be anomalous) is broken by colorless spurions, e.g., condensate (1₈).
- E_6 is broken to G_{PS} by colorless spurions, e.g., bilinear = Higgs " μ term" $\langle \overline{\mathbf{1}}_{2,2} \overline{\mathbf{1}}_{2,2} \rangle$ in the $\overline{\mathbf{27}_3} \overline{\mathbf{27}_3}$ mirror representation
- Additional allowed spurion = Singlet $\langle \bar{\mathbf{1}}_{1,1} \rangle = \langle \bar{S} \rangle$ (3. gen.)

Note: all spurions so far break flavor as well

Result:

- PS symmetry
- all MSSM superpotential terms allowed, subject to PS symmetry/flavor constraints (no quark mixing):

 $\mathbf{27}_3\,\mathbf{27}_3\,\mathbf{27}_3=0 \quad (\mathbf{27}_3\,\mathbf{78}_1\,\overline{\mathbf{27}}_{\bar{3}}),\, (\mathbf{78}_1\,\mathbf{78}_1\,\mathbf{78}_1\,\mathbf{78}_1),\, (\mathbf{27}_3\,\mathbf{1}_8\,\overline{\mathbf{27}}_{\bar{3}}),\, \mathbf{1}_8\,\mathbf{1}_8\,\mathbf{1}_8$

 Flavor dynamics in higher-dim. superpotential due to 1₈ matter exchange

Backup: Sample Implementation

only potentially dangerous term for proton decay: $78_1 78_1 78_1$, because inserting (colorless) condensates into $27_3 78_1 \overline{27}_{\overline{3}}$. integrating out 781 color-triplet leptoquark self-coupling XXX = 0 (antisymmetry)

2. At 10¹⁵ GeV

Condensate in adjoint matter representation: $\langle 78_1 \rangle = \langle W_R^{23} \rangle$ $(2778\overline{27})^2$

+ higher-dimensional terms

 \Rightarrow PS symmetry broken to SM

 \Rightarrow Leptoquark couplings possible for D, D^c , but no diquark couplings

Backup: Sample Implementation

3. At 10^3 GeV

Soft-breaking terms (hidden sector) induce radiative symmetry breaking $\langle S\rangle$ via D/D^c loops

- $\Rightarrow \mu_D$ -term $D^c \langle S \rangle D$ (Dirac masses)
- $\Rightarrow \mu_H$ -term $H_u \langle S \rangle H_d$
- $\Rightarrow Z'$ mass if the extra U(1) broken by $\langle S \rangle$ was gauged
- ... with flavor mixing

4. At 10² GeV

Soft-breaking + effective $\mu\text{-term}$ induce radiative symmetry breaking $\langle H_u\rangle$ via t/t^c loops

- \Rightarrow $\langle H_d \rangle$ due to Higgs superpotential + soft-breaking terms
- \Rightarrow Dirac masses for all charged MSSM matter
- \Rightarrow Majorana masses (see-saw) for ν_L
- ... again, with flavor mixing

Backup: Interactions

