Unification without Doublet-Triplet Splitting — SUSY Exotics at the LHC

Jürgen Reuter

Carleton University, Ottawa ----- University of Freiburg

W. Kilian, J. Reuter, PLB B642 (2006), 81, and work in progress (with F. Deppisch)

MSU, East Lansing, March 20, 2007

The Standard Model (SM) – Theorist's View

Renormalizable Quantum Field Theory (only with Higgs!) based on $SU(3)_c \times SU(2)_L \times U(1)_Y$ non-simple gauge group

Reducible representation:

$$egin{array}{rll} q\left(\mathbf{3},\mathbf{2}
ight)_{rac{1}{3}} & \oplus & \ell\left(\mathbf{1},\mathbf{2}
ight)_{-1} \ \oplus & u^{c}\left(\overline{\mathbf{3}},\mathbf{1}
ight)_{-rac{4}{3}} & \oplus & d^{c}\left(\overline{\mathbf{3}},\mathbf{1}
ight)_{rac{2}{3}} \ \oplus & e^{c}\left(\mathbf{1},\mathbf{1}
ight) & \oplus & H\left(\mathbf{1},\mathbf{2}
ight)_{1} \end{array}$$

Incompleteness

- Electroweak Symmetry Breaking
- Higgs boson
- Origin of neutrino masses
- Dark Matter: $m_{DM} \sim 100 \, {\rm GeV}$

Theoretical Dissatisfaction

- 28 free parameters
- "strange" fractional
 - U(1) quantum numbers
- Hierarchy problem

Conventional and MSSM Unification

1971–74 Supersymmetry: consistent extrapolation to high scales

- ⇒ unification quantitatively testable (assuming a given spectrum)
- \Rightarrow two Higgs doublets H^u, H^d
- ⇒ superpartners for all SM particles, presumably in the TeV range

Bottom-Up Approach: just MSSM

1973 Unification of leptons and quarks by Pati/Salam:

$$G_{\mathsf{SM}} \subset G_{\mathsf{PS}} = SU(4)_c \times SU(2)_L \times SU(2)_R \times \mathbb{Z}_2$$

Each matter family in irreducible rep. (incl. ν_R , 2nd Higgs doublet):

1974 Unification of gauge couplings by Georgi/Glashow:

 $G_{\mathsf{SM}} \subset G_{\mathsf{GG}} = \frac{SU(5)}{5}$

Matter representation for SU(5) is reducible (classically) Simple-group unification: partial unification of leptons/quarks

The prime example: (SUSY) SU(5)

$$SU(5) \xrightarrow{M_X} SU(3)_c \times SU(2)_w \times U(1)_Y \xrightarrow{M_Z} SU(3)_c \times U(1)_{em}$$

 $SU(5)$ has $5^2 - 1 = 24$ generators:

$$24 \rightarrow \underbrace{(\mathbf{8},\mathbf{1})_{0}}_{G_{\alpha}^{\beta}} \oplus \underbrace{(\mathbf{1},\mathbf{3})_{0}}_{W} \oplus \underbrace{(\mathbf{1},\mathbf{1})_{0}}_{B} \oplus \underbrace{(\mathbf{3},\mathbf{2})_{\frac{5}{3}}}_{X,Y} \oplus \underbrace{(\mathbf{\overline{3}},\mathbf{2})_{-\frac{5}{3}}}_{\bar{X},\bar{Y}}$$
$$gA^{a}\frac{\lambda^{a}}{2} = \frac{g}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^{a}\frac{\lambda^{a}_{\mathsf{GM}}}{2} & (\bar{X},\bar{Y})\\ (X,Y)^{T} & \sqrt{2}W^{a}\frac{\sigma}{2} \end{pmatrix} - \frac{g}{2\sqrt{15}}B\operatorname{diag}(-2,-2,-2,3,3)$$

SU(5) breaking: Higgs Σ in adjoint 24 rep.

$$\langle \mathbf{\Sigma} \rangle = w \times \text{diag}(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}) \qquad M_X = M_Y = \frac{5}{2\sqrt{2}} g w$$

other breaking mechanisms possible (e.g. orbifold)

Quantum numbers

- Hypercharge: $\frac{\lambda_{12}}{2} = \sqrt{\frac{3}{5}} \frac{Y}{2}$ $Y = \frac{1}{3} \operatorname{diag}(-2, -2, 3, 3, 3)$ Quantized hypercharges are fixed by non-Abelian generator
- Weak Isospin: $T_{1,2,3} = \lambda_{9,10,11}/2$
- Electric Charge: $Q = T^3 + Y/2 = \text{diag}(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 1, 0)$
- Prediction for the weak mixing angle (with RGE running): $\alpha^{-1}(M_Z) = 128.91(2), \alpha_s(M_Z) = 0.1176(20), s_w^2(M_Z) = 0.2312(3)$

non-SUSY:
$$s_w^2(M_Z) = \frac{23}{134} + \frac{\alpha(M_Z)}{\alpha_s(M_Z)} \frac{109}{201} \approx 0.207$$

Quantum numbers

- ► Hypercharge: $\frac{\lambda_{12}}{2} = \sqrt{\frac{3}{5}} \frac{Y}{2}$ $Y = \frac{1}{3}$ diag(-2, -2, 3, 3, 3) Quantized hypercharges are fixed by non-Abelian generator
- Weak Isospin: $T_{1,2,3} = \lambda_{9,10,11}/2$
- Electric Charge: $Q = T^3 + Y/2 = \text{diag}(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, 1, 0)$
- Prediction for the weak mixing angle (with RGE running): $\alpha^{-1}(M_Z) = 128.91(2), \alpha_s(M_Z) = 0.1176(20), s_w^2(M_Z) = 0.2312(3)$

non-SUSY:
$$s_w^2(M_Z) = \frac{23}{134} + \frac{\alpha(M_Z)}{\alpha_s(M_Z)} \frac{109}{201} \approx 0.207$$

SUSY: $s_w^2(M_Z) = \frac{1}{5} + \frac{\alpha(M_Z)}{\alpha_s(M_Z)} \frac{7}{15} \approx 0.231$

New Gauge Bosons

Two colored EW doublets: (X,Y), (\bar{X}, \bar{Y}) with charges $\pm \frac{4}{3}, \pm \frac{1}{3}$

Fermions (Matter Superfields)

The only possible way to group together the matter:

$$\overline{\mathbf{5}} = \boxed{\begin{array}{c} \vdots \\ \end{array}} : \begin{pmatrix} d^{c} \\ d^{c} \\ d^{c} \\ \ell \\ -\nu_{\ell} \end{pmatrix} \qquad \mathbf{10} = \boxed{\begin{array}{c} \vdots \\ 1 \\ \hline \sqrt{2} \end{array}} \begin{pmatrix} 0 & u^{c} & -u^{c} & | & -u & -d \\ -u^{c} & 0 & u^{c} & | & -u & -d \\ u^{c} & -u^{c} & 0 & | & -u & -d \\ \hline u^{c} & -u^{c} & 0 & | & -u & -d \\ \hline u & u & u & | & 0 & -e^{c} \\ d & d & d & | & e^{c} & 0 \end{pmatrix}}$$

 $\overline{\mathbf{5}} = \ (\overline{\mathbf{3}}, \mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1} \qquad \mathbf{10} = \ (\mathbf{3}, \mathbf{2})_{\frac{1}{3}} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-\frac{4}{3}} \oplus (\mathbf{1}, \mathbf{1})_{2}$

Remarks

- $\blacktriangleright \ \mathbf{2} = \Box = \overline{\mathbf{2}}, \qquad (\mathbf{5} \otimes \mathbf{5})_a = \mathbf{10}, \quad (\mathbf{3} \otimes \mathbf{3})_a = \overline{\mathbf{3}}, \quad (\Box \otimes \Box)_a = \Box$
- Quarks and leptons in the same multiplet
- Fractional charges from tracelessness condition (color!)
- $\blacktriangleright~\overline{5}$ and 10 have equal and opposite anomalies
- ν^c must be SU(5) singlet

The Doublet-Triplet Splitting Problem

MSSM Higgses included in $\mathbf{5}_{H} \oplus \overline{\mathbf{5}}_{H}$

$$\mathbf{5}_{H} = \ (\mathbf{3},\mathbf{1})_{-\frac{2}{3}} \oplus (\mathbf{1},\mathbf{2})_{1} : \begin{pmatrix} D \\ H_{u} \end{pmatrix} \qquad \qquad \overline{\mathbf{5}}_{H} = \ (\overline{\mathbf{3}},\mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1},\mathbf{2})_{-1} : \begin{pmatrix} D^{c} \\ \epsilon H_{d} \end{pmatrix}$$

 D, D^c colored triplet Higgses with charges $\pm \frac{1}{3}$ (EW singlet) colored Dirac fermion \tilde{D} with charge -1/3 (EW singlet)

Unification requires omitting colored part of SU(5) Higgs $\mathbf{5}_{H}, \mathbf{\bar{5}}_{H}$

• Doublet-triplet splitting problem $(m_H \sim 100 \, {\rm GeV}, m_D \sim 10^{16} \, {\rm GeV})$

Welcome, since SU(5)-symmetric Higgs interactions would read

$$\begin{split} \mathbf{\bar{5}} \, \mathbf{10} \, \mathbf{\bar{5}}_H &= \ell H_d e^c + q \epsilon H_d d^c + q \epsilon \ell D^c + d^c u^c D^c \\ \mathbf{10} \, \mathbf{5}_H \, \mathbf{10} &= \qquad q \epsilon H_u u^c + D u^c e^c + D q \epsilon q \end{split}$$

Generating SM masses \Rightarrow leptoquark *and* diquark coupl. for D, D^c \Rightarrow triggers rapid proton decay

Interactions

Doublet-Triplet Splitting

Possible scenarios:

- 1. Colored singlets are heavy (GUT scale) = doublet-triplet splitting
 - enables exact unification near 10¹⁶ GeV and excludes rapid proton decay
 - Proton decay may still be too fast (depending on the superpotential)
 - Doublet-triplet splitting is not trivially available
- 2. Colored singlets are light (TeV scale)
 - ▶ Simple unification no longer happens near 10¹⁶ GeV, nor elsewhere

Proton-decay coupl. must be excluded: consistent with GUT symmetry?

Further MSSM Issues

Even if doublet-triplet splitting is accepted, the MSSM Higgs sector appears ad-hoc:

• μ problem

 μ -term $\mu H_u H_d$ is supersymmetric, in principle not related to soft-SUSY-breaking Lagrangian:

Why is it $\mathcal{O}(100 \,\text{GeV})$, not $\mathcal{O}(10^{16} \,\text{GeV})$?

 \Rightarrow Possible extension as a solution: singlet Higgs S with superpotential

 $\lambda S H_u H_d \to \lambda \langle S \rangle H_u H_d = \mu H_u H_d$

(does not change the unification prediction)

 $\Rightarrow\,$ NMSSM, where $\langle S\rangle$ should be somehow related to soft-breaking Lagrangian

How?

Radiative Symmetry Breaking

MSSM with cutoff $\Lambda \sim 10^{16}$ GeV: major contribution to Higgs potential comes through Coleman-Weinberg mechanism:

 \Rightarrow Large top Yukawa coupl. drives effective H_u mass squared negative:

$$m_{\text{eff}}^2 = (m_{H,\text{soft}}^2 + \mu^2) + (\Lambda^2 \cdot 0) + m_{t,\text{soft}}^2 \frac{\lambda^2}{16\pi^2} \ln \frac{m_{t,\text{soft}}^2}{\Lambda^2}$$

Such a mechanism may also be responsible for a S vev in the NMSSM

- requires the existence of a vectorlike pair of chiral superfields
 - for instance, D and D^c (colored) with coupling SDD^c
 - ... as required by SU(5), if SH_uH_d is present
 - \dots would simultaneously give a Dirac mass to D.
- ► Without tree-level quartic coupling, the CW mechanism implies $\langle S \rangle \sim 4\pi m_{\text{soft}}$, so $\langle S \rangle \gg \langle H \rangle$.

Further MSSM Issues

Even if doublet-triplet splitting is accepted, the MSSM Higgs sector appears ad-hoc:

► Why is there only one family of Higgs matter? Neither SU(5), nor G_{PS} (nor SO(10)) does unify Higgs fields with SM matter...

Higgs-Matter Unification

1976: Trinification: Treat all interactions equally

 $G_{\mathsf{Tri}} = SU(3)_c \times SU(3)_L \times SU(3)_R \times \mathbb{Z}_3$

Multiplets:

$$L(1,3,\bar{3}) = \begin{pmatrix} H_u^+ & H_d^0 & \nu_L \\ H_u^0 & H_d^- & e_L \\ e_R^c & \nu_R^c & S \end{pmatrix} \qquad \begin{pmatrix} u_L \\ d_L \\ D_L \end{pmatrix} = Q_L(3,\bar{3},1)$$
$$Q_R(\bar{3},1,3) = \begin{pmatrix} u_R^c & d_R^c & D_R^c \end{pmatrix}$$

1976: E_6 as superset of trinification (and SO(10)) with additional gauge bosons X(3,3,3) and $\overline{X}(\overline{3},\overline{3},\overline{3}) \Rightarrow 78$

- ⇒ irreducible multiplet (27) unifies all matter, Higgs, colored and neutral singlets (within each family)
- ⇒ contains NMSSM, allows for radiative symmetry breaking in both singlet and doublet sectors

Higgs-Matter Unification

Complete G_{Tri} or E_6 multiplet: no unification

Possible scenarios:

- 1. Omit one bi-triplet D, D^c family \Rightarrow doublet-triplet splitting
- 2. Add one extra MSSM Higgs family \Rightarrow ESSM (S.King et al.)
- 3. Different unification pattern

Running With Triplets

Bottom-up approach: MSSM with one generation of triplets

10¹⁵ GeV: crossing of $SU(2)_L$ and $U(1)_Y$ \Rightarrow unification to LR symmetry $SU(2)_L \times SU(2)_R$, requires ν_R^c $SU(3)_c$ crosses at 10²¹ GeV: too high

Running With Triplets

Bottom-up approach: MSSM with one generation of triplets

10¹⁵ GeV: crossing of $SU(2)_L$ and $U(1)_Y$ \Rightarrow unification to LR symmetry $SU(2)_L \times SU(2)_R$, requires ν_R^c $SU(3)_c$ crosses at 10²¹ GeV: too high

 \Rightarrow extend to $SU(4)_C$: unification possible at 10¹⁸ GeV

Running With Triplets

Complete Model:

▶ Full SUSY E_6/G_{Tri} matter spectrum above 10³ GeV, except ν^c

• PS symmetry with ν_R above 10¹⁵ GeV

$$egin{aligned} \mathbf{Q}_L &= (Q,L) = \ (\mathbf{4},\mathbf{2},\mathbf{1}) & \mathbf{D} = (D,D^c) = \ (\mathbf{6},\mathbf{1},\mathbf{1}) \ \mathbf{Q}_R &= ((u^c,d^c),(\nu^c,\ell^c)) = \ (\overline{\mathbf{4}},\mathbf{1},\mathbf{2}) & \mathbf{S} = \ (\mathbf{1},\mathbf{1},\mathbf{1}) \ \mathbf{H} &= (H_u,H_d) = \ (\mathbf{1},\mathbf{2},\mathbf{2}) \end{aligned}$$

E₆ symmetry (and possibly extra fields) at 10¹⁸ GeV

Flavor Symmetry

Proton decay?

Once triplets are included, a PS-symmetric superpotential contains leptoquark and diquark couplings simultaneously:

 $DQ_RQ_R = \epsilon_{\alpha\beta\gamma}\epsilon_{jk}D_\alpha(Q_R)_{\beta j}(Q_R)_{\gamma k}$

- Possible solution: extra flavor symmetry $SU(3)_F$ (or $SO(3)_F$)
 - \Rightarrow D diquark coupling with $SU(2)_R, SU(3)_c, SU(3)_F$:

 $DQ_RQ_R = \epsilon^{abc} \epsilon_{\alpha\beta\gamma} \epsilon_{jk} D^a_\alpha (Q_R)^b_{\beta j} (Q_R)^c_{\gamma k}$

Vanishes due to total antisymmetry \Rightarrow **no proton decay** Analogous for $\epsilon^{abc}\epsilon_{\alpha\beta\gamma}\epsilon_{jk}(D^c)^a_{\alpha}(Q_L)^b_{\beta j}(Q_L)^c_{\gamma k}$

- Leptoquark coupling of D not affected
- Eff. superpotential from (spontan.) breaking of LR and/or flavor symm.:
 - Exclude spurions $\propto \epsilon_{\alpha\beta\gamma}$ (color space) \Rightarrow diquark couplings absent
 - Integrating out heavy fields: baryon number as low-energy symmetry, flavor symmetry not

Toy Model (no dynamics!)

Extend $E_6 \times SU(3)_F$ to E_8

- ... by implementing N = 2 supersymmetry:
 - We have: matter 27_3 and gauge $78_1 + 1_8$.
 - Add: mirror matter 27₃
 - supersymmetrize by adding *matter* $78_1 + 1_8$ and *gauge* $27_3 + \overline{27}_{\overline{3}}$.

Decomposition of reps. in $E_8 \rightarrow E_6 \times SU(3)_F$:

$$\mathbf{248} = \mathbf{27_3} \oplus \overline{\mathbf{27}}_{\overline{\mathbf{3}}} \oplus \mathbf{78_1} \oplus \mathbf{1_8}$$

Result: matter 248 and gauge 248 (fundamental = adjoint)

Top-down

1. Somewhat below M_{Planck}

- N = 2 → N = 1 breaking removes mirror matter, leaving E₆ zero mode of chiral matter 27₃, maybe adjoint matter 78₁ and 1₈
- ► Flavor SU(3) on the zero modes (would be anomalous) is broken by colorless spurions, e.g., condensate (1₈).
- E_6 is broken to G_{PS} by colorless spurions, e.g., bilinear = Higgs ' μ term' $\langle \bar{H}_u \bar{H}_d \rangle$ in the $\overline{\mathbf{27}}_{\bar{\mathbf{3}}}$ mirror representation
- Additional allowed spurion = Singlet $\langle 1_1, 1 \rangle = \langle \bar{S} \rangle$ (3. gen.)

Note: all spurions so far break flavor as well

Result:

- PS symmetry
- all MSSM superpotential terms allowed, but subject to PS symmetry and flavor constraints (no quark mixing)
- Flavor dynamics in higher-dim. superpotential due to 1₈ matter exchange

2. At 10¹⁵ GeV

Condensate in adjoint matter representation: $\langle 78_1 \rangle = \langle W_R^{23} \rangle$ + higher-dimensional terms $(2778\overline{27})^2$

- \Rightarrow PS symmetry broken to SM
- \Rightarrow Leptoquark couplings possible for D, D^c , but no diquark couplings

3. At 10³ GeV

Soft-breaking terms (hidden sector) induce radiative symmetry breaking $\langle S\rangle$ via D/D^c loops

- $\Rightarrow \mu_D$ -term $D^c \langle S \rangle D$ (Dirac masses)
- $\Rightarrow \mu_H$ -term $H_u \langle S \rangle H_d$
- $\Rightarrow Z'$ mass if the extra U(1) broken by $\langle S \rangle$ was gauged

... with flavor mixing

4. At 10² GeV

Soft-breaking + effective $\mu\text{-term}$ induce radiative symmetry breaking $\langle H_u\rangle$ via t/t^c loops

- $\Rightarrow \langle H_d \rangle$ due to Higgs superpotential + soft-breaking terms
- \Rightarrow Dirac masses for all charged MSSM matter
- \Rightarrow Majorana masses (see-saw) for ν_L
- ... again, with flavor mixing

Dark Matter

MSSM Higgses: H_u^f, H_d^f with f = 1, 2, 3

- * VEV selects single direction (taken as f = 3) in family space
 - \Rightarrow 1 gen. MSSM Higgses, 2 gen. "unhiggses"

(2 bi-doublets = 8 charged and 8 neutral scalars + fermion superpartners)

In gauge interactions, unhiggses are pair-produced, thus suppressed in precision data, ... but also Yukawa interactions

1) FCNC 2) resonant single production in $q\bar{q}$ or e^+e^- annihilation

Unhiggses very heavy or artificially aligned or suppressed

 \Rightarrow (approximate?) *H* parity: odd for unhiggses, even otherwise

And why not? Flavor symmetry removes the need for R parity anyway.

If H parity is exact:

- ► lightest unhiggs: *H* parity protected dark matter
- Pair production of unhiggses/unhiggsinos, cascade decays

... and R parity is exact:

 dark matter mix: interesting relic abundance (relaxes all neutralino bounds!)

A little bit of Pheno

Deppisch/Kilian/JR

Next step: Provide a viable low-energy spectrum

At LHC:

- 1) 1-3 pairs of scalar leptoquarks D_L, D_R .
 - \blacktriangleright probably heavy $\gtrsim 1$ TeV (but hierarchy is possible)
 - pair-produced in gg fusion at LHC
 - decay into ℓu and νd :
 - generation-diagonal, or just third-generation: au t and u b or
 - generation-crossed (flavor symmetry!): $ec, eb, \mu d, te, t\mu \dots$
 - $gq \rightarrow D\ell$ production enhanced
 - or, if R-parity is violated, may mix with down-type squarks.
- 2) 1-3 fermionic leptoquarkinos \tilde{D}
 - are probably heavy as well, but somewhat lighter than scalars (because $m^2 = \lambda \langle S \rangle^2 + m_{\rm soft}^2$)
 - ► are also pair produced (maybe singly if *R*-parity is violated)
 - decay into $\tilde{\ell}j$, or $\ell\tilde{q}$, or $\nu\tilde{q}$
 - rich signatures!
 - spin measurement distinguishes from ordinary squarks

A little bit of Pheno

- 3) (non)"standard" MSSM Higgs
 - Relaxed Higgs bounds (like in NMSSM)
 - ▶ Possibly large invisible decay ratio ($\tilde{\chi}^0, a$)
- 4) 2-4 doublets of unhiggses
 - probably only pair-produced: Drell-Yan, maybe Higgs decays (singlets involved)

- missing-energy signatures, unique identification could be difficult: ILC?
- 5) 1-3 singlet scalars + pseudoscalars
 - masses, properties?
- 6) and all associated neutralinos (\leq 11) and charginos (\leq 4)
 - large and complicated chargino/neutralino mixing matrices. Decay chains at LHC become difficult to understand.
- 7) Either heavy Z' (gauged NMSSM) or light pseudo-axion(s) η corresponding to extra U(1)

Conclusion: LHC phenomenology rich

and confusing

Summary

3 independent building blocks for exotic SUSY phenomenology

Color-triplet 'leptoquark' scalars/fermions are present in the low-energy spectrum

- leads to a different unification pattern
- favoring PS symmetry above the R-neutrino mass scale

Flavor symmetry prohibits proton decay

- instead of (or in addition to) R parity
- Superpotential terms are due to GUT- and flavor-breaking
- therefore do not exhibit GUT relations

Higgs sector is flavored

- Unhiggses (1st and 2nd generation) carry conserved quantum number
- Unhiggses dark matter candidates
- Ordinary MSSM stuff might decay via *R*-parity violation

Confusing LHC pheno, but handle to GUT scale

Some Unification needs time

