Pseudo Axions in Little-Higgs Models

Jürgen Reuter — DESY Theory Group — 〈juergen.reuter@desy.de〉

in collaboration with: W. Kilian (DESY), D. Rainwater (Rochester)

LCWS Stanford, March 21, 2005

Pseudo Axions in LHM

LCWS 2005,

Contents

1 Little Higgs Models • Hierarchy Problem • Higgs as Pseudo-Goldstone Boson • Scales and Masses • Generic properties 2 Pseudo Axions in LHM 5 \circ Symmetry breaking and anomalous $U(1) \circ$ Properties of Pseudo Axions \circ The μ Model (Simple-Group Model) \circ Parameters and all that... $\circ \eta$ Branching Ratios • Production at LHC • Pseudo Axions at the Linear Collider • Pseudo Axions at the Photon Collider 3 Conclusions . 15

Hierarchy Problem

Motivation: Hierarchy Problem

• Effective theories below a scale $\Lambda \Rightarrow$

Pseudo Axions in LHM

LCWS 2005, 1

Hierarchy Problem

Motivation: Hierarchy Problem

- Effective theories below a scale $\Lambda \Rightarrow$
- Loop integration cut off at order $\sim \Lambda$:

 $\sim \Lambda^2$

Hierarchy Problem

Motivation: Hierarchy Problem

- Effective theories below a scale $\Lambda \Rightarrow$
- Loop integration cut off at order

 Λ:

 $\begin{array}{c} \textcircled{\textbf{Problem: Naturally, } m_h \sim \mathcal{O}(\Lambda^2):} \\ \hline \\ m_h^2 = m_0^2 + \Lambda^2 \times (\text{loop factors}) \end{array} \end{array}$

- \diamond Light Higgs favored by EW precision observables (m_h < 0.5 TeV)
- $\mathfrak{m}_h \ll \Lambda \quad \Leftrightarrow \quad \mbox{Fine-Tuning } !?$
- Solution: Mechanism for elimination of loop contributions

Pseudo Axions in LHM

LCWS 2005, 1

Invent (approximate) symmetry to protect particle masses

Invent (approximate) symmetry to protect particle masses

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Invent (approximate) symmetry to protect particle masses

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Little Higgs:

Gauge group structure \implies Loops of particles *of like statistics*

Old Idea:

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as Pseudo-Nambu-Goldstone Boson (PNGB) \Leftrightarrow spontaneously broken (approximate) *global* symmetry; non-linear sigma model

• w/o Fine-Tuning: $v \sim \Lambda/4\pi$

Invent (approximate) symmetry to protect particle masses

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Little Higgs:

Gauge group structure ⇒ Loops of particles of like statistics

Old Idea:

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as Pseudo-Nambu-Goldstone Boson (PNGB) \Leftrightarrow spontaneously broken (approximate) *global* symmetry; non-linear sigma model

• w/o Fine-Tuning: $v \sim \Lambda/4\pi$

New Ingredience: Arkani-Hamed/Cohen/Georgi/..., 2001

Gauge group structure eliminates quadratic divergences 1-loop level \implies 3-scale model

Scales and Masses

- ♦ Scale Λ: global SB, new dymanics, UV embedding
- Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

Scales and Masses

Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic corrections 1-loop level

- ♦ Scale Λ: global SB, new dymanics, UV embedding
- Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

Scales and Masses

Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic corrections 1-loop level

How does Little Higgs actually work?

- ♦ Scale Λ: global SB, new dymanics, UV embedding
- Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

Scales and Masses

Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic corrections 1-loop level

How does Little Higgs actually work?

- ♦ Scale Λ: global SB, new dymanics, UV embedding
- Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

 $M_{\rm H} \sim g_1 g_2 \Lambda / 16 \pi^2$

Generic properties

Kilian/JR (2004), ..., PDG (2004), Schmaltz (2005)

• Extended scalar (Higgs-) sector

Extended global symmetry

• Extended scalar (Higgs-) sector

Extended global symmetry

• Specific form of the potential:

$$\mathcal{V}(\mathbf{h}, \Phi) = C_1 F^2 \left| \Phi + \frac{\mathbf{i}}{F} \mathbf{h} \otimes \mathbf{h} \right|^2 + C_2 F^2 \left| \Phi - \frac{\mathbf{i}}{F} \mathbf{h} \otimes \mathbf{h} \right|^2$$

 $\label{eq:mh} \textbf{m_h=0} ~@~ 1-loop-level,~ \langle h \rangle \,, \textbf{m_h} \sim \nu, \quad M_{\Phi} \sim F, ~~i \cdot \langle \Phi \rangle \sim \nu^2/F \;,~h/\Phi \text{ mix}$

• Extended scalar (Higgs-) sector

Extended global symmetry

• Specific form of the potential:

$$\mathcal{V}(\mathbf{h}, \Phi) = C_1 \mathbf{F}^2 \left| \Phi + \frac{\mathbf{i}}{\mathbf{F}} \mathbf{h} \otimes \mathbf{h} \right|^2 + C_2 \mathbf{F}^2 \left| \Phi - \frac{\mathbf{i}}{\mathbf{F}} \mathbf{h} \otimes \mathbf{h} \right|^2$$

 $\label{eq:mh} \textbf{m_h=0} ~@~ 1-loop-level,~ \langle h \rangle \,, \textbf{m_h} \sim \nu, \quad M_\Phi \sim F, ~~i \cdot \langle \Phi \rangle \sim \nu^2/F \,,~h/\Phi \text{ mix}$

• **Extended gauge sector:** $SM' \times \mathcal{G} \to SM \implies$ Additional EW gauge bosons: B', Z', W'[±] (Hypercharge singlets & triplets)

• Extended scalar (Higgs-) sector

Extended global symmetry

• Specific form of the potential:

$$\mathcal{V}(\mathbf{h}, \Phi) = C_1 \mathbf{F}^2 \left| \Phi + \frac{\mathbf{i}}{\mathbf{F}} \mathbf{h} \otimes \mathbf{h} \right|^2 + C_2 \mathbf{F}^2 \left| \Phi - \frac{\mathbf{i}}{\mathbf{F}} \mathbf{h} \otimes \mathbf{h} \right|^2$$

 $\label{eq:mh} \textbf{m_h=0} ~@~ 1-loop-level,~ \langle h \rangle \,, \textbf{m_h} \sim \nu, \quad M_\Phi \sim F, ~~i \cdot \langle \Phi \rangle \sim \nu^2/F \;,~h/\Phi \text{ mix}$

- **Extended gauge sector:** $SM' \times \mathcal{G} \to SM \implies$ Additional EW gauge bosons: B', Z', W'[±] (Hypercharge singlets & triplets)
- Extended Top sector: new quarks, t, t' loops $\Rightarrow M_h^2 < 0 \Rightarrow EWSB$

- Higgs \in PNGB \Rightarrow rank reduction of the global symmetry group
- Higgs corresponds to nondiagonal generator (QCD: kaon)

- Higgs \in PNGB \Rightarrow rank reduction of the global symmetry group
- Higgs corresponds to nondiagonal generator (QCD: kaon)
- diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion ⇒ Pseudo Axion of LHM
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

- Higgs \in PNGB \Rightarrow rank reduction of the global symmetry group
- Higgs corresponds to nondiagonal generator (QCD: kaon)
- diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion ⇒ Pseudo Axion of LHM
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion
- influences EW and T phenomenology

- Higgs \in PNGB \Rightarrow rank reduction of the global symmetry group
- Higgs corresponds to nondiagonal generator (QCD: kaon)
- diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion ⇒ Pseudo Axion of LHM
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion
- influences EW and T phenomenology

Properties of Pseudo Axions

• η EW singlet

Properties of Pseudo Axions

- η EW singlet
- $\xi = \exp\left[\frac{i}{F}\eta\right]$ exact PNGB $\Rightarrow \eta$ no potential, only derivative couplings
- Fermion couplings break global symm., generate potential and mass

Properties of Pseudo Axions

- η EW singlet
- $\xi = \exp\left[\frac{i}{F}\eta\right]$ exact PNGB $\Rightarrow \eta$ no potential, only derivative couplings
- Fermion couplings break global symm., generate potential and mass
- explicit symmetry breaking $\Rightarrow m_\eta$ and $g_{\eta\gamma\gamma}$ independent \Rightarrow axion bounds not applicable

Properties of Pseudo Axions

- η EW singlet
- $\xi = \exp\left[\frac{i}{F}\eta\right]$ exact PNGB $\Rightarrow \eta$ no potential, only derivative couplings
- Fermion couplings break global symm., generate potential and mass
- explicit symmetry breaking $\Rightarrow m_\eta$ and $g_{\eta\gamma\gamma}$ independent \Rightarrow axion bounds not applicable
- no new hierarchy problem $\Rightarrow m_\eta \lesssim \nu \sim 250 \, \text{GeV}$

Properties of Pseudo Axions

- η EW singlet
- $\xi = \exp\left[\frac{i}{F}\eta\right]$ exact PNGB $\Rightarrow \eta$ no potential, only derivative couplings
- Fermion couplings break global symm., generate potential and mass
- explicit symmetry breaking $\Rightarrow m_\eta$ and $g_{\eta\gamma\gamma}$ independent \Rightarrow axion bounds not applicable
- no new hierarchy problem $\Rightarrow m_\eta \lesssim \nu \sim 250 \, \text{GeV}$
- η couplings an to SM particles ν/F suppressed
- Branching ratios (BRs): dominant (t \bar{t} ,) $b\bar{b}$, $\tau^+\tau^-$, ...

Chiral Structure of Yukawa couplings in LHM with heavy SU(2) singlet T:

ΤTΗ	$O(\frac{v}{F})$
ΤtΗ	$O(1) \mathcal{P}_L + O(\frac{\nu}{F}) \mathcal{P}_R$
τtΗ	O(1)

 $\begin{array}{ll} \bar{T}T\eta & O(1)\,\gamma_5 \\ \bar{T}t\eta & O(1)\,\mathcal{P}_R + O(\frac{\nu}{F})\,\mathcal{P}_L \\ \bar{t}t\eta & O(\frac{\nu}{F})\,\gamma_5 \end{array} \end{array}$

The µ Model (Simple-Group Model)

- "Moose"-like model Schmaltz (2004), Kilian/Rainwater/JR (2004)
- μ term explicitly breaks global symm. (\rightarrow MSSM) \Rightarrow EWSB, no Fine-Tuning
- enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$

The μ Model (Simple-Group Model)

- "Moose"-like model Schmaltz (2004), Kilian/Rainwater/JR (2004)
- μ term explicitly breaks global symm. (\rightarrow MSSM) \Rightarrow EWSB, no Fine-Tuning
- enlarged gauge group: $SU(3) \times U(1);$ globally $U(3) \rightarrow U(2)$

$$\Phi_{1/2} = \exp\left[\pm i \frac{F_{2/1}}{F_{1/2}}\Theta\right] \begin{pmatrix} 0\\0\\F_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{F_1^2 + F_2^2}} \begin{pmatrix} \eta & 0\\0&\eta\\h^T & \eta \end{pmatrix}$$

The μ Model (Simple-Group Model)

- "Moose"-like model Schmaltz (2004), Kilian/Rainwater/JR (2004)
- μ term explicitly breaks global symm. (\rightarrow MSSM) \Rightarrow EWSB, no Fine-Tuning
- enlarged gauge group: $SU(3) \times U(1);$ globally $U(3) \rightarrow U(2)$

$$\Phi_{1/2} = \exp\left[\pm i \frac{F_{2/1}}{F_{1/2}}\Theta\right] \begin{pmatrix} 0\\0\\F_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{F_1^2 + F_2^2}} \begin{pmatrix} \eta & 0\\0&\eta\\h^T & \eta \end{pmatrix}$$

Scalar Potential ($\kappa \equiv F_1/F_2 + F_2/F_1 \ge 2$):

$$-V = -(\delta m^2 + \mu^2 \kappa)(\mathbf{h}^{\dagger}\mathbf{h}) - \mu^2 \kappa \frac{\eta^2}{2} + (\frac{\mu^2 \kappa^2}{12F_1F_2} - \delta \lambda)(\mathbf{h}^{\dagger}\mathbf{h})^2 + \dots$$

 δm , $\delta \lambda$ 1-loop contributions (Coleman-Weinberg Potential)

 $\label{eq:metric} \boxed{m_\eta \ = \ \sqrt{\kappa} \, \mu \ \geqslant \ \sqrt{2} \, \mu} \quad \text{no Fine-tuning: } \mu \sim \nu \qquad m_H^2 = -2(\delta m^2 + m_\eta^2)$

Pseudo Axions in LHM

LCWS 2005, 7

The μ Model (Simple-Group Model)

The μ Model (Simple-Group Model)

• heavy partners for SM fermions ($\Psi_L = (t_L, b_L, T_L)^T$)

$$\begin{split} \mathcal{L} &= -\lambda_{1}^{t} \overline{t}_{1,R} \Phi_{1}^{\dagger} \Psi_{\mathsf{T},\mathsf{L}} - \lambda_{2}^{t} \overline{t}_{2,R} \Phi_{2}^{\dagger} \Psi_{\mathsf{T},\mathsf{L}} - \frac{\lambda^{b}}{\Lambda} \varepsilon^{ijk} \overline{\mathsf{q}}_{\mathsf{R}}^{b} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{\mathsf{T},\mathsf{L}}^{k} \\ &- \lambda_{1}^{d} \overline{\mathsf{q}}_{1,\mathsf{R}}^{d} \Phi_{1}^{\dagger} \Psi_{\mathsf{Q},\mathsf{L}} - \lambda_{2}^{d} \overline{\mathsf{q}}_{2,\mathsf{R}}^{d} \Phi_{2}^{\dagger} \Psi_{\mathsf{Q},\mathsf{L}} - \frac{\lambda^{u}}{\Lambda} \varepsilon^{ijk} \overline{\mathsf{q}}_{\mathsf{R}}^{u} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{\mathsf{Q},\mathsf{L}}^{k} + \dots + \text{h.c.} \end{split}$$

The μ Model (Simple-Group Model)

• heavy partners for SM fermions ($\Psi_L = (t_L, b_L, T_L)^T$)

$$\begin{split} \mathcal{L} &= -\lambda_{1}^{t} \overline{t}_{1,\mathsf{R}} \Phi_{1}^{\dagger} \Psi_{\mathsf{T},\mathsf{L}} - \lambda_{2}^{t} \overline{t}_{2,\mathsf{R}} \Phi_{2}^{\dagger} \Psi_{\mathsf{T},\mathsf{L}} - \frac{\lambda^{b}}{\Lambda} \varepsilon^{ijk} \overline{\mathsf{q}}_{\mathsf{R}}^{b} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{\mathsf{T},\mathsf{L}}^{k} \\ &- \lambda_{1}^{d} \overline{\mathsf{q}}_{1,\mathsf{R}}^{d} \Phi_{1}^{\dagger} \Psi_{\mathsf{Q},\mathsf{L}} - \lambda_{2}^{d} \overline{\mathsf{q}}_{2,\mathsf{R}}^{d} \Phi_{2}^{\dagger} \Psi_{\mathsf{Q},\mathsf{L}} - \frac{\lambda^{u}}{\Lambda} \varepsilon^{ijk} \overline{\mathsf{q}}_{\mathsf{R}}^{u} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{\mathsf{Q},\mathsf{L}}^{k} + \dots + \text{h.c.} \end{split}$$

 Assumptions: no mixing between SM and heavy fermions in 1./2. family, minimal M_T (LHC)

Parameters and all that...

• free parameters: $F_{1,2}$ and μ with $\sqrt{F_1^2 + F_2^2} \gtrsim 2$ TeV [Δ T, Contact IA] $F_1 \gtrsim \nu$, $F_2 > F_1$ (Fermion mixing/universality)

Parameters and all that...

• free parameters: $F_{1,2}$ and μ with $\sqrt{F_1^2 + F_2^2} \gtrsim 2$ TeV [Δ T, Contact IA] $F_1 \gtrsim \nu, F_2 > F_1$ (Fermion mixing/universality)

Parameters and all that...

• free parameters: $F_{1,2}$ and μ with $\sqrt{F_1^2 + F_2^2} \gtrsim 2$ TeV [Δ T, Contact IA] $F_1 \gtrsim \nu$, $F_2 > F_1$ (Fermion mixing/universality)

ZH η coupling: $\mathcal{L}_{ZH\eta} \propto \frac{m_Z}{\sqrt{2F}} Z_{\mu}(\eta \partial^{\mu} H - H \partial^{\mu} \eta)$

N.B.: ν/F suppression compensated!

η analogous to A in 2HDM for small tan $\beta = F_1/F_2 < 1$ (flavor)

η Branching Ratios

BR [η]

η Branching Ratios

${}^{\triangleleft}_{\triangleright} \alpha \star \langle\!\langle \langle \uparrow \downarrow \rangle \rangle\!\rangle \omega$

BR [η]

new Higgs decays ($H \rightarrow Z\eta, H \rightarrow \eta\eta$)

 $\text{BR}(\text{H}\rightarrow\eta\eta)<10^{-4}~[\sim5-10\%~\text{OSG}]$

m _H [GeV]	$\mathfrak{m}_{\eta}[GeV]$	BR(Zη)
341	223	0.1 %
375	193	0.5 %
400	167	0.8 %
422	137	1.0 %
444	96	1.2 %
464	14	1.4 %

Production at LHC

- Gluon Fusion (axial $U(1)_{\eta}$ anomaly) (analogous to $gg \rightarrow H \rightarrow \gamma \gamma \,$ cf. ATLAS/CMS TDR)
- v/F-suppression in the loop compensated!
- Cross section large for $F_1 \ll F_2$

Production at LHC

$^{\triangleleft}_{\triangleright}\alpha\star\langle\!\langle\langle\uparrow\downarrow\rangle\rangle\!\rangle\omega$

- Gluon Fusion (axial $U(1)_{\eta}$ anomaly) (analogous to $gg \rightarrow H \rightarrow \gamma \gamma \,$ cf. ATLAS/CMS TDR)
- v/F-suppression in the loop compensated!
- Cross section large for $F_1 \ll F_2$
- $\begin{array}{ll} \bullet & \text{"Golden Point" LHC}(300 \ \text{fb}^{-1}): \\ m_\eta \sim 320 \ \text{GeV} & 7\sigma \\ & 5\sigma \ \text{for} \ m_\eta = 240 \ \text{GeV} \\ & (\text{SLHC up to} \ m_\eta = 130 \ \text{GeV}) \\ & S: B \sim 1/10 1/50 \end{array}$
- NLO cross sections; diphoton Bkgd. (Diphox Binoth); $p_T(\gamma) > 40$ GeV, $|\eta_{\gamma}| < 2.5, \ \varepsilon_{\gamma} = 0.8$

Pseudo Axions at the Linear Collider

tīτη associated production

Problem: Cross section vs. bkgd.

Pseudo Axions at the Linear Collider

tīτη associated production

Problem: Cross section vs. bkgd.

Pseudo Axions at the Linear Collider

Pseudo Axions at the Linear Collider

Pseudo Axions in LHM

LCWS 2005, 12

Pseudo Axions at the Linear Collider

Pseudo Axions at the Photon Collider

${}^{\triangleleft}_{\triangleright} \alpha \star \langle\!\langle \langle \uparrow \downarrow \rangle \rangle\!\rangle \omega$

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM
 - (\hookrightarrow Mühlleitner et al. (2001))

Pseudo Axions at the Photon Collider

$^{\triangleleft}_{\triangleright}\alpha\star\langle\!\langle\langle\uparrow\downarrow\rangle\rangle\!\rangle\omega$

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM

```
( \hookrightarrow Mühlleitner et al. (2001) )
```


Pseudo Axions at the Photon Collider

g ₁	0.4	mη	100	130	200	285
	$g_{bb\eta} = 0.4 \cdot g_{bbh}$	$\Gamma_{\gamma\gamma}[\text{keV}]$	0.15	0.27	1.1	3.6
					7	1

Pseudo Axions at the Photon Collider

LCWS 2005, 14

Pseudo Axions at the Photon Collider

Pseudo Axions at the Photon Collider

Pseudo Axions in LHM

LCWS 2005, 14

 \Diamond

Little Higgs elegant alternative to SUSY

ungauged, anomalous $U(1)_{\eta}$: new singlet (pseudo-)scalars η

- massive Z' (easily detectable) $\longleftrightarrow \eta$ physical (difficult)
- Explicit symmetry breaking circumvents axion limits
- LHC: η production in gluon fusion, diphoton signal
- Pseudo axions change T phenomenology!
 - **ILC:** $t\bar{t}$ associated production (m_{η} small), $Z^* \rightarrow H\eta$ Photon Collider: all masses, complementary measurement

