Channels & Challenges – Neue Physik am LHC

Jürgen Reuter

DESY, Hamburg

Freiburg, 29.Mai 2006

Warum Neue Physik?

Standard-Modell beschreibt Mikrokosmos

Unvollständig: Elektroschwache Symmetriebrechung, Higgs-Boson

28 freie Parameter, Vereinheitlichung

Dunkle Materie: $m_{DM} \sim 100 \, \text{GeV}$

Ideen für Neue Physik seit 1970

(1) Neue Bausteine

- Technicolor: Higgs gebundener Zustand stark wechselwirkender Teilchen

(2) Symmetrie zur Eliminierung der Quantenkorrekturen

- Supersymmetrie: Spin-Statistik \Rightarrow Korrekturen von Bosonen und Fermionen heben sich weg
- Little-Higgs-Modelle: Globale Symmetrien ⇒ Korrekturen durch Teilchen gleicher Statistik heben sich weg

(3) Nichttriviale Raumzeitstruktur eliminiert Hierarchie

- Zusätzl. Raumdimensionen: Gravitation erscheint nur schwach
- Nichtkommutative Raumzeit: Körnigkeit der Raumzeit

(4) Ignorieren der Hierarchie

- Anthropisches Prinzip: Werte sind so, weil wir sie beobachten

Supersymmetrie

verknüpft Eich- und Raumzeit-Symmetrien

Multipletts mit Fermionen und Bosonen gleicher Masse

 \Rightarrow SUSY in der Natur gebrochen

- Minimales Supersymmetrisches Standard-Modell (MSSM)
- Vielfältiges Spektrum neuer Teilchen
- LSP: Dunkle Materie
- Komplizierte Zerfallsstrukturen
 - \Rightarrow Reichhaltige Phänomenologie

Die Herausforderung des LHC LHC @ CERN: ab 07/2007 pp-Collider $\sqrt{s} = 14$ TeV

Partonische Subprozesse: qq, qg, gg

Hohe Eventraten für t, W/Z, H, \Rightarrow große Untergründe

Schnitte zur Untergrundreduktion

Die Herausforderung des LHC LHC @ CERN: ab 07/2007 pp-Collider $\sqrt{s} = 14$ TeV

Partonische Subprozesse: qq, qg, gg

Hohe Eventraten für t, W/Z, H, \Rightarrow große Untergründe

Schnitte zur Untergrundreduktion

Neue Physik: Observablen und Präzisionsmessungen

Signale für Neue Physik: E_T , high- p_T Jets, viele harte Leptonen, aber: Welches Modell?

- Kaskadenzerfälle: Massendifferenzen aus Endpunkten von Zerfallsspektren
- Spin neuer Teilchen: Winkelverteilungen, ...

- Modellbestimmung: Messung von Kopplungskonstanten
- ⇒ Präzise Vorhersagen f
 ür Signal und Untergr
 ünde
 - ► Berücksichtigung von Schnitten Verteilungen: $d\sigma/dX$, $X = \cos \theta, \eta, p_T, ...$
 - Exklusive Vielteilchen-Endzustände: $2 \rightarrow 4$ bis $2 \rightarrow 10$
 - Quantenkorrekturen: Reelle und virtuelle Korrekturen

Simulationen: O'Mega Ω / Whizard \checkmark

Matrixelement-Generator O'Mega:

Ohl, 2000/01; Moretti/Ohl/JR, 2001

Optimierte Helizitätsamplituden: Vermeidung aller Redundanzen

Vielzweck-Eventgenerator Whizard:

Ohl, 1996; Kilian, 2000; Kilian/Ohl/JR, 2006

- Viel-Kanal adaptive Monte-Carlo-Integration
- Breiten, Wirkungsquerschnitte und beliebige Verteilungen
- Strukturfunktionen, Interface zu Partonschauer/Hadronisierung [PYTHIA]
- Eventformate für Detektorsimulationen
- Virtuelle Korrekturen: NLO Monte Carlo

NLO MC für $e^+e^-
ightarrow {\tilde \chi}^+_1 {\tilde \chi}^-_1$ Kilian/JR/Robens

Beliebige Verteilungen @ NLO

[STDHEP, HEPEVT, ...]

 \Rightarrow

JR. 2002; Ohl/JR. 2002

Tests und Checks: Beispiel MSSM

JR et al., 2005; K. Hagiwara/W. Kilian/F. Krauss/T. Ohl/T. Plehn/D. Rainwater/JR/S. Schumann, 2006

- MSSM: doppeltes Spektrum, 100 Parameter, 5000 Vertizes
 - Implementierung erfordert Tests und Konsistenzchecks
- Unitaritätscheck: $\sigma(2 \rightarrow 2, s), \sigma(2 \rightarrow 3, s) \sim const$ oder 1/s
- Eichinvarianz: Ward- und Slavnov-Taylor-Identitäten
- Supersymmetrie: Ward-/Slavnov-Taylor-Identitäten
- Vergleich unabh. Codes (O(600) Prozesse): JR et al., 2005; K. Hagiwara/.../JR/..., 2006 Referenz: http://www-ttp.physik.uni-karlsruhe.de/-reuter/susy_comparison.html

$ff \rightarrow X$									
Process	stat.	Madgraph/Helas		Whizard/O'Mega		Sherpa/A'Megic			
		0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV		
$uu \rightarrow \tilde{u}_L \tilde{u}_L$	•	_	716.9(1)	_	716.973(4)	—	716.99(4)		
$uu \rightarrow \tilde{u}_R \tilde{u}_R$	•	_	679.6(1)	_	679.627(4)	_	679.54(4)		
$uu \rightarrow \tilde{u}_L \tilde{u}_R$	•	_	1212.52(6)	_	1212.52(5)	_	1212.60(6)		
$dd \rightarrow \tilde{d}_L \tilde{d}_L$	•	—	712.6(1)	—	712.668(4)	—	712.68(4)		
$dd \rightarrow \tilde{d}_R \tilde{d}_R$	•	-	667.4(1)	_	667.448(4)	—	667.38(3)		
$dd \rightarrow \tilde{d}_L \tilde{d}_R$	•	—	1206.22(6)	_	1206.22(5)	_	1206.30(7)		

Sbottom-Produktion am LHC

Hagiwara/..., JR/..., 2006

 $ilde{b}_1$ -Produktion mit anschließendem Zerfall $ilde{b}_1 o ilde{\chi}_1^0 b$

Prozeß $A_1A_2 \rightarrow P^{(*)} \rightarrow F_1F_2$, 3 verschiedene Stufen:

 $\begin{array}{ll} \text{Narrow Width} & \sigma(A_1A_2 \to P) \times \text{BR}(P \to F_1F_2) \\ \text{Breit-Wigner} & \sigma(A_1A_2 \to P) \times \frac{M_P^2\Gamma_P^2}{(s-M_P^2)^2 + \Gamma_P^2M_P^2} \times \text{BR}(P \to F_1F_2) \\ \text{Volles Matrixelement} & \sigma(A_1A_2 \to F_1F_2) \end{array}$

 $pp \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$ Haupt-Untergrund: $gg \rightarrow b\bar{b}\nu\bar{\nu}$

Signaljets härter

Off-Shell-Effekte am LHC:

PS: Härterer Jet zentraler

Off-Shell-Effekte ($b\bar{b}Z^*$): nur für niedriges $p_{T,b} \longrightarrow$ wird weggeschnitten

Nicht allg. garantiert

Prozeß	$\sigma \times BR$ [fb]	$\sigma_{\rm BW}$ [fb]	$\sigma_{\rm BW}^{\rm cut}$ [fb]
Zh	1.342	1.335	0.009
HA	0.320	0.314	0.003
$ ilde{\chi}_1^0 ilde{\chi}_2^0$	13.078	13.954	0.458
$ ilde{\chi}^0_1 ilde{\chi}^0_3$	3.675	4.828	0.454
$ ilde{\chi}_1^{ ilde{0}} ilde{\chi}_4^{ ilde{0}}$	0.061	0.938	0.937
$\tilde{b}_1 \tilde{b}_1^*$	0.759	0.757	0.451
Sum	19.238	22.129	2.314
Exact		19.624	0.487

ILC:

 $e^+e^-
ightarrow b ar{b} \tilde{\chi}^0_1 \tilde{\chi}^0_1 \; [800\,{\rm GeV}]$

Schnitte auf $M_{b\bar{b}}$ eliminieren andere Resonanzen

Reelle Korrekturen: Bottom-Jet-Strahlung

K. Hagiwara/..., JR/..., 2006

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR als kombinatorischer Untergrund

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 Diagramme, 22 Farbflüsse, ~ 4000 PS-Kanäle

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177\,\text{fb} \quad \longrightarrow \quad \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7\,\text{fb}$

Vorwärts-Diskriminierung von ISR und Zerfalls-b-Jets schwierig:

Nur der äußerste Vorwärts-b-Jet deutlich weicher

Reelle Korrekturen: Bottom-Jet-Strahlung

K. Hagiwara/..., JR/..., 2006

- $g \rightarrow b\bar{b}$ -Splitting, b-ISR als kombinatorischer Untergrund
- $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 Diagramme, 22 Farbflüsse, ~ 4000 PS-Kanäle
- $\sigma(pp \to b\bar{b} \tilde{\chi}^0_1 \tilde{\chi}^0_1) = 1177 \, {\rm fb} \quad \longrightarrow \quad \sigma(pp \to b\bar{b} b\bar{b} \tilde{\chi}^0_1 \tilde{\chi}^0_1) = 130.7 \, {\rm fb}$

Nur geringe Unterschiede in $p_{T,b}$, PDF: Maximum bei kleinerem Wert

zu kleinerem p_T verschoben: leichte Teilchen balancieren Events aus

Und wenn nicht SUSY?

Higgs als Pseudo-Goldstone-Boson

Nambu-Goldstone-Theorem: Spontane Brechung einer globalen Symmetrie: masselosen (Goldstone)-Bosonen im Spektrum

Analog: QCD <u>Skala Λ </u>: chirale Symmetriebrechung, Quarks, $SU(3)_c$

Skala v: Pionen, Kaonen, ...

Higgs als Pseudo-Goldstone-Boson

Nambu-Goldstone-Theorem: Spontane Brechung einer globalen Symmetrie: masselosen (Goldstone)-Bosonen im Spektrum

<u>Skala A</u>: globale Symmetriebrechung, neue Teilchen, neue (Eich-)WW <u>Skala v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Ohne Fine-Tuning: experimentell ausgeschlossen

Kollektive Symmetriebrechung und 3-Skalen-Modelle

Kollektive Symmetriebrechung: Arkani-Hamed/Cohen/Georgi/Nelson/..., 2001

2 verschiedene globale Symmetrie; eine davon ungebrochen \Rightarrow Higgs exaktes Goldstone-Boson

Coleman-Weinberg: Boson-Massen durch Strahlungskorrekturen, aber: m_H erst auf 2-Loop-Niveau

<u>Skala A</u>: globale SB, neue WW <u>Skala F</u>: Pseudo-Goldstone-Bosonen, neue Vektoren/Fermionen <u>Skala v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Eigenschaften von Little-Higgs-Modellen

- Erweiterte Globale Symmetrie
- Spezifische funktionale Form des Higgs-Potentials
- Erweiterte Eichsymmetrie:
- Neue schwere Fermionen: T, aber auch U, C, \ldots

 γ', Z', W'^{\pm}

Kontaktterme/Elektroschwache Präzisionsobservablen

Little Higgs Effektive Feldtheorie: Ausintegrieren schwerer Teilchen im Pfadintegral, Power-Counting: v^2/F^2 Kilian/JR, 2003 Exp. Präzision im %-Bereich: Entwicklung nur bis Ordnung v^2/F^2

$$\mathcal{L}_{eff.} = \mathcal{L}_{SM} + \sum_{i} f_{\mathcal{O}_i} \frac{v^2}{F^2} \mathcal{O}_i$$

 $f_{\mathcal{O}_i}$: Abweichungen vom SM

Schranken aus Kontaktwechselwirkungen (f_{JJ}): $F \gtrsim c^2 \cdot 4.5 \text{ TeV}$ Schranken verringert $\iff c \ll 1$ B', Z', W'^{\pm} superschwer, fermiophobisch

Csáki et al., 2002; Hewett et al., 2002; Kilian/JR, 2003; Han et al., 2003

Schranken aus dem Elektroschwachen Fit

Tree-Level-Mischung Z, Z' induziert große Korrekturen

Skala $F \gtrsim 1 - 3$ TeV

Higgs kompensiert Z'

Schweres Higgs natürlich in LHM

Kilian/JR, 2003

Rekonstruktion von Little-Higgs-Modellen Kilian/JR, 2003; Han et al., 2005

- Goldstone-Boson-Natur des Higgs-Bosons (nichtlineare Darstellung)
- \diamond Mechanismus zur Eliminierung der Quantenkorrekturen zu m_H

STRATEGIE:

Kilian/JR, 2003

- ► LHC: $Z', W' \Rightarrow M_{Z'}, M_{W'}$ bis zu 5 6 TeV ILC: Kontaktterme $\Rightarrow M_{Z'}, M_{W'}$ bis zu 10 - 20 TeV Extraktion von F und $c \equiv \cos \phi$
- LHC: $T \Rightarrow M_T$ und Mischungsparameter
- ILC: Higgsstrahlung und WW-Fusion (Winkelverteilungen/Energiespektren) ⇒ Higgskopplungen/-potential
- ► ILC/ $\gamma\gamma$: Higgszerfälle \Rightarrow Goldstone-Boson-Struktur
- ▶ ILC/GigaZ: Messung von $\Delta T \Rightarrow$ Beiträge schwerer Skalare
- Globaler Fit an LHC/ILC-Daten

Pseudo-Axionen in LHM

Kilian/Rainwater/JR, 2004

- U(1)-Gruppe geeicht: $Z' \leftrightarrow$ ungeeicht: η
- koppelt an Fermionen wie ein Pseudoskalar
- $-m_\eta \lesssim 400 \, \mathrm{GeV}$
- SM-Singlett, Kopplungen an SM-Teilchen v/F unterdrückt
- $-\eta$ axion-artiges Teilchen:

– U(1) explizit gebrochen \Rightarrow Axionschranken aus Astroteilchenphysik nicht anwendbar

Phänomenologie der Pseudo-Axionen

LHC: Gluon-Fusion, Diphotonsignal für $m_\eta \gtrsim 200 \text{ GeV}, 7\sigma$ möglich LHC: $T \rightarrow t\eta$ ILC: $e^+e^+ \rightarrow t\bar{t}\eta$

Kilian/Rainwater/JR, 2004

Phänomenologie der Pseudo-Axionen

LHC: Gluon-Fusion, Diphotonsignal für $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ möglich LHC: $T\to t\eta$ ILC: $e^+e^+\to t\bar{t}\eta$

ZHη-Kopplung diskriminiert unterschiedliche Little Higgs Modelle Rainwater/JR, 2006

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs
- Pheno: präzise Berechnungen/Simulationen von Vielteilchenendzuständen
- Spannende Zeiten!

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs
- Pheno: präzise Berechnungen/Simulationen von Vielteilchenendzuständen
- Spannende Zeiten!

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs
- Pheno: präzise Berechnungen/Simulationen von Vielteilchenendzuständen
- Spannende Zeiten!

