New Ideas of Electroweak Symmetry Breaking
LHC phenomenology

Jürgen Reuter

DESY Theory Group, Hamburg

DESY LHC Workshop, 6. March 2006
Outline

Hierarchy Problem

The Little Higgs mechanism

Cancellations of divergencies

Generic properties

Examples of Models

LHC phenomenology
 Heavy Quark States
 Heavy Vectors
 Heavy Scalars
 Pseudo Axions in LHM
 T parity and Dark Matter

Open Points/Discussion
Motivation: Hierarchy Problem

- Effective theories below a scale $\Lambda \Rightarrow$
- Loop integration cut off at order $\sim \Lambda$:

$\sim \Lambda^2$

Problem: Naturally, $m_h \sim \mathcal{O}(\Lambda^2)$:

$m_h^2 = m_0^2 + \Lambda^2 \times \text{(loop factors)}$

Light Higgs favoured by EW precision observables
($m_h < 0.5$ TeV)

$m_h \ll \Lambda \iff$ Fine-Tuning !?

Solutions: Large number of ideas since 1970s
Overview of Solutions

(1) **Light Scalar as Pseudo-Goldstone Boson**

 a) Higgs as massless Goldstone Boson, Higgs mass connected to explicit symmetry breaking

 b) No fundamental scalars in Nature: Technicolor (Repetition of QCD); EW Precision Data problematic
Overview of Solutions

(1) **Light Scalar as Pseudo-Goldstone Boson**

 a) Higgs as massless Goldstone Boson, Higgs mass connected to explicit symmetry breaking

 b) No fundamental scalars in Nature: Technicolor (Repetition of QCD); EW Precision Data problematic

(2) **Mechanism of Elimination of Loop Corrections:**

 a) **Supersymmetry:** Spin-Statistics \Rightarrow Loops of bosons and fermions cancel \Rightarrow W. Kilian’s talk

 b) **Little Higgs mechanism:** Global symmetries \Rightarrow Loops of particles of like statistics cancel
 Incorporates the ideas of (1a) and (1b)
Overview of Solutions

(1) Light Scalar as Pseudo-Goldstone Boson
 a) Higgs as massless Goldstone Boson, Higgs mass connected to explicit symmetry breaking
 b) No fundamental scalars in Nature: Technicolor (Repetition of QCD); EW Precision Data problematic

(2) Mechanism of Elimination of Loop Corrections:
 a) Supersymmetry: Spin-Statistics \(\Rightarrow \) Loops of bosons and fermions cancel \(\Rightarrow \) W. Kilian’s talk
 b) Little Higgs mechanism: Global symmetries \(\Rightarrow \) Loops of particles of like statistics cancel
 Incorporates the ideas of (1a) and (1b)

(3) Removal of Hierarchy:
 a) Large Extra Dimensions: Gravity looks only weak; no fundamental scalars, but components of (higher-dem.) gauge fields
 b) Warped Extra Dimensions (Randall-Sundrum): Gravity only weak in our world

(4) Numbers chosen by Providence
 - Anthropic principle: Values are because we can observe them
Little Higgs paradigm

Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model

- w/o Fine-Tuning: \(v \sim \Lambda/4\pi \)
Little Higgs paradigm

Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as Pseudo-Goldstone boson ≜ spontaneously broken (approximate) global symmetry; non-linear sigma model

- w/o Fine-Tuning: $v \sim \Lambda/4\pi$

Collective Symmetry Breaking: no quadratic div. @ 1-loop

$$
\Phi_1 = \exp [i \cos \beta h/f] f, \quad \Phi_2 = \exp [i \sin \beta h/f] f
$$

$$
\Phi_1^\dagger \Phi_1 + \Phi_2^\dagger \Phi_2 = \frac{g^2}{16\pi^2} \Lambda^2 (|\Phi_1|^2 + |\Phi_2|^2) \sim \frac{g^2}{16\pi^2} f^2
$$
Little Higgs paradigm

Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

*Light Higgs as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model*

- **w/o Fine-Tuning:** \(v \sim \Lambda/4\pi \)

Collective Symmetry Breaking: no quadratic div. @ 1-loop

\[
\Phi_1 = \exp[i \cos \beta h/f] f, \quad \Phi_2 = \exp[i \sin \beta h/f] f
\]

\[
\Phi_1 \Phi_1^\dagger + \Phi_2 \Phi_2^\dagger = \frac{g^2}{16\pi^2} \Lambda^2 (|\Phi_1|^2 + |\Phi_2|^2) \sim \frac{g^2}{16\pi^2} f^2
\]

\[
\Phi_1 \Phi_1^\dagger \Phi_2 \Phi_2^\dagger = \frac{g^4}{16\pi^2} \log \left(\frac{\Lambda^2}{\mu^2} \right) |\Phi_1 \Phi_2|^2 \Rightarrow \frac{g^4}{16\pi^2} \log \left(\frac{\Lambda^2}{\mu^2} \right) f^2(h^\dagger h)
\]
Cancellations of Divergencies in Yukawa sector

\[\propto \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2(k^2 - m^2_T)} \left\{ \lambda_t^2(k^2 - m^2_T) + k^2\lambda_T^2 - \frac{m_T}{F}\lambda_Tk^2 \right\} \]
Cancellations of Divergencies in Yukawa sector

\[\propto \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2(k^2 - m_T^2)} \left\{ \lambda_t^2(k^2 - m_T^2) + k^2\lambda_T^2 - \frac{m_T}{F}\lambda_Tk^2 \right\} \]

Little Higgs global symmetry imposes relation

\[\frac{m_T}{F} = \frac{\lambda_t^2 + \lambda_T^2}{\lambda_T} \]

\[\Rightarrow \text{Quadratic divergence cancels} \]

- Proof these relations experimentally!

Han et al., 03/05; Kilian/JR, 05
Generic properties — Scales and Masses

- Extended scalar (Higgs-) sector
 - Extended global symmetry

- Specific form of scalar potential

- Extended Gauge Sector: $B', Z', W' \pm$

- Extended top sector: new heavy quarks, t, t' loops $\Rightarrow M_h^2 < 0$
 \Rightarrow EWSB
Generic properties — Scales and Masses

- Extended scalar (Higgs-) sector
 - Extended global symmetry
- Specific form of scalar potential
- Extended Gauge Sector: \(B', Z', W'_{\pm} \)
- Extended top sector: new heavy quarks, \(t, t' \) loops \(\Rightarrow M_h^2 < 0 \)
 \(\Rightarrow \) EWSB

- Scale \(\Lambda \): global SB, new dynamics, UV embedding
- Scale \(F \): Pseudo-Goldstone bosons, new vector bosons and fermions
- Scale \(v \): Higgs, \(W^\pm, Z, \ell^\pm, \ldots \)
Little Higgs Models

Plethora of “Little Higgs Models” in 3 categories:

- **Moose Models**
 - Orig. Moose (Arkani-Hamed/Cohen/Georgi, 0105239)
 - Simple Moose (Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, 0206020)
 - Linear Moose (Casalbuoni/De Curtis/Dominici, 0405188)

- **Product (Gauge) Group Models**
 - Littlest Higgs (Arkani-Hamed/Cohen/Katz/Nelson, 0206021)
 - Antisymmetric Little Higgs (Low/Skiba/Smith, 0207243)
 - Custodial $SU(2)$ Little Higgs (Chang/Wacker, 0303001)
 - Littlest Custodial Higgs (Chang, 0306034)
 - Little SUSY (Birkedal/Chacko/Gaillard, 0404197)

- **Simple (Gauge) Group Models**
 - Orig. Simple Group Model (Kaplan/Schmaltz, 0302049)
 - Holographic Little Higgs (Contino/Nomura/Pomarol, 0306259)
 - Simplest Little Higgs (Schmaltz, 0407143)
 - Simplest Little SUSY (Roy/Schmaltz, 0509357)
 - Simplest T parity (Martin, Kilian/Rainwater/JR/Schmaltz,...)
Little Higgs Models

Plethora of “Little Higgs Models” in 3 categories:

- **Moose Models**
 - Orig. Moose (Arkani-Hamed/Cohen/Georgi, 0105239)
 - Simple Moose (Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, 0206020)
 - Linear Moose (Casalbuoni/De Curtis/Dominici, 0405188)

- **Product (Gauge) Group Models**
 - Littlest Higgs (Arkani-Hamed/Cohen/Katz/Nelson, 0206021)
 - Antisymmetric Little Higgs (Low/Skiba/Smith, 0207243)
 - Custodial $SU(2)$ Little Higgs (Chang/Wacker, 0303001)
 - Littlest Custodial Higgs (Chang, 0306034)
 - Little SUSY (Birkedal/Chacko/Gaillard, 0404197)

- **Simple (Gauge) Group Models**
 - Orig. Simple Group Model (Kaplan/Schmaltz, 0302049)
 - Holographic Little Higgs (Contino/Nomura/Pomarol, 0306259)
 - Simplest Little Higgs (Schmaltz, 0407143)
 - Simplest Little SUSY (Roy/Schmaltz, 0509357)
 - Simplest T parity (Martin, Kilian/Rainwater/JR/Schmaltz,...)
Varieties of Particle spectra

\[\mathcal{H} = \frac{SU(5)}{SO(5)}, \quad G = \frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)} \]

Arkani-Hamed/Cohen/Katz/Nelson, 2002

\[h, \Phi, \Phi^\pm, W', W'^\pm, Z', T, B', \Phi_P, \Phi^\pm, h, W'^\pm, Z' \]
Varieties of Particle spectra

$\mathcal{H} = \frac{SU(5)}{SO(5)}, \mathcal{G} = \frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)}$

Arkani-Hamed/Cohen/Katz/Nelson, 2002

$\mathcal{H} = \frac{SO(6)}{Sp(6)}, \mathcal{G} = \frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)}$

Low/Skiba/Smith, 2002
Varieties of Particle spectra

\[\mathcal{H} = \frac{SU(5)}{SO(5)}, \mathcal{G} = \frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)} \]

Arkani-Hamed/Cohen/Katz/Nelson, 2002

\[\mathcal{H} = \frac{SO(6)}{Sp(6)}, \mathcal{G} = \frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)} \]

Low/Skiba/Smith, 2002

\[\mathcal{H} = \frac{[SU(3)]^2}{[SU(2)]^2}, \mathcal{G} = \frac{SU(3) \times U(1)}{SU(2) \times U(1)} \]

Schmaltz, 2004

\[[SU(4)]^4 \rightarrow [SU(3)]^4 \]

Kaplan/Schmaltz, 2003

2HDM, \(h_{1/2}, \Phi_1, 2, 3, \Phi'_1, 2, 3, Z'_1, ..., 8, W'_{1,2}, q', \ell' \)
EW Precision Observables

Making the Higgs heavier reduces amount of fine-tuning

Higgs mass variable
(Coleman-Weinberg, UV completion)

$$\Delta S = \frac{1}{12\pi} \ln \frac{m_H^2}{m_0^2}$$

$$\Delta T = -\frac{3}{16\pi c_w^2} \ln \frac{m_H^2}{m_0^2}$$

Csaki et al.; Hewett et al.; Kilian/JR, 2003
Heavy Quark States

- EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03

Characteristic branching ratios:
\[\Gamma(T \to t h) \approx \Gamma(T \to t Z) \approx \frac{1}{2} \Gamma(T \to b W^+) \approx \frac{M_T \lambda_T^2}{64 \pi}, \]
\[\Gamma_T \sim 10^{-50} \text{ GeV} \]

Proof of T as EW singlet; but:
\[T \to Z', W', b, t \eta \]

AIM: Determination of \(M_T, \lambda_T, \lambda_T' \) indirectly (\(T \bar{T} \) impossible)
Heavy Quark States

- **EW single dominates QCD pair production:** Perelstein/Peskin/Pierce, '03

![Graphs showing production rates vs. mass](image)

- **Characteristic branching ratios:**
 \[\Gamma(T \to th) \approx \Gamma(T \to tZ) \approx \frac{1}{2} \Gamma(T \to bW^+) \approx \frac{M_T \lambda_T^2}{64 \pi}, \quad \Gamma_T \sim 10\text{--}50 \text{ GeV} \]

- **Proof of** T **as EW singlet; but:** $T \to Z'T, W'b, t\eta$

AIM: **Determination of** $M_T, \lambda_T, \lambda_{T'}$

$\lambda_{T'}$ indirect ($T\bar{T}h$ impossible)
$T \rightarrow Zt \rightarrow \ell^+\ell^-\ell\nu b$

SN-ATLAS-2004-038

- $E_T > 100$ GeV, $\ell\ell\ell$, $p_T > 100/30$ GeV, $b, p_T > 30$ GeV
- Bkgd.: WZ, ZZ, btZ
- Observation for $M_T \lesssim 1.4$ TeV
\[T \rightarrow Wb \rightarrow \ell\nu b \quad \text{SN-ATLAS-2004-038} \]

- \[E_T > 100 \text{ GeV}, \ell, p_T > 100 \text{ GeV}, b, p_T > 200 \text{ GeV}, \text{max. } jj, p_T > 30 \text{ GeV} \]
- Bkgd.: \(t\bar{t}, Wb\bar{b}, \) single \(t \)
- Observation for \(M_T \lesssim 2.5 \text{ TeV} \)
$T \rightarrow th \rightarrow \ell \nu bbb$ \hspace{1cm} SN-ATLAS-2004-038

- $\ell, p_T > 100$ GeV, $jjj, p_T > 130$ GeV, at least 1 b-tag
- Bkgd.: $t\bar{t}, Wb\bar{b}$, single t
- Observation for $M_T \lesssim 2.5$ TeV
\(T \rightarrow th \rightarrow \ell vbbb \quad \text{SN-ATLAS-2004-038} \)

- \(\ell, p_T > 100 \text{ GeV}, jjj, p_T > 130 \text{ GeV}, \) at least 1\(b \)-tag
- Bkgd.: \(t\bar{t}, Wb\bar{b}, \) single\(t \)
- Observation for \(M_T \lesssim 2.5 \text{ TeV} \)

Additional heavy quarks (Simple Group Models): \(U, C \) or \(D, S \) Han et al., 05

- Large cross section: \(u \) or \(d \) PDF
- Huge final state \(\ell \) charge asymmetry
- Good mass reconstruction
$T \rightarrow th \rightarrow ℓνbbb$

SN-ATLAS-2004-038

- $ℓ, p_T > 100\text{ GeV}, jjj, p_T > 130\text{ GeV}$, at least 1 b-tag
- Bkgd.: $t\bar{t}$, $Wb\bar{b}$, single t
- Observation for $M_T \lesssim 2.5\text{ TeV}$

Additional heavy quarks (Simple Group Models): $U, C \text{ or } D, S$

Han et al., 05

- Large cross section: u or d PDF
- Huge final state $ℓ$ charge asymmetry
- Good mass reconstruction
\[T \rightarrow th \rightarrow \ell\nu bbb \quad \text{SN-ATLAS-2004-038} \]

- \(\ell, p_T > 100 \text{ GeV}, jjj, p_T > 130 \text{ GeV}, \) at least 1 \(b \)-tag
- Bkgd.: \(t\bar{t}, Wb\bar{b}, \) single \(t \)
- Observation for \(M_T \lesssim 2.5 \text{ TeV} \)

Additional heavy quarks (Simple Group Models): \(U, C \) or \(D, S \)

- Large cross section: \(u \) or \(d \) PDF
- Huge final state \(\ell \) charge asymmetry
- Good mass reconstruction
Heavy Vectors

Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

- Dominant decays:
 - Product group: $Z' \rightarrow Z h, W W$
 - $W' \rightarrow W h, W Z$
 - Simple group: $Z' \rightarrow qq$, $X \rightarrow f F$

\[
\frac{\Gamma_{Z'}}{\Gamma_X} \sim 10^{-5} \text{ GeV}, \quad \frac{\Gamma_X}{\Gamma_{Z'}} \sim 0.1 - 10 \text{ GeV}
\]
Heavy Vectors

Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

- **Dominant decays:**
 - Product group: $Z' \rightarrow Zh, WW$
 - $W' \rightarrow Wh, WZ$
 - Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$

![Graph showing the relationship between M_X and σ with annotations for discovery channels and Tevatron limits.](image)
Heavy Vectors

Drell-Yan Production: Tevatron Limits \(\sim 500 - 600 \text{ GeV} \)

- **Dominant decays:**
 - Product group: \(Z' \rightarrow Zh, WW \), \(W' \rightarrow Wh, WZ \)
 - Simple group: \(Z' \rightarrow qq, X \rightarrow fF \)

- **Discovery channel:** \(Z' \rightarrow \ell\ell, W' \rightarrow \ell\nu \)

- \(\Gamma_{Z'} \sim 10 - 50 \text{ GeV} \), \(\Gamma_X \sim 0.1 - 10 \text{ GeV} \)
Heavy Vectors

Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

- **Dominant decays:**

 Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$

 Simple group: $Z' \rightarrow qq, X \rightarrow fF$

- **Discovery channel:** $Z' \rightarrow \ell \ell, W' \rightarrow \ell \nu$

- $\Gamma_{Z'} \sim 10 - 50$ GeV, $\Gamma_X \sim 0.1 - 10$ GeV
Proof: Sum rule for cancellation of divergences: \(g_{HVV'V} + g_{HVV'V'} = 0 \), associated production \(pp \rightarrow V'h \)
Heavy Scalars

Generally: Large model dependence
 no states complex singlet complex triplet

- Littlest Higgs, complex triplet:
 \(\Phi^0, \Phi_P, \Phi^\pm, \Phi^{\pm\pm} \)

Cleanest channel:
\(q \bar{q} \rightarrow \Phi^{++}, \Phi^{--} \rightarrow \ell\ell\ell\ell \):

Killer: PS

WW-Fusion:
\(dd \rightarrow uu \Phi^{++} \rightarrow uuW+W^+ \)

2 hard forward jets, hard close \(\ell+\ell+\ell+\ell^+ \)

Unstudied channels:

- \(q \bar{q} \rightarrow \Phi_P h \rightarrow ZZh \)
- \(q \bar{q} \rightarrow \Phi^0 W^- \rightarrow WWZ \)
- \(q \bar{q} \rightarrow \Phi^0 Z \rightarrow ZZZ, Zhh \)

Alternative: Model-Independent search in WW fusion:
A TLAS-note, Kilian/JR/(Schumacher)
Heavy Scalars

Generally: **Large model dependence**

no states complex singlet complex triplet

- **Littlest Higgs**, complex triplet:
 \(\Phi^0, \Phi_P, \Phi^\pm, \Phi^{\pm\pm} \)

- Cleanest channel: \(q\bar{q} \rightarrow \Phi^{++}\Phi^{--} \rightarrow \ell\ell\ell\ell \):
 Killer: PS

- **WW-Fusion**: \(dd \rightarrow uu\Phi^{++} \rightarrow uuW^+W^+ \)

- 2 hard forward jets, hard close \(\ell^+\ell^+ \)
 \(p_T\)-unbalanced

![Graph showing ATLAS data]

Unstudied channels:
- \(q\bar{q} \rightarrow \Phi^P h \rightarrow Zhh \)
- \(q\bar{q} \rightarrow \Phi^0 Z \rightarrow ZZZ, Zhh \)

Alternative: Model-independent search in **WW fusion**:

ATLAS note, Kilian/JR/(Schumacher 2006)
Heavy Scalars

Generally: **Large model dependence**
no states complex singlet complex triplet

- **Littlest Higgs**, complex triplet:
 \(\Phi^0, \Phi^P, \Phi^\pm, \Phi^{\pm\pm} \)

- **Cleanest channel**: \(q\bar{q} \rightarrow \Phi^{++}\Phi^{--} \rightarrow \ell\ell\ell\ell \):
 Killer: PS

- **WW-Fusion**: \(dd \rightarrow uu\Phi^{++} \rightarrow uuW^+W^+ \)

- **2 hard forward jets**, hard close \(\ell^+\ell^+ \)
 \(p_T \)-unbalanced

Unstudied channels:

- \(q\bar{q} \rightarrow \Phi_P h \rightarrow Zhh \)
- \(q\bar{q} \rightarrow \Phi^+W^- \rightarrow WWZ \)
- \(q\bar{q} \rightarrow \Phi^0 Z \rightarrow ZZ\,Z, Zhh \)
Heavy Scalars

Generally: **Large model dependence**
- no states complex singlet
- complex triplet

- Littlest Higgs, complex triplet:
 \(\Phi^0, \Phi_P, \Phi^\pm, \Phi^{\pm\pm} \)

- Cleanest channel: \(q\bar{q} \rightarrow \Phi^{++}\Phi^{--} \rightarrow \ell\ell\ell\ell \):
 Killer: PS

- \(WW\)-Fusion: \(dd \rightarrow uu\Phi^{++} \rightarrow uuW^+W^+ \)

- 2 hard forward jets, hard close \(\ell^+\ell^+ \)
 \(p_T\)-unbalanced

Unstudied channels:
- \(q\bar{q} \rightarrow \Phi_P h \rightarrow Zh\bar{h} \quad q\bar{q} \rightarrow \Phi^+W^- \rightarrow WWZ \)
- \(q\bar{q} \rightarrow \Phi^0 Z \rightarrow ZZ\bar{Z}, Zh\bar{h} \)

Alternative: Model-Independent search in \(WW\) fusion:

 ATLAS-note, Kilian/JR/(Schumacher)\(^2\)
Pseudo Axions in LHM

- broken diagonal generator: η in QCD; *pseudoscalar*
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion
- $m_\eta \lesssim v \sim 250$ GeV
- η EW singlet, couplings to SM particles v/F suppressed
Pseudo Axions in LHM

- broken diagonal generator: η in QCD; \textit{pseudoscalar}
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion
- $m_\eta \lesssim v \sim 250$ GeV
- η EW singlet, couplings to SM particles v/F suppressed
- new Higgs decays $H \rightarrow Z\eta, H \rightarrow \eta\eta$: $\text{BR}(H \rightarrow \eta\eta) \sim 10\%$ possible!
- LHC: \textbf{Gluon Fusion} (axial $U(1)_\eta$ anomaly), Diphoton Peak
Pseudo Axions in LHM

- broken diagonal generator: η in QCD; pseudoscalar
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

 \[m_\eta \lesssim v \sim 250 \text{ GeV} \]

- η EW singlet, couplings to SM particles v/F suppressed
- new Higgs decays $H \rightarrow Z\eta, H \rightarrow \eta\eta$: \(\text{BR}(H \rightarrow \eta\eta) \sim 10\% \) possible!
- LHC: Gluon Fusion (axial $U(1)_\eta$ anomaly), Diphoton Peak

![Graph showing BR vs m_η and $M_{\gamma\gamma}$ vs $d\sigma_{\gamma\gamma}/dM_{\gamma\gamma}$]
\(T \) parity and Dark Matter

- \(T \) parity: \(T^a \rightarrow T^a, \quad X^a \rightarrow -X^a \)
- analogous to \(R \) parity in SUSY, KK parity in extra dimensions
- Bounds on \(f \) MUCH relaxed,
- \textit{but}: Pair production!, typical \textit{cascade decays}
- \(T \): \(T \)-even \(\Rightarrow \) phenomenology unchanged, \(Z' \) can also be even
- Lightest heavy quark \(T' \) is \(T \)-odd, similar to Simple Group Models
- Lightest \(T \)-odd particle (LTP) \(\Rightarrow \) \textit{Candidate for Cold Dark Matter}
T parity and Dark Matter

- **T parity**: $T^a \rightarrow T^a$, $X^a \rightarrow -X^a$
- analogous to R parity in SUSY, KK parity in extra dimensions
- Bounds on f MUCH relaxed,
- **but**: Pair production!, typical **cascade decays**
- T: T-even \Rightarrow phenomenology unchanged, Z' can also be even
- Lightest heavy quark T' is T-odd, similar to Simple Group Models
- Lightest T-odd particle (LTP) \Rightarrow **Candidate for Cold Dark Matter**

Littlest Higgs: A' LTP

$W', Z' \sim 650$ GeV

$\Phi \sim 1$ TeV

$T, T' \sim 0.7$-1 TeV

Annihilation:

$A'A' \rightarrow h \rightarrow WW, ZZ, hh$

- Other LTP candidates: **Pseudo-Axion η LTP**, heavy neutral leptons
Open Points/Discussion

- Generics: new heavy gauge bosons, scalars, quarks
- Pseudoaxions: Gluon fusion, $T \rightarrow t\eta, ZH\eta$
- Simple Group Models: U, D production, discrimination from other states
- Extensions of $SU(2)_L$ e.g. in Simple Group Models: Pheno of Heavy Vectors, e.g. $X^0 \leftrightarrow Y^0$
- Measurement and Discrimination of W'; asymmetries?
- Pheno of Little Higgs with T parity, Little Higgs cascades vs. SUSY/UED cascades
- Physics from UV completions accessible?
- Tools: O’MEGA/WHIZARD multi-partice event generator: contains both LH models
Open Points/Discussion

- Generics: new heavy gauge bosons, scalars, quarks
- Pseudoaxions: Gluon fusion, $T \rightarrow t\eta, ZH\eta$
- Simple Group Models: U, D production, discrimination from other states
- Extensions of $SU(2)_L$ e.g. in Simple Group Models: Pheno of Heavy Vectors, e.g. $X^0 \leftrightarrow Y^0$
- Measurement and Discrimination of W'; asymmetries?
- Pheno of Little Higgs with T parity, Little Higgs cascades vs. SUSY/UED cascades
- Physics from UV completions accessible?
- Tools: O’MEGA/WHIZARD multi-partice event generator: contains both LH models
Open Points/Discussion

- Generics: new heavy gauge bosons, scalars, quarks
- Pseudoaxions: Gluon fusion, $T \rightarrow t\eta, ZH\eta$
- Simple Group Models: U, D production, discrimination from other states
- Extensions of $SU(2)_L$ e.g. in Simple Group Models: Pheno of Heavy Vectors, e.g. $X^0 \leftrightarrow Y^0$
- Measurement and Discrimination of W'; asymmetries?
- Pheno of Little Higgs with T parity, Little Higgs cascades vs. SUSY/UED cascades
- Physics from UV completions accessible?
- Tools: O’MEGA/WHIZARD multi-partice event generator: contains both LH models
Open Points/Discussion

- Generics: new heavy gauge bosons, scalars, quarks
- Pseudoaxions: Gluon fusion, $T \rightarrow t\eta, ZH\eta$
- Simple Group Models: U, D production, discrimination from other states
- Extensions of $SU(2)_L$ e.g. in Simple Group Models: Pheno of Heavy Vectors, e.g. $X^0 \leftrightarrow Y^0$
- Measurement and Discrimination of W'; asymmetries?
- Pheno of Little Higgs with T parity, Little Higgs cascades vs. SUSY/UED cascades
- Physics from UV completions accessible?
- Tools: O’MEGA/WHIZARD multi-partice event generator: contains both LH models