Channels & Challenges — Neue Physik am Large Hadron Collider

Jürgen Reuter

Albert-Ludwigs-Universität Freiburg

Vortrag, Göttingen, 17. Dezember 2007/Berlin, 14. Januar 2008

Teilchenphysik - "The High Energy Frontier"

System	Größe	Energie
Moleküle	10^{-8} m	$\sim 10^{-1} {\rm eV}$
Atome	$10^{-10}\mathrm{m}$	$\sim \text{eV} \dots \dots \text{keV}$
Kerne	$10^{-14}\mathrm{m}$	$\sim 10 \rm MeV$
Nukleonen	10^{-15} m	$\lesssim 1{\rm GeV}$

Auflösungsvermögen: $\Delta x \sim (\Delta E)^{-1}$ \Rightarrow Hochenergie-Beschleuniger

 $\mathbf{b} = \mathbf{a} \mathbf{a}$

Das Standardmodell der Teilchenphysik – Erfolge

	Fermions			Boson	s	Mechaelusiduser	Ctärke	Deiebweite	Figeneeboft
Quarks	u	С	t	Y	wechselwirkung	Slarke	Reicriweite	Eigenschalt	
	up	charm	top	photon		stark	1	$\sim 10^{-15}~{\rm m}$	0 0
	d	S	b	Ζ		otan			D
	down	strange	bottom	Z boson	Force		10-2		19 50
Le	V	V	V	W	carrie	elektromagnetisch	10-2	∞	
		w μ muon neutrino	tau neutrino	W boson	6				San Barline yourse
tons	e		τ	g		schwach	10^{-12}	$\lesssim 10^{-17}$ m	
	electron	muon	tau	gluon					
Higgs* boson						Gravitation	10^{-39}	∞	<u>E</u>
*Yet to be confirmed Source: AAAS									

- Wechselwirkungen: relativistische Quantenfeldtheorien
- schwache WW: erklärt radioaktive Zerfälle
- elektroschwache Vereinigung
- starke WW: asymptotische Freiheit
- Entdeckung des Gluons DESY 1979
- Experimentelle Bestätigung: besser als 1%

Fermi 1934

Das Higgs-Boson

- Higgs: fundamentales Skalarfeld

Brout, Englert, Higgs, 1964

- Vakuumerwartungswert $v = 246 \,\text{GeV}$
- bricht elektroschwache Symmetrie zum Elektromagnetismus
- verleiht Elementarteilchen Masse
- koppelt proportional zur Masse

40 Jahre erfolglose Suche

Das Standardmodell der Teilchenphysik – Zweifel

- beschreibt Mikrokosmos (zu gut?)
- 28 freie Parameter

– Form des Higgs-Potentials?

Das Standardmodell der Teilchenphysik – Zweifel

- beschreibt Mikrokosmos (zu gut?)
- 28 freie Parameter

- Form des Higgs-Potentials?

Hierarchie–Problem

chirale Symmetrie: $\delta m_f \propto v \ln(\Lambda^2/v^2)$ keine Symmetrie für Quantenkorrekturen zur Higgs-Masse

$$\delta M_H^2 \propto \Lambda^2 \sim M_{\rm Planck}^2 = (10^{19})^2 \, {\rm GeV}^2$$

Offene Fragen

- Vereinigung aller Wechselwirkungen (?)
- Baryonasymmetry $\Delta N_B \Delta N_{\bar{B}} \sim 10^{-9}$ fehlende CP-Verletzung
- Flavour: drei Generationen
- Winzige Neutrino-Massen: $m_{\nu} \sim \frac{v^2}{M}$
- Dunkle Materie:
 - stabil
 - schwach wechselwirkend
 - ▶ $m_{DM} \sim 100 \, \mathrm{GeV}$
- Quantentheorie der Gravitation
- Kosmische Inflation
- Kosmologische Konstante

Ideen für Neue Physik seit 1970

(1) Symmetrie zur Eliminierung der Quantenkorrekturen

- Supersymmetrie: Spin-Statistik ⇒ Korrekturen von Bosonen und Fermionen heben sich weg
- Little-Higgs-Modelle: Globale Symmetrien ⇒ Korrekturen durch Teilchen gleicher Statistik heben sich weg

(2) Neue Bausteine, Sub-Struktur

 Technicolor/Topcolor: Higgs gebundener Zustand stark wechselwirkender Teilchen

(3) Nichttriviale Raumzeitstruktur eliminiert Hierarchie

- Zusätzl. Raumdimensionen: Gravitation erscheint nur schwach
- Nichtkommutative Raumzeit: Körnigkeit der Raumzeit

(4) Ignorieren der Hierarchie

- Anthropisches Prinzip: Werte sind so, weil wir sie beobachten

Supersymmetrie

Spin-Statistik: Korrekturen von Bosonen und Fermionen heben sich weg

verbinden Eich- und Raum-Zeit-Symmetrien

Fermion/Boson-Multipletts gleicher Masse \Rightarrow SUSY gebrochen

 M_H in allen Ordnungen geschützt

Große Vereinheitlichung

R-Parität: Dunkle Materie

Little Higgs

Globale Symmetrien: Korrekturen von Teilchen gleicher Statistik heben sich weg

Higgs: Goldstone-Boson spontan gebrochener globaler Symmetrie

Kollektive Brechung globaler Symmetrien schützt Higgs-Masse

 M_H geschützt in erster Ordnung

stark wechselwirkend @10 TeV

T-Parität: Dunkle Materie

Charakteristika von Standard-Modell-Erweiterungen

<u>Skala Λ </u>: "hidden sector", Symmetriebrechung

Skala F: neue Teilchen

<u>Skala v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Teraskala: Reiches Spektrum neuer Teilchen, komplizierte Zerfallsstrukturen

Schranken an neue Modelle?

Flavour-Struktur: Meson-Mischung & seltene Zerfälle, CP-Verletzung Astrophysikalische Schranken: Dunkle-Materie-Verteilung Eichstruktur: Elektroschwache Präzisionsobservablen

Schranken an neue Modelle?

Flavour-Struktur: Meson-Mischung & seltene Zerfälle, CP-Verletzung Astrophysikalische Schranken: Dunkle-Materie-Verteilung Eichstruktur: Elektroschwache Präzisionsobservablen

Neue Teilchen-Skala $F \gtrsim 1-3 \, {\rm TeV}$

Direkte Suchen: Large Hadron Collider

LHC @ CERN: 2007/08 pp-Collider $\sqrt{s} = 14 \text{ TeV}$

Die Herausforderung des LHC

Partonische Subprozesse: *qq*, *qg*, *gg* Keine feste partonische Energie

Hohe Ereignisraten für t, W/Z, H, \Rightarrow riesige Untergründe

Schnitte zur Untergrundreduktion

Die Herausforderung des LHC

Partonische Subprozesse: *qq*, *qg*, *gg* Keine feste partonische Energie

Hohe Ereignisraten für t, W/Z, H, \Rightarrow riesige Untergründe

Schnitte zur Untergrundreduktion

Modell-Diskriminierung – Präzisionsmessungen

► Masse neuer Teilchen: Endpunkte von Zerfallsspektren

- Spin neuer Teilchen: Spin neuer Teilchen: Winkelverteilungen, ...
- Modellbestimmung: Messung von Kopplungskonstanten
- ⇒ Präzise Vorhersagen für Signal und Untergründe
 - Berücksichtigung von kinematischen Schnitten
 - Exklusive Vielteilchen-Endzustände: $2 \rightarrow 4$ bis $2 \rightarrow 10$
 - Quantenkorrekturen: Reelle und virtuelle Korrekturen

Simulationen: Der Event-Generator WHIZARD

http://whizard.event-generator.org

Matrix-Element-Generator O'Mega:

Optimierte Helizitätsamplituden: Vermeidung aller Redundanzen

Vielzweck-Event-Generator Whizard:

- Adaptive Multikanal-Monte-Carlo-Integration
- sehr gut getestet
- Strukturfunktionen, Partonschauer/Hadronisierung
- Eventformate für Detektorsimulationen
- Virtuelle Korrekturen: NLO-Monte-Carlo

NLO-MC für $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$

Kilian/JR/Robens, 2006

Beliebige Verteilungen @ NLO

 $\Rightarrow \quad \text{BSM-MC für LHC}$

Ohl, 2000/01; M.Moretti/Ohl/JR, 2001 er Redundanzen

JR et al., 2006; Hagiwara/.../JR..., 2006

Kilian, 2001; JR, 2007

[STDHEP, HEPEVT, ATHENA, ...]

Ohl, 1996; Kilian, 2000; Kilian/Ohl/JR, 2007

Simulationen: Der Event-Generator WHIZARD

http://whizard.event-generator.org

Matrix-Element-Generator O'Mega:

Optimierte Helizitätsamplituden: Vermeidung aller Redundanzen

Vielzweck-Event-Generator Whizard:

- Adaptive Multikanal-Monte-Carlo-Integration
- sehr gut getestet
- Strukturfunktionen, Partonschauer/Hadronisierung
- Eventformate für Detektorsimulationen
- Virtuelle Korrekturen: NLO-Monte-Carlo

NLO-MC für $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$

Kilian/JR/Robens, 2006

Beliebige Verteilungen @ NLO

 \Rightarrow BSM–MC für LHC

Ohl, 2000/01; M.Moretti/Ohl/JR, 2001 Redundanzen

Ohl, 1996; Kilian, 2000; Kilian/Ohl/JR, 2007

JR et al., 2006; Hagiwara/.../JR..., 2006

[STDHEP, HEPEVT, ATHENA, ...]

Kilian, 2001; JR, 2007

WHIZARD: Komplexität und Vielseitigkeit

Erlaubt höchsten Grad an Komplexität:

- $e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}ij\ell\nu$ (110.000 Diagramme)
- ► $e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8i$ (12.000.000 Diagramme)
- ▶ $pp \rightarrow \ell\ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2.100.000 Diagramme mit 4 Jets + Flavors)
- ▶ $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32.000 Diagramme, 22 Farbflüsse, ~ 10,000 PS-Kanäle)
- ▶ $pp \rightarrow VV jj \rightarrow jj\ell\ell\nu\nu$ einschl. anomaler TGC/QGC
- Test case $qq \rightarrow 9q$ (224.000.000 Diagramme)

Unterstützte Physik-Modelle:

- Test-Modelle: QED, QCD
- Standard-Modell
- Littlest/Simplest Little Higgs, Little-Higgs-Modelle mit T-Parität
- Moose-Modelle, Deconstructed dimensions
- MSSM, NMSSM, erweiterte SUSY-Modelle, Gravitinos (SLHA/SLHA2)
- Graviton-Resonanzen, Universelle Extra Dimensionen, Randall-Sundrum
- Nichtkommutatives Standard-Modell
- Höherdimensionale Operatoren, effektive Feldtheorien
- Anomale trilineare und guartische Eichkopplungen
- K-matrix/Padé-Unitarisierung, unitarisierte Resonanzen

Alboteanu/Kilian/JR

I. Reuter

Sbottom-Produktion am LHC

Hagiwara/..., JR/..., 2006

Reelle Korrekturen: Bottom-Jet-Strahlung

K. Hagiwara/..., JR/..., 2006

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR als kombinatorischer Untergrund

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 Diagramme, 22 Farbflüsse, ~ 4000 PS-Kanäle

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177\,\text{fb} \quad \longrightarrow \quad \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7\,\text{fb}$

Vorwärts-Diskriminierung von ISR und Zerfalls-b-Jets schwierig:

Nur der äußerste Vorwärts-b-Jet deutlich weicher

Reelle Korrekturen: Bottom-Jet-Strahlung

K. Hagiwara/..., JR/..., 2006

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR als kombinatorischer Untergrund

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 Diagramme, 22 Farbflüsse, ~ 4000 PS-Kanäle

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177\,\text{fb} \quad \longrightarrow \quad \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7\,\text{fb}$

Nur geringe Unterschiede in $p_{T,b}$, PDF: Maximum bei kleinerem Wert

zu kleinerem p_T verschoben: leichte Teilchen balancieren Events aus

Und wenn nicht SUSY?

Pseudo-Axionen in Little Higgs

- U(1)-Gruppe geeicht: $Z' \leftrightarrow$ ungeeicht: η
- koppelt an Fermionen wie ein Pseudoskalar
- $-m_n \lesssim 400 \,\mathrm{GeV}$
- SM-Singlett, Kopplungen an SM-Teilchen v/F unterdrückt
- $-\eta$ axion-artiges Teilchen:

Kilian/Rainwater/JR, 2004, 2006; JR, 2007

- U(1) explizit gebrochen \Rightarrow Axionschranken aus Astroteilchenphysik nicht anwendbar

Kilian/Rainwater/JR, 2004, 2006

_______ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Kilian/Rainwater/JR, 2004, 2006

 $M_{inv}(b\bar{b})$ [GeV]

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ möglich

LHC: $T \to t\eta$ Boersma/Godfrey/JR ILC: $e^+e^- \to t\bar{t}\eta$

$ZH\eta$ -Kopplung

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ möglich

LHC: $T \to t\eta$ Boersma/Godfrey/JR ILC: $e^+e^- \to t\bar{t}\eta$

$ZH\eta$ -Kopplung

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ möglich

LHC: $T \to t\eta$ Boersma/Godfrey/JR ILC: $e^+e^- \to t\bar{t}\eta$

$ZH\eta$ -Kopplung

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Kilian/Rainwater/JR, 2004, 2006

LHC: Gluon-Fusion, Diphoton-Signal für $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ möglich

LHC: $T \to t\eta$ Boersma/Godfrey/JR ILC: $e^+e^- \to t\bar{t}\eta$

$ZH\eta$ -Kopplung

verboten in Produkt-Gruppen-Modellen

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right.$$

Präzisionsmaschine LHC – Anomale Eichkopplungen

ILC: LHC:

Beyer/Kilian/Krstonošić/Mönig/JR/Schröder/Schmidt, 2006 Alboteanu/Kilian/JR; Kilian/Kobel/Mader/JR/Schumacher

Anomale quartische Eichkopplungen, durch chiralen EW Lagrangian:

$$\mathcal{L}_{4} = \alpha_{4} \frac{g^{2}}{2} \left\{ \left[(W^{+}W^{+})(W^{-}W^{-}) + (W^{+}W^{-})^{2} \right] + \frac{2}{c_{W}^{2}} (W^{+}Z)(W^{-}Z) + \frac{1}{2c_{W}^{4}} (ZZ)^{2} \right\}$$

$$\mathcal{L}_{5} = \alpha_{5} \frac{g^{2}}{2} \left\{ (W^{+}W^{-})^{2} + \frac{2}{c_{W}^{2}} (W^{+}W^{-})(ZZ) + \frac{1}{2c_{W}^{4}} (ZZ)^{2} \right\}$$

(alle Leptonen, einschl. τ):

 $pp \to jj(ZZ/WW) \to jj\ell^-\ell^+\nu_\ell\bar{\nu}_\ell$

 $\sigma\approx 40\,{\rm fb}$

Untergrund:

- $t\bar{t} \rightarrow WbWb, \sigma \approx 52 \, \text{pb}$
- Single t, misrek. Jet: $\sigma \approx 4.8 \, \mathrm{pb}$
- QCD: $\sigma \approx 0.21 \, \text{pb}$

Tagging und Schnitte:

- ▶ $\ell\ell jj$ -Tag, $\eta_{tag}^{min} < \eta_{\ell} < \eta_{tag}^{max}$, b-Veto
- ► $|\Delta \eta_{jj}| > 4.4$, $M_{jj} > 1080 \, \text{GeV}$
- Minijet-Veto: $p_{T,j} < 30 \,\text{GeV}$
- ▶ $E_j > 600, 400 \,\text{GeV}, \quad p_{T,j}^1 > 60, 24 \,\text{GeV}$

Verbessert S/\sqrt{B} von 3.3 auf 29.7

Ergebnisse: (1 σ Sensitivität auf α s)

Schranken auf Λ [TeV]:

Coupl.	ILC (1 ab^{-1})	LHC (100fb^{-1})
α_4	0.0088	0.00160
α_5	0.0071	0.00098

Spin	I = 0	I = 1	I=2
0	1.39	1.55	1.95
1	1.74	2.67	_
2	3.00	3.01	5.84

DARK MATTER

Most of the universe can't even be bothered to interact with you.

Kilian/JR, 2006; Deppisch/Kilian/JR

Eichkopplungen laufen: $\frac{dg_a}{d\log\mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a hängt vom Teilchenspektrum ab

Kilian/JR, 2006; Deppisch/Kilian/JR

Eichkopplungen laufen: $\frac{dg_a}{d\log\mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a hängt vom Teilchenspektrum ab

Sparticles ermöglichen Vereinigung

 $\textbf{z.B.: } SU(5) \rightarrow SU(3)_c \times SU(2)_w \times U(1)_Y$

Kilian/JR, 2006; Deppisch/Kilian/JR

Eichkopplungen laufen: $\frac{dg_a}{d\log\mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a hängt vom Te

 B_a hängt vom Teilchenspektrum ab

Sparticles ermöglichen Vereinigung

 $\textbf{z.B.: } SU(5) \to SU(3)_c \times SU(2)_w \times U(1)_Y$

Doublet-Triplet-Splitting-Problem: Higgs-Partner *D*: Proton-Zerfall

 $Dqq, D\ell q$

Kilian/JR, 2006; Deppisch/Kilian/JR

Eichkopplungen laufen: $\frac{dg_a}{d\log\mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a hängt vom Teilchenspektrum ab

Sparticles ermöglichen Vereinigung

 $\textbf{z.B.: } SU(5) \to SU(3)_c \times SU(2)_w \times U(1)_Y$

Doublet-Triplet-Splitting-Problem: Higgs-Partner D: Proton-Zerfall

Dqq, $D\ell q$

Kilian/JR, 2006

Erweiterter MSSM Higgs-Sektor

- lockerere Higgs-Schranke (leichte Pseudoskalare)
- große unsichtbare Zerfallsrate möglich
- leichtestes Unhiggs: Dunkle Materie (H-Parität)
- Dunkler Materie-Cocktail: interessante Reliktdichte (Neutralino-Bounds nicht anwendbar!)
- Paar-Produktion von Unhiggses/Unhiggsinos, Kaskadenzerfälle

Braam/JR

Floßdorf/JR

Eloßdorf/JB

Braam/JR

Kilian/JR, 2006; Deppisch/Kilian/JR

Eichkopplungen laufen: $\frac{dg_a}{d\log\mu} = \frac{g_a^3}{16\pi^2}B_a$, B_a hängt vom Teilchenspektrum ab

Sparticles ermöglichen Vereinigung

 $\textbf{z.B.: } SU(5) \to SU(3)_c \times SU(2)_w \times U(1)_Y$

Doublet-Triplet-Splitting-Problem: Higgs-Partner D: Proton-Zerfall

Dqq, $D\ell q$

Kilian/JR, 2006

Braam/JB/Wiesler

(Down-type) Leptoquarks, Leptoquarkinos

- 3 Generationen an der TeV-Skala
- Gluonfusion, single production
- Endzustände: $t\tau, b\nu_{\tau}, \tilde{t}\tau, \dots$
- ▶ falls TeV-Flavorsymmetrie: $gq \rightarrow D\ell$ verstärkt, Zerfälle $t\mu, te$

Erweiterter Neutralino-Sektor wie im NMSSM

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs Dunkle Materie
- Pheno: präzise Berechnungen/Simulationen von Vielteilchen-Endzuständen
- Spannende Zeiten!

Ausblick

- LHC: neue Ära der Physik
- Higgs-Mechanismus
- Neue Teilchen, Symmetrien: SUSY, Little Higgs Dunkle Materie
- Pheno: präzise Berechnungen/Simulationen von Vielteilchen-Endzuständen
- Spannende Zeiten!
- Es ist Licht am Ende des Tunnels!

