Anomalous Gauge Couplings at the LHC and ILC

Jürgen Reuter

Albert-Ludwigs-Universität Freiburg

Kilian/JR PRD 70 (2004), 015004; Beyer/Kilian/Krstonošić/Mönig/Schmitt/Schröder, EPJC 48 (2006), 353;

M. Mertens, 2005; Alboteanu/Kilian/JR, Kilian/Kobel/Mader/JR/Schumacher, work in

progress

Seminar, Bonn, January 17, 2008

Doubts on the Standardmodel

	Measurement	Fit	10 ^{mer}	1-0 ^{f2}	σ ^{meas}	
$\Delta \alpha_{\text{had}}^{(5)}(\text{m}_{z})$	0.02758 ± 0.00035	0.02768	-			
m _z [GeV]	91.1875 ± 0.0021	91.1875				
Γ _z [GeV]	2.4952 ± 0.0023	2.4957	-			
σ ⁰ had [nb]	41.540 ± 0.037	41.477	_	-		
R,	20.767 ± 0.025	20.744	_			
A ^{0J}	0.01714 ± 0.00095	0.01645	_			
A(P_)	0.1465 ± 0.0032	0.1481	-			
B,	0.21629 ± 0.00066	0.21586	_			
B,	0.1721 ± 0.0030	0.1722				
A	0.0992 ± 0.0016	0.1038	_			
A ^{0,c}	0.0707 ± 0.0035	0.0742	-	•		
Ab	0.923 ± 0.020	0.935	_			
A.,	0.670 ± 0.027	0.668	•			
A(SLD)	0.1513 ± 0.0021	0.1481	_	- 1		
sin ² 0eff (Q _{fb})	0.2324 ± 0.0012	0.2314				
m _w [GeV]	80.398 ± 0.025	80.374	_			
Г _w [GeV]	2.140 ± 0.060	2.091	_			
m, [GeV]	170.9 ± 1.8	171.3	-			
			<u> </u>	<u> </u>		

- describes microcosm (too good?)
- 28 free parameters

- Higgs ?, form of Higgs potential ?

Hierarchy Problem

chiral symmetry: $\delta m_f \propto v \ln(\Lambda^2/v^2)$ no symmetry for quantum corrections to Higgs mass

$$\delta M_H^2 \propto \Lambda^2 \sim M_{\rm Planck}^2 = (10^{19})^2 \, {\rm GeV}^2$$

Open Questions

- Unification of all interactions (?)
- Baryon asymmetrie $\Delta N_B \Delta N_{\bar{B}} \sim 10^{-9}$ missing CP violation
- Flavour: three generations
- Tiny neutrino masses: $m_{
 u} \sim rac{v^2}{M}$

 $\begin{array}{c} 0 \\ 50 \\ U(1) \\ 40 \\ 20 \\ 10 \\ SU(2) \\ 20 \\ 10^{2} \\ SU(3) \\ SU(3) \\ Standard Model \\ 0 \\ 10^{2} \\ 10^{4} \\ 10^{6} \\ 10^{6} \\ 10^{10} \\ 10^$

- Dark Matter:
 - stable
 - only weakly interacting
 - ▶ $m_{DM} \sim 100 \, \mathrm{GeV}$
- Quantum theory of gravity
- Cosmic inflation
- Cosmological constant

Ideas for New Physics since 1970

(1) Symmetry for eliminating the quantum corrections

- Supersymmetry: Spin-Statistics ⇒ Corrections from bosons and fermions cancel each other
- Little-Higgs models: Global symmetries ⇒ Corrections from particles of like statistics cancel each other

(2) New ingredients/sub-structure

 Technicolor/Topcolor: Higgs bound state of new strongly interacting partons

(3) Nontrivial space-time structure eliminates hierarchy

- Additional space dimensions: gravity appears only weak
- Noncommutative spacetime: space-time is coarse-grained

(4) Ignoring the hierarchy

 Anthropic principle: Parameters are the way they are, <u>since</u> we can measure them

Model-Independent Way – Effective Field Theories

How to <u>clearly</u> separate effects of heavy degrees of freedom?

Toy model: Two interacting scalar fields φ, Φ

$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \exp\left[i \int dx \left(\frac{1}{2}(\partial\varphi)^2 - \frac{1}{2}\Phi(\Box + M^2)\Phi - \lambda\varphi^2\Phi - \ldots + J\Phi + j\varphi\right)\right]$$

Low-energy effective theory \Rightarrow integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting

Completing the square:

Effective Dim. 6 Operators

$$\longrightarrow \qquad \qquad \mathcal{O}_{h,1}' = \frac{1}{F^2} \left((Dh)^{\dagger}h \right) \cdot \left(h^{\dagger}(D^h) \right) - \frac{v^2}{2} |Dh|^2 \\ \mathcal{O}_{hh}' = \frac{1}{F^2} (h^{\dagger}h - v^2/2) (Dh)^{\dagger} \cdot (Dh)$$

$$\mathcal{O}'_{WW} = -\frac{1}{F^2} \frac{1}{2} (h^{\dagger} h - v^2/2) \text{tr} [W_{\mu\nu} W^{\mu\nu} \\ \mathcal{O}_B = \frac{1}{F^2} \frac{i}{2} (D_{\mu} h)^{\dagger} (D_{\nu} h) B^{\mu\nu} \\ \mathcal{O}'_{BB} = -\frac{1}{F^2} \frac{1}{4} (h^{\dagger} h - v^2/2) B_{\mu\nu} B^{\mu\nu}$$

Oblique Corrections: S, T, U

- ♦ All low-energy effects order v^2/F^2 (Wilson coefficients)
- ♦ Low-energy observables with low-energy input G_F , α , M_Z affected by **non-oblique** contributions:

$$G_F = \frac{1}{v} \longrightarrow \frac{1}{v} (1 - \alpha \Delta T + \delta), \qquad \delta \equiv -\frac{v^2}{4} f_{JJ}^{(3)}$$

$$\begin{split} S_{\text{eff}} &= \ \Delta S \\ T_{\text{eff}} &= \ \Delta T - \frac{1}{\alpha} \delta \\ U_{\text{eff}} &= \ [\Delta U = 0] + \frac{4s_w^2}{\alpha} \delta \end{split}$$

► non-oblique flavour-dependent corrections ⇒ enforce flavour-dependent EW fit

Model-Independent Description of the EW sector

- Higgs boson still not observed
- Aim: describe any physics beyond the SM as generically as possible
- Implement what we know about the SM
- Implements $SU(2)_L \times U(1)_Y$ gauge invariance
- Building blocks (including longitudinal modes):

$$\psi$$
 (SM fermions), W^a_{μ} $(a = 1, 2, 3)$, B_{μ} , $\Sigma = \exp\left[\frac{-i}{v}w^a\tau^a\right]$

Minimal Lagrangian including gauge interactions

$$\mathcal{L}_{\mathsf{min}} = \sum_{\psi} \overline{\psi}(i \not\!\!\!D) \psi - \frac{1}{2g^2} \operatorname{tr} \left[\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} \right] - \frac{1}{2g^{\prime 2}} \operatorname{tr} \left[\mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} \right] + \frac{v^2}{4} \operatorname{tr} \left[(\mathbf{D}_{\mu} \Sigma) (\mathbf{D}^{\mu} \Sigma) \right]$$

The Fundamental Building Blocks

- $\mathbf{V} = \Sigma (\mathbf{D}\Sigma)^{\dagger}$ (longitudinal vectors), $\mathbf{T} = \Sigma \tau^3 \Sigma^{\dagger}$ (neutral component)
- Unitary gauge (no Goldstones): $\mathbf{w} \equiv 0$, i.e., $\Sigma \equiv 1$.

$$\begin{split} \mathbf{V} &\longrightarrow -\frac{\mathrm{i}g}{2} \left[\sqrt{2} (W^+ \tau^+ + W^- \tau^-) + \frac{1}{c_\mathrm{w}} Z \tau^3 \right] \\ \mathbf{T} &\longrightarrow \tau^3 \end{split}$$

• Gaugeless limit (only Goldstones) $(g, g' \rightarrow 0)$:

$$\begin{split} \mathbf{V} &\longrightarrow \frac{\mathrm{i}}{v} \bigg\{ \sqrt{2} \partial w^+ \tau^+ + \sqrt{2} \partial w^- \tau^- + \partial z \tau^3 \bigg\} + O(v^{-2}) \\ \mathbf{T} &\longrightarrow \tau^3 + 2\sqrt{2} \frac{\mathrm{i}}{v} \left(w^+ \tau^+ - w^- \tau^- \right) + O(v^{-2}) \end{split}$$

So T projects out the neutral part:

$$\operatorname{tr}\left[\mathbf{T}\mathbf{V}\right] = \frac{2\mathrm{i}}{v} \left[\partial z + \frac{\mathrm{i}}{v} \left(w^{+}\partial w^{-} - w^{-}\partial w^{+}\right)\right] + O(v^{-3})$$

Electroweak Chiral Lagrangian

Complete Lagrangian contains infinitely many parameters

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{min}} - \sum_{\psi} \overline{\psi}_L \Sigma M \psi_R + \beta_1 \mathcal{L}'_0 + \sum_i \alpha_i \mathcal{L}_i + \frac{1}{v} \sum_i \alpha_i^{(5)} \mathcal{L}^{(5)} + \frac{1}{v^2} \sum_i \alpha_i^{(6)} \mathcal{L}^{(6)} + \dots \\ \mathcal{L}'_0 &= \frac{v^2}{4} \text{tr} \left[\mathbf{T} \mathbf{V}_{\mu} \right] \text{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \\ \mathcal{L}_1 &= \text{tr} \left[\mathbf{B}_{\mu\nu} \mathbf{W}^{\mu\nu} \right] & \mathcal{L}_6 &= \text{tr} \left[\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right] \text{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \text{tr} \left[\mathbf{T} \mathbf{V}^{\nu} \right] \\ \mathcal{L}_2 &= \text{itr} \left[\mathbf{B}_{\mu\nu} \left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \right] & \mathcal{L}_7 &= \text{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] \text{tr} \left[\mathbf{T} \mathbf{V}^{\nu} \right] \\ \mathcal{L}_3 &= \text{itr} \left[\mathbf{W}_{\mu\nu} \left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \right] & \mathcal{L}_8 &= \frac{1}{4} \text{tr} \left[\mathbf{T} \mathbf{W}_{\mu\nu} \right] \text{tr} \left[\mathbf{T} \mathbf{W}^{\mu\nu} \right] \\ \mathcal{L}_4 &= \text{tr} \left[\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right] \text{tr} \left[\mathbf{V}^{\mu} \mathbf{V}^{\nu} \right] & \mathcal{L}_9 &= \frac{1}{2} \text{tr} \left[\mathbf{T} \mathbf{W}_{\mu\nu} \right] \text{tr} \left[\mathbf{T} \mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \\ \mathcal{L}_5 &= \text{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] \text{tr} \left[\mathbf{V}_{\nu} \mathbf{V}^{\nu} \right] & \mathcal{L}_{10} &= \frac{1}{2} \left(\text{tr} \left[\mathbf{T} \mathbf{V}_{\mu} \right] \text{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \right)^2 \end{aligned}$$

Indirect info on new physics in $\beta_1, \alpha_i, \ldots$ (Flavor physics only in *M*) Electroweak precision observables (LEP I/II, SLC):

> $\Delta S = -16\pi\alpha_1 \qquad \alpha_1 = 0.0026 \pm 0.0020$ $\Delta T = 2\beta_1/\alpha_{\text{QED}} \qquad \beta_1 = -0.00062 \pm 0.00043$ $\Delta U = -16\pi\alpha_8 \qquad \alpha_8 = -0.0044 \pm 0.0026$

Anomalous triple and quartic gauge couplings

$$\begin{aligned} \mathcal{L}_{TGC} &= \mathrm{i}e\left[g_{1}^{\gamma}A_{\mu}\left(W_{\nu}^{-}W^{+\mu\nu} - W_{\nu}^{+}W^{-\mu\nu}\right) + \kappa^{\gamma}W_{\mu}^{-}W_{\nu}^{+}A^{\mu\nu} + \frac{\lambda^{\gamma}}{M_{W}^{2}}W_{\mu}^{-\nu}W_{\nu\rho}^{+}A^{\rho\mu}\right] \\ &+ \mathrm{i}e\frac{c_{\mathrm{w}}}{s_{\mathrm{w}}}\left[g_{1}^{Z}Z_{\mu}\left(W_{\nu}^{-}W^{+\mu\nu} - W_{\nu}^{+}W^{-\mu\nu}\right) + \kappa^{Z}W_{\mu}^{-}W_{\nu}^{+}Z^{\mu\nu} + \frac{\lambda^{Z}}{M_{W}^{2}}W_{\mu}^{-\nu}W_{\nu\rho}^{+}Z^{\rho\mu}\right] \end{aligned}$$

SM values:
$$g_1^{\gamma, Z} = \kappa^{\gamma, Z} = 1, \lambda^{\gamma, Z} = 0$$
 and $\delta_Z = \frac{\beta_1 + g'^2 \alpha_1}{c_w^2 - s_w^2} g_{1/2}^{VV'} = 1, h^{ZZ} = 0$
 $\Delta g_1^{\gamma} = 0$ $\Delta \kappa^{\gamma} = g^2(\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2(\alpha_9 - \alpha_8)$
 $\Delta g_1^Z = \delta_Z + \frac{g^2}{c_w^2} \alpha_3$ $\Delta \kappa^Z = \delta_Z - g'^2(\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2(\alpha_9 - \alpha_8)$
 $\Delta g_1^{\gamma\gamma} = \Delta g_2^{\gamma\gamma} = 0$ $\Delta g_2^{ZZ} = 2\Delta g_1^{\gamma Z} - \frac{g^2}{c_w^4}(\alpha_5 + \alpha_7)$
 $\Delta g_1^{ZZ} = 2\Delta g_1^{\gamma Z} - \frac{g^2}{c_w^2}(\alpha_4 + \alpha_6)$ $\Delta g_2^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2(\alpha_9 - \alpha_8) - g^2(\alpha_4 + 2\alpha_5)$
 $h^{ZZ} = g^2 [\alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})]$

Anomalous triple and quartic gauge couplings

$$\begin{split} \mathcal{L}_{QGC} &= e^2 \left[g_1^{\gamma\gamma} A^{\mu} A^{\nu} W_{\mu}^{-} W_{\nu}^{+} - g_2^{\gamma\gamma} A^{\mu} A_{\mu} W^{-\nu} W_{\nu}^{+} \right] \\ &+ e^2 \frac{c_{\mathrm{w}}}{s_{\mathrm{w}}} \left[g_1^{\gamma Z} A^{\mu} Z^{\nu} \left(W_{\mu}^{-} W_{\nu}^{+} + W_{\mu}^{+} W_{\nu}^{-} \right) - 2 g_2^{\gamma Z} A^{\mu} Z_{\mu} W^{-\nu} W_{\nu}^{+} \right] \\ &+ e^2 \frac{c_{\mathrm{w}}^2}{s_{\mathrm{w}}^2} \left[g_1^{ZZ} Z^{\mu} Z^{\nu} W_{\mu}^{-} W_{\nu}^{+} - g_2^{ZZ} Z^{\mu} Z_{\mu} W^{-\nu} W_{\nu}^{+} \right] \\ &+ \frac{e^2}{2 s_{\mathrm{w}}^2} \left[g_1^{WW} W^{-\mu} W^{+\nu} W_{\mu}^{-} W_{\nu}^{+} - g_2^{WW} \left(W^{-\mu} W_{\mu}^{+} \right)^2 \right] + \frac{e^2}{4 s_{\mathrm{w}}^2 c_{\mathrm{w}}^4} h^{ZZ} (Z^{\mu} Z_{\mu})^2 \end{split}$$

 $\text{SM values: } g_1^{\gamma,Z} = \kappa^{\gamma,Z} = 1, \\ \lambda^{\gamma,Z} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2} \quad g_{1/2}^{VV'} = 1, \\ h^{ZZ} = 0 \text{ and } \delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_{\rm w}^2 - s_{\rm w}^2}$

$$\Delta g_1^{\gamma} = 0 \qquad \qquad \Delta \kappa^{\gamma} = g^2 (\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2 (\alpha_9 - \alpha_8)$$

$$\Delta g_1^Z = \delta_Z + \frac{g^2}{c_w^2} \alpha_3 \qquad \qquad \Delta \kappa^Z = \delta_Z - g'^2 (\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2 (\alpha_9 - \alpha_8)$$

$$\begin{split} \Delta g_1^{\gamma\gamma} &= \Delta g_2^{\gamma\gamma} = 0 & \Delta g_2^{ZZ} = 2\Delta g_1^{\gamma Z} - \frac{g^2}{c_w^4} (\alpha_5 + \alpha_7) \\ \Delta g_1^{\gamma Z} &= \Delta g_2^{\gamma Z} = \delta_Z + \frac{g^2}{c_w^2} \alpha_3 & \Delta g_1^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2 (\alpha_9 - \alpha_8) + g^2 \alpha_4 \\ \Delta g_1^{ZZ} &= 2\Delta g_1^{\gamma Z} + \frac{g^2}{c_w^4} (\alpha_4 + \alpha_6) & \Delta g_2^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2 (\alpha_9 - \alpha_8) - g^2 (\alpha_4 + 2\alpha_5) \\ h^{ZZ} &= g^2 [\alpha_4 + \alpha_5 + 2 (\alpha_6 + \alpha_7 + \alpha_{10})] \end{split}$$

Parameters and Scales, Resonances

 α_i measurable at ILC

• $\alpha_i \ll 1$ (LEP)

• $\alpha_i \gtrsim 1/16\pi^2 \approx 0.006$ (renormalize divergencies, $16\pi^2 \alpha_i \gtrsim 1$)

Translation of parameters into new physics scale Λ : $\alpha_i = v^2/\Lambda^2$

- Operator normalization is arbitrary
- Power counting can be intricate

To be specific: consider resonances that couple to EWSB sector Resonance mass gives detectable shift in the α_i

- Narrow resonances \Rightarrow particles
- Wide resonances \Rightarrow continuum

 $eta_1 \ll 1 \ \Rightarrow SU(2)_c \ {\rm custodial\ symmetry}$ (weak isospin, broken by hypercharge g'
eq 0 and fermion masses)

	J = 0	J = 1	J=2
I = 0	σ^0 (Higgs ?)	$\omega^0 \; (\gamma'/Z'\;?)$	f ⁰ (Graviton ?)
I = 1	π^{\pm},π^{0} (2HDM ?)	$\rho^{\pm}, \rho^0 \; (W'/Z' \; ?)$	a^\pm,a^0
I=2	$\phi^{\pm\pm},\phi^{\pm},\phi^{0}$ (Higgs triplet ?)	—	$t^{\pm\pm},t^{\pm},t^0$

accounts for weakly and strongly interacting models

Integrating out resonances

Consider leading order effects of resonances on EW sector:

 $\mathcal{L}_{\Phi} = z \left[\Phi \left(M_{\Phi}^2 + DD \right) \Phi + 2\Phi J \right] \qquad \Rightarrow \qquad \mathcal{L}_{\Phi}^{\text{eff}} = -\frac{z}{M^2} J J + \frac{z}{M^4} J (DD) J + \mathcal{O}(M^{-6})$

Simplest example: scalar singlet σ:

$$\mathcal{L}_{\sigma} = -\frac{1}{2} \left[\boldsymbol{\sigma} (M_{\sigma}^2 + \partial^2) \boldsymbol{\sigma} - g_{\sigma} v \boldsymbol{\sigma} \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] - h_{\sigma} \operatorname{tr} \left[\mathbf{T} \mathbf{V}_{\mu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \right]$$

Effective Lagrangian

$$\mathcal{L}_{\sigma}^{\text{eff}} = \frac{v^2}{8M_{\sigma}^2} \left[g_{\sigma} \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] + h_{\sigma} \operatorname{tr} \left[\mathbf{T} \mathbf{V}_{\mu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \right]^2$$

leads to anomalous quartic couplings

$$\boldsymbol{\alpha}_{5} = g_{\sigma}^{2} \left(\frac{v^{2}}{8M_{\sigma}^{2}} \right) \qquad \boldsymbol{\alpha}_{7} = 2g_{\sigma}h_{\sigma} \left(\frac{v^{2}}{8M_{\sigma}^{2}} \right) \qquad \boldsymbol{\alpha}_{10} = 2h_{\sigma}^{2} \left(\frac{v^{2}}{8M_{\sigma}^{2}} \right)$$

• Special case: SM Higgs with $g_{\sigma} = 1$ and $h_{\sigma} = 0$

Coupl. strengths, Anomal. Couplings, Power Counting Scalar resonance width $(M_{\sigma} \gg M_W, M_Z)$:

$$\Gamma_{\sigma} = \frac{g_{\sigma}^2 + \frac{1}{2}(g_{\sigma}^2 + 2h_{\sigma}^2)^2}{16\pi} \left(\frac{M_{\sigma}^3}{v^2}\right) + \Gamma(\mathsf{non} - WW, ZZ)$$

Largest allowed coupling for a broad continuum: $\Gamma \sim M \gg \Gamma(\text{non} - WW, ZZ) \sim 0$ translates to bounds for effective Lagrangian (e.g. scalar with no isospin violation):

$$\alpha_5 \leq \frac{4\pi}{3} \left(\frac{v^4}{M_\sigma^4} \right) \approx \frac{0.015}{(M_\sigma \text{ in TeV})^4} \quad \Rightarrow \quad 16\pi^2 \alpha_5 \leq \frac{2.42}{(M_\sigma \text{ in TeV})^4}$$

Scalar:	$\Gamma \sim g^2 M^3$, $lpha \sim g^2/M^2$	\Rightarrow	$\alpha_{\rm max} \sim 1/M^4$
Vector:	$\Gamma\sim g^2 M$, $lpha\sim g^2/M^2$	\Rightarrow	$lpha_{ m max}\sim 1/M^2$
Tensor:	$\Gamma \sim g^2 M^3$, $lpha \sim g^2/M^2$	\Rightarrow	$lpha_{ m max} \sim 1/M^4$

Vector triplet (simplified)

$$\mathcal{L}_{\rho} = -\frac{1}{8} \text{tr} \left[\rho_{\mu\nu} \rho^{\mu\nu} \right] + \frac{M_{\rho}^2}{4} \text{tr} \left[\rho_{\mu} \rho^{\mu} \right] + \frac{i g_{\rho} v^2}{2} \text{tr} \left[\rho_{\mu} \mathbf{V}^{\mu} \right]$$

 $1/M^2$ term renormalizes kinetic energy (i.e. v), hence unobservable:

$$\mathcal{L}_{\rho}^{\text{eff}} = \frac{g_{\rho}^2 v^4}{4M_{\rho}^2} \text{tr} \left[(\mathbf{D}_{\mu} \Sigma) (\mathbf{D}^{\mu} \Sigma) \right] + \mathcal{O}(1/M_{\rho}^4)$$

Coupl. strengths, Anomal. Couplings, Power Counting Scalar resonance width $(M_{\sigma} \gg M_W, M_Z)$:

$$\Gamma_{\sigma} = \frac{g_{\sigma}^2 + \frac{1}{2}(g_{\sigma}^2 + 2h_{\sigma}^2)^2}{16\pi} \left(\frac{M_{\sigma}^3}{v^2}\right) + \Gamma(\mathsf{non} - WW, ZZ)$$

Largest allowed coupling for a broad continuum: $\Gamma \sim M \gg \Gamma(\text{non} - WW, ZZ) \sim 0$ translates to bounds for effective Lagrangian (e.g. scalar with no isospin violation):

$$\alpha_5 \leq \frac{4\pi}{3} \left(\frac{v^4}{M_\sigma^4} \right) \approx \frac{0.015}{(M_\sigma \text{ in TeV})^4} \quad \Rightarrow \quad 16\pi^2 \alpha_5 \leq \frac{2.42}{(M_\sigma \text{ in TeV})^4}$$

Scalar:	$\Gamma \sim g^2 M^3$, $lpha \sim g^2/M^2$	\Rightarrow	$\alpha_{\rm max} \sim 1/M^4$
Vector:	$\Gamma\sim g^2 M$, $lpha\sim g^2/M^2$	\Rightarrow	$lpha_{ m max}\sim 1/M^2$
Tensor:	$\Gamma \sim g^2 M^3$, $lpha \sim g^2/M^2$	\Rightarrow	$lpha_{ m max} \sim 1/M^4$

Vector triplet (simplified)

$$\mathcal{L}_{\rho} = -\frac{1}{8} \mathrm{tr} \left[\rho_{\mu\nu} \rho^{\mu\nu} \right] + \frac{M_{\rho}^2}{4} \mathrm{tr} \left[\rho_{\mu} \rho^{\mu} \right] + \frac{\mathrm{i} g_{\rho} v^2}{2} \mathrm{tr} \left[\rho_{\mu} \mathbf{V}^{\mu} \right]$$

 $1/M^2$ term renormalizes kinetic energy (i.e. v), hence unobservable:

$$\mathcal{L}_{\rho}^{\text{eff}} = \frac{g_{\rho}^2 v^4}{4M_{\rho}^2} \text{tr}\left[(\mathbf{D}_{\mu} \Sigma) (\mathbf{D}^{\mu} \Sigma) \right] + \mathcal{O}(1/M_{\rho}^4)$$

Vector Resonances

$$\begin{split} \mathcal{L}_{\rho} &= -\frac{1}{8} \mathrm{tr} \left[\rho_{\mu\nu} \rho^{\mu\nu} \right] + \frac{M_{\rho}^{2}}{4} \mathrm{tr} \left[\rho_{\mu} \rho^{\mu} \right] + \frac{\Delta M_{\rho}^{2}}{8} \left(\mathrm{tr} \left[\mathbf{T} \rho_{\mu} \right] \right)^{2} + \mathrm{i} \frac{\mu_{\rho}}{2} g \mathrm{tr} \left[\rho_{\mu} \mathbf{W}^{\mu\nu} \rho_{\nu} \right] \\ &+ \mathrm{i} \frac{\mu_{\rho}'}{2} g' \mathrm{tr} \left[\rho_{\mu} \mathbf{B}^{\mu\nu} \rho_{\nu} \right] + \mathrm{i} \frac{g_{\rho} v^{2}}{2} \mathrm{tr} \left[\rho_{\mu} \mathbf{V}^{\mu} \right] + \mathrm{i} \frac{h_{\rho} v^{2}}{2} \mathrm{tr} \left[\rho_{\mu} \mathbf{T} \right] \mathrm{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \\ &+ \frac{g' v^{2} k_{\rho}}{2 M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu} \left[\mathbf{B}^{\nu\mu}, \mathbf{V}_{\nu} \right] \right] + \frac{g v^{2} k_{\rho}'}{4 M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu} \left[\mathbf{T}, \mathbf{V}_{\nu} \right] \right] \mathrm{tr} \left[\mathbf{T} \mathbf{W}^{\nu\mu} \right] \\ &+ \frac{g v^{2} k_{\rho}'}{4 M_{\rho}^{2}} \mathrm{tr} \left[\mathbf{T} \rho_{\mu} \right] \mathrm{tr} \left[\left[\mathbf{T}, \mathbf{V}_{\nu} \right] \mathbf{W}^{\nu\mu} \right] + \mathrm{i} \frac{\ell_{\rho}}{M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu\nu} \mathbf{W}^{\nu} \rho \mathbf{W}^{\rho\mu} \right] \\ &+ \mathrm{i} \frac{\ell_{\rho}'}{M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu\nu} \mathbf{B}^{\nu} \rho \mathbf{W}^{\rho\mu} \right] + \mathrm{i} \frac{\ell_{\rho}''}{M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu\nu} \mathbf{T} \right] \mathrm{tr} \left[\mathbf{T} \mathbf{W}^{\nu} \rho \mathbf{W}^{\rho\mu} \right] \end{split}$$

all
$$\alpha_i \sim 1/M_{
ho}^4$$
, except for $\beta_1 \sim \Delta \rho \sim T \sim h_{
ho}^2/M_{
ho}^2$

4-fermion contact interaction $j_{\mu}j^{\mu} \sim 1/M_{\rho}^2$ (eff. *T* and *U* parameter)

vector coupling $j_{\mu}V^{\mu} \sim 1/M_{\rho}^2$ (eff. *S* parameter) Mismatch: measured fermionic vs. bosonic coupling *g*

Nyffeler/Schenk, 2000; Kilian/JR, 2003

Effects on Triple Gauge Couplings

- $\mathcal{O}(1/M^2)$: Renormalization of ZWW coupling
- $\mathcal{O}(1/M^4)$: shifts in Δg_1^Z , $\Delta \kappa^{\gamma}$, $\Delta \kappa^Z$, λ^{γ} , λ^Z

Effects on Quartic Gauge Couplings

▶ $\mathcal{O}(1/M^4)$, orthogonal (in α_4 - α_5 space) to scalar case

Simulations: The Event Generator WHIZARD

http://whizard.event-generator.org

Matrix Element Generator O'Mega:

Optimized helicity amplitudes: Avoiding all redundancies

Multi-Purpose Event Generator WHIZARD:

Kilian/Ohl/JR, 2007

- Adaptive Multi-Channel Monte-Carlo Integration
- very well tested
- Structure functions, Parton shower/hadronization
- Event formats for detector simulations [STDHEP, HEPEVT, ATHENA, ...] Highest degree of complexity:
 - $e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}jj\ell\nu$ (110.000 diagrams)
 - ▶ $e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$ (12.000.000 diagrams)
 - ▶ $pp \rightarrow \ell\ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2.100.000 diagrams with 4 jets + flavors)
 - ▶ $pp \rightarrow c\tilde{h}i_1^0 c\tilde{h}i_1^0 bbbb$ (32.000 diagrams, 22 color flows, ~ 10,000 PS channels)
 - ▶ $pp \rightarrow VVjj \rightarrow jj\ell\ell\nu\nu$ incl. anomalous TGC/QGC
 - Test case $gg \rightarrow 9g$ (224.000.000 diagrams)

Ohl, 2000/01; M.Moretti/Ohl/JR, 2001

Ohl. 1996; Kilian, 2000;

JR et al., 2006; Hagiwara/.../JR..., 2006

Kilian, 2001; JR, 2007

Results: Triboson production

 $e^+e^- \rightarrow WWZ/ZZZ$, dep. on $(\alpha_4 + \alpha_6)$, $(\alpha_5 + \alpha_7)$, $\alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})$ Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Killian/Ohl/JR 1 TeV, 1 ab^{-1} , full 6-fermion final states, SIMDET fast simulation Observables: M_{WW}^2 , M_{WZ}^2 , $\sphericalangle(e^-, Z)$ A) unpol., B) 80% e_R^- , C) 80% e_R^- , 60% e_L^+

		WWZ		ZZZ	best
$16\pi^2 \times$	no pol.	e^- pol.	both pol.	no pol.	
$\Delta \alpha_4^+$	9.79	4.21	1.90	3.94	1.78
$\Delta \alpha_4^-$	-4.40	-3.34	-1.71	-3.53	-1.48
$\Delta \alpha_5^+$	3.05	2.69	1.17	3.94	1.14
$\Delta \alpha_5^{-}$	-7.10	-6.40	-2.19	-3.53	-1.64

32 % hadronic decays Durham jet algorithm Bkgd. $t\bar{t} \rightarrow 6$ jets Veto against $E_{\rm mis}^2 + p_{\perp,\rm mis}^2$ No angular correlations yet

Results: Triboson production

 $e^+e^- \rightarrow WWZ/ZZZ$, dep. on $(\alpha_4 + \alpha_6)$, $(\alpha_5 + \alpha_7)$, $\alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})$ Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Killan/Ohl/JR 1 TeV, 1 ab^{-1} , full 6-fermion final states, SIMDET fast simulation Observables: M_{WW}^2 , M_{WZ}^2 , $\sphericalangle(e^-, Z)$ A) unpol., B) 80% e_R^- , C) 80% e_R^- , 60% e_L^+

	WWZ			ZZZ	best
$16\pi^2 \times$	no pol.	e^- pol.	both pol.	no pol.	
$\Delta \alpha_4^+$	9.79	4.21	1.90	3.94	1.78
$\Delta \alpha_4^-$	-4.40	-3.34	-1.71	-3.53	-1.48
$\Delta \alpha_5^+$	3.05	2.69	1.17	3.94	1.14
$\Delta \alpha_5^{-}$	-7.10	-6.40	-2.19	-3.53	-1.64

32 % hadronic decays Durham jet algorithm Bkgd. $t\bar{t} \rightarrow 6$ jets Veto against $E_{\rm mis}^2 + p_{\perp,\rm mis}^2$ No angular correlations yet

Vector Boson Scattering

1 TeV, 1 ab^{-1} , full 6f final states, 80 % e_R^- , 60 % e_L^+ polarization, binned likelihood

Contributing channels: $WW \rightarrow WW, WW \rightarrow ZZ, WZ \rightarrow WZ, ZZ \rightarrow ZZ$

Process	Subprocess	σ [fb]
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \rightarrow WW$	23.19
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \rightarrow ZZ$	7.624
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$V \rightarrow VVV$	9.344
$e^+e^- \rightarrow \nu e q \bar{q} q \bar{q}$	$WZ \rightarrow WZ$	132.3
$e^+e^- \rightarrow e^+e^-q\bar{q}q\bar{q}$	$ZZ \rightarrow ZZ$	2.09
$e^+e^- \rightarrow e^+e^-q\bar{q}q\bar{q}$	$ZZ \rightarrow W^+W^-$	414.
$e^+e^- \rightarrow b\bar{b}X$	$e^+e^- \rightarrow t\bar{t}$	331.768
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221
$e^+e^- \rightarrow e\nu q\bar{q}$	$e^+e^- \rightarrow e\nu W$	279.588
$e^+e^- \rightarrow e^+e^-q\bar{q}$	$e^+e^- \rightarrow e^+e^-Z$	134.935
$e^+e^- \rightarrow X$	$e^+e^- \rightarrow q\bar{q}$	1637.405

- SU(2)_c conserved case, all channels

coupling	$\sigma-$	$\sigma +$
$16\pi^2 \alpha_4$	-1.41	1.38
$16\pi^2 \alpha_5$	-1.16	1.09

$SU(2)_c$ broken case, all channels

coupling	$\sigma -$	$\sigma +$
$16\pi^2 \alpha_4$	-2.72	2.37
$16\pi^2 \alpha_5$	-2.46	2.35
$16\pi^2 \alpha_6$	-3.93	5.53
$16\pi^2 \alpha_7$	-3.22	3.31
$16\pi^{2}\alpha_{10}$	-5.55	4.55

Interpretation as limits on resonances

Consider the width to mass ratio, $f_{\sigma} = \Gamma_{\sigma}/M_{\sigma}$

SU(2) conserving scalar singlet

SU(2) broken vector triplet

needs input from TGC covariance matrix

f = 1.0 (full), 0.8 (dash), 0.6 (dot-dash), 0.3 (dot)

upper/lower limit from λ_Z , grey area: magnetic moments

	Spin	I = 0	I = 1	I=2	Spin	I = 0	I = 1	I=2
Final	0	1.55	_	1.95	0	1.39	1.55	1.95
result:	1	-	2.49	—	1	1.74	2.67	—
	2	3.29	_	4.30	2	3.00	3.01	5.84

Bonn, 17,1,2008

Anomalous Gauge Couplings at LHC

ILC: LHC:

Beyer/Kilian/Krstonošić/Mönig/JR/Schröder/Schmidt, 2006 Mertens, 2006: Kilian/Kobel/Mader/JR/Schumacher

Anomalous quartic gauge couplings, by chiral EW Lagrangian:

$$\mathcal{L}_{4} = \alpha_{4} \frac{g^{2}}{2} \left\{ \left[(W^{+}W^{+})(W^{-}W^{-}) + (W^{+}W^{-})^{2} \right] + \frac{2}{c_{W}^{2}} (W^{+}Z)(W^{-}Z) + \frac{1}{2c_{W}^{4}} (ZZ)^{2} \right\}$$

$$\mathcal{L}_{5} = \alpha_{5} \frac{g^{2}}{2} \left\{ (W^{+}W^{-})^{2} + \frac{2}{c_{W}^{2}} (W^{+}W^{-})(ZZ) + \frac{1}{2c_{W}^{4}} (ZZ)^{2} \right\}$$

(all leptons, incl. τ):

 $pp \to jj(ZZ/WW) \to jj\ell^-\ell^+\nu_\ell\bar{\nu}_\ell$

 $\sigma\approx 40\,{\rm fb}$

Background:

- $t\bar{t} \rightarrow WbWb, \sigma \approx 52 \, \text{pb}$
- Single t, misrec. jet: $\sigma \approx 4.8 \, \text{pb}$
- QCD: $\sigma \approx 0.21 \, \text{pb}$

Tagging and Cuts:

- ▶ $\ell\ell jj$ -Tag, $\eta_{tag}^{min} < \eta_{\ell} < \eta_{tag}^{max}$, b-Veto
- ▶ $|\Delta \eta_{ij}| > 4.4$, $M_{ij} > 1080 \,\text{GeV}$
- Minijet-Veto: $p_{T,j} < 30 \,\text{GeV}$
- ▶ $E_j > 600, 400 \, \text{GeV}, \quad p_{T,j}^1 > 60, 24 \, \text{GeV}$

Events / Bin 5200 5000 WHIZARD[EW] α₄ = 0.003 , x5 WHIZARD[EW] a4 = 0.003 , x100 # Events / ttbar Singletop Singletop WHIZARD[QCD], x10 WHIZARDIOCDI 2000 30000 1500 20000 1000 10000 500 0 1500 10 20 M (jet,jet,) [GeV] Events / Bi Events / Bii $\alpha_i = 0$ (SM) 600 350 ····· \alpha_4 = 0.006 $\alpha_{4} = 0 (SM)$ $-\alpha_{.} = 0.01$ ····· α₄ = 0.006 300 - α. = 0.01 300 200 100 100 1500 2000 2500 3000 M (jet, jet,) [GeV]

Improves S/\sqrt{B} from 3.3 to 29.7

Results: (1 σ Sensitivity to α s)

Limits for Λ [TeV]:

Coupl.	ILC (1 ab^{-1})	LHC (100fb^{-1})
α_4	0.0088	0.00160
$lpha_5$	0.0071	0.00098

Spin	I = 0	I = 1	I=2
0	1.39	1.55	1.95
1	1.74	2.67	_
2	3.00	3.01	5.84

- <u>^</u>

Isospin decomposition
 ► Lowest order chiral Lagrangian (incl. anomalous couplings)

$$\mathcal{L} = -\frac{v^2}{4} \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] + \alpha_4 \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right] \operatorname{tr} \left[\mathbf{V}^{\mu} \mathbf{V}^{\nu} \right] + \alpha_5 \left(\operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] \right)^2$$

Leads to the following amplitudes: $s = (p_1 + p_2)^2$ $t = (p_1 - p_3)^2$ $u = (p_1 - p_4)^2$

$$\begin{array}{c} \overline{\mathcal{A}(s,t,u) =:} & \mathcal{A}(w^+w^- \to zz) = & \frac{s}{v^2} & +8\alpha_5 \frac{s^2}{v^4} + 4\alpha_4 \frac{t^2 + u^2}{v^4} \\ & \mathcal{A}(w^+z \to w^+z) = & \frac{t}{v^2} & +8\alpha_5 \frac{t^2}{v^4} + 4\alpha_4 \frac{s^2 + u^2}{v^4} \\ & \mathcal{A}(w^+w^- \to w^+w^-) = -\frac{u}{v^2} & +(4\alpha_4 + 2\alpha_5) \frac{s^2 + t^2}{v^4} + 8\alpha_4 \frac{u^2}{v^4} \\ & \mathcal{A}(w^+w^+ \to w^+w^+) = -\frac{s}{v^2} & +8\alpha_4 \frac{s^2}{v^4} + 4(\alpha_4 + 2\alpha_5) \frac{t^2 + u^2}{v^4} \\ & \mathcal{A}(zz \to zz) = & 8(\alpha_4 + \alpha_5) \frac{s^2 + t^2 + u^2}{v^4} \end{array}$$

(Clebsch-Gordan) Decomposition into isospin eigenamplitudes

$$\begin{aligned} \mathcal{A}(I=0) &= \ 3\mathcal{A}(s,t,u) + \mathcal{A}(t,s,u) + \mathcal{A}(u,s,t) \\ \mathcal{A}(I=1) &= \ \mathcal{A}(t,s,u) - \mathcal{A}(u,s,t) \\ \mathcal{A}(I=2) &= \ \mathcal{A}(t,s,u) + \mathcal{A}(u,s,t) \end{aligned}$$

Unitarity of Amplitudes

UV-incomplete theories could violate unitarity

Cross section: $\sigma = \int d\Omega \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2$

Optical Theorem (Unitarity of the S(cattering) Matrix): $\sigma_{\text{tot}} = \text{Im} \left[\mathcal{M}_{ii}(t=0) \right] / s \qquad t = -s(1-\cos\theta)/2$

Partial wave amplitudes: $\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1)\mathcal{A}_{\ell}(s)P_{\ell}(\cos\theta)$

Assuming only elastic scattering:

$$\sigma_{\rm tot} = \sum_{\ell} \frac{32\pi(2\ell+1)}{s} |\mathcal{A}_{\ell}|^2 \stackrel{!}{=} \sum_{\ell} \frac{32\pi(2\ell+1)}{s} {\rm Im}\left[\mathcal{A}_{\ell}\right] \quad \Rightarrow \quad \boxed{|\mathcal{A}_{\ell}|^2 = {\rm Im}\left[\mathcal{A}_{\ell}\right]}$$

Argand circle $|\mathcal{A}(s) - \frac{i}{2}| = \frac{1}{2}$ Resonance: $\mathcal{A}(s) = \frac{-M\Gamma_{el}}{s - M^2 + iM\Gamma_{tot}}$ Counterclockwise circle, radius $\frac{x_{el}}{2}$ Pole at $s = M^2 - iM\Gamma_{tot}$

Unitarity in the EW sector: SM

Project out isospin eigenamplitudes

Lee, Quigg, Thacker, 1973

$$\mathcal{A}_{\ell}(s) = \frac{1}{32\pi} \int_{-s}^{0} \frac{dt}{s} \mathcal{A}(s,t,u) P_{\ell}(1+2t/s) \qquad \cos\theta = 1+2t/s$$

Remember the Legendre polynomials:

▶ $P_0(s) = 1$ $P_1(s) = \cos \theta$ $P_2(s) = (3\cos^2 \theta - 1)/2$ ▶ SM longitudinal isospin eigenamplitudes ($A_{I,spin=J}$):

$$\mathcal{A}_{I=0} = 2\frac{s}{v^2} P_0(s) \qquad \mathcal{A}_{I=1} = \frac{t-u}{v^2} = \frac{s}{v^2} P_1(s) \qquad \mathcal{A}_{I=2} = -\frac{s}{v^2} P_0(s)$$
$$\boxed{\mathcal{A}_{0,0} = \frac{s}{16\pi v^2}} \qquad \boxed{\mathcal{A}_{1,1} = \frac{s}{96\pi v^2}} \qquad \boxed{\mathcal{A}_{2,0} = -\frac{s}{32\pi v^2}}$$

exceeds unitarity bound $|A_{IJ}| \lesssim \frac{1}{2}$ at:

$$I = 0:$$
 $E \sim \sqrt{8\pi}v = 1.2 \,\mathrm{TeV}$

$$I = 1: \qquad E \sim \sqrt{48\pi}v = 3.5 \,\mathrm{TeV}$$

$$I = 2: \qquad E \sim \sqrt{16\pi}v = 1.7 \,\mathrm{TeV}$$

Higgs exchange: $\begin{array}{c} & & \\ & & \\ & & \\ \mathcal{A}(s,t,u) = -\frac{M_{H}^{2}}{v^{2}} \frac{s}{s-M_{H}^{2}} \\ \end{array}$ Unitarity: $M_{H} \lesssim \sqrt{8\pi}v \sim 1.2 \text{ TeV}$

K-Matrix Unitarization and friends K-Matrix unitarization

$$\mathcal{A}_K(s) = \frac{\mathcal{A}(s)}{1 - i\mathcal{A}(s)} = \mathcal{A}(s)\frac{1 + i\mathcal{A}(s)}{1 + \mathcal{A}(s)^2}$$

Unitarization by infinitely heavy and wide resonance

Padé unitarization separates higher chiral orders $\mathcal{A}_P(s) = \frac{\mathcal{A}^{(0)}(s)^2}{\mathcal{A}^{(0)}(s) - \mathcal{A}^{(1)}(s) - i\mathcal{A}^{(0)}(s)^2}$ each partial wave dominated by single resonance

- Low-energy theorem (LET): $\frac{s}{v^2}$
- ► K-Matrix amplitude: $|\mathcal{A}(s)|^2 = \frac{s^2}{s^2 + v^4} \xrightarrow{s \to \infty} 1$
- Poles ±iv: M₀, Γ large

"Naive" Unitarization Extreme case:

$$\mathcal{A}_N(s) = e^{i\mathcal{A}(s)}\sin\mathcal{A}(s)$$

Infinitely many resonances becoming denser for $s \to \infty$

LHC Results

K-Matrix unitarization looks pretty much like the LET case:

- First glance: most brutally possible unitarization weeps out signal
- No significant differences in angular distributions any more

J. Schumacher, 2007

 Next step: Switch on definite (unitarized) resonances Look again for angular distributions

LHC Results

K-Matrix unitarization looks pretty much like the LET case:

- First glance: most brutally possible unitarization weeps out signal
- No significant differences in angular distributions any more

J. Schumacher, 2007

- Next step: Switch on definite (unitarized) resonances Look again for angular distributions
- Unfortunately: no plots yet

K-Matrix Unitarized Resonance: e.g. Scalar Singlet

Assumptions:

- LHC is able to detect a resonance in the EW sector
- Further resonances might exist, but out of reach or not detectable
- Describe 1st resonance by correct amplitude
- Use K-matrix unitarization to define a consistent model

Example: Scalar Singlet

Feynman rules: $\sigma w^+ w^- : -\frac{2ig_\sigma}{v}(k_+ \cdot k_-) \qquad \sigma zz: -\frac{2ig_\sigma}{v}(k_1 \cdot k_2)$

$$\mathcal{A}^{\sigma}(s,t,u) = \frac{g_{\sigma}^2}{v^2} \frac{s^2}{s - M^2}$$

Isospin eigenamplitudes:

$$\begin{aligned} \mathcal{A}_{0}^{\sigma}(s,t,u) &= \frac{g_{\sigma}^{2}}{v^{2}} \left(3\frac{s^{2}}{s-M^{2}} + \frac{t^{2}}{t-M^{2}} + \frac{u^{2}}{u-M^{2}} \right) \\ \mathcal{A}_{1}^{\sigma}(s,t,u) &= \frac{g_{\sigma}^{2}}{v^{2}} \left(\frac{t^{2}}{t-M^{2}} - \frac{u^{2}}{u-M^{2}} \right) \\ \mathcal{A}_{2}^{\sigma}(s,t,u) &= \frac{g_{\sigma}^{2}}{v^{2}} \left(\frac{t^{2}}{t-M^{2}} + \frac{u^{2}}{u-M^{2}} \right) \end{aligned}$$

Unitarizing the scalar singlet

$$\begin{aligned} \mathcal{A}_{00}^{\sigma}(s) &= \ 3\frac{g_{\sigma}^{2}}{v^{2}}\frac{s^{2}}{s-M^{2}} + 2\frac{g^{2}}{v^{2}}\mathcal{S}_{0}(s) \\ \mathcal{A}_{02}^{\sigma}(s) &= \ 2\frac{g_{\sigma}^{2}}{v^{2}}\mathcal{S}_{2}(s) &= A_{22}^{\sigma}(s) \\ \mathcal{A}_{11}^{\sigma}(s) &= \ 2\frac{g_{\sigma}^{2}}{v^{2}}\mathcal{S}_{1}(s) \\ \mathcal{A}_{13}^{\sigma}(s) &= \ 2\frac{g_{\sigma}^{2}}{v^{2}}\mathcal{S}_{3}(s) \\ \mathcal{A}_{20}^{\sigma}(s) &= \ 2\frac{g_{\sigma}^{2}}{v^{2}}\mathcal{S}_{0}(s) \end{aligned}$$

S-wave coefficients no longer polynomial, e.g.:

$$\begin{split} \mathcal{S}_0(s) &= M^2 - \tfrac{s}{2} + \frac{M^4}{s} \log \frac{s}{s+M^2} \\ s\text{-channel pole must be explicitly} \\ \text{subtracted:} \end{split}$$

$$\mathcal{A}_{IJ}^{K}(s) = \mathcal{A}_{IJ}(s) + \Delta \mathcal{A}_{IJ}(s)$$

Summary

New Physics generically encoded in EW Chiral Lagrangian

ILC can measure deviations in quartic gauge couplings

- either via triple boson production
- or via vector boson scattering

interpreted as resonances coupled to EW bosons

Sensitivity rises with number of intermediate states: 1.5 - 6 TeV

Full analysis including all channels/backgrounds with WHIZARD

LHC sensitivity not yet fully clarified

Unitarization of amplitudes needed (toy UV completion)

Also (very) broad resonances detectable