### The Big Deal with the Little Higgs

Jürgen Reuter

**DESY Theory Group, Hamburg** 

Seminar IPPP Durham, 4.May 2006



#### Outline

#### **Hierarchy Problem**

Higgs as Pseudo-Nambu-Goldstone Boson (PNGB) The Little Higgs mechanism

**Generic properties** 

**Examples of Models** 

#### Phenomenology

Effective Field Theories Electroweak Precision Observables Neutrino masses Heavy Quark States Heavy Vectors Heavy Scalars Reconstruction of Little Higgs Models Pseudo Axions in LHM *T* parity and Dark Matter

#### Conclusions



### Outline

#### **Hierarchy Problem**

Higgs as Pseudo-Nambu-Goldstone Boson (PNGB) The Little Higgs mechanism

Generic properties

Examples of Models

#### Phenomenology

Effective Field Theories Electroweak Precision Observed Neutrino masses Heavy Quark States Heavy Vectors Heavy Scalars Reconstruction of Little Higgs Mode Pseudo Axions in LHM T parity and Dark Matter

#### Conclusions



# Hierarchy Problem



#### **Motivation: Hierarchy Problem**

- Effective theories below a scale  $\Lambda \implies$
- Loop integration cut off at order  $\sim \Lambda$ :

- **Problem:** Naturally,  $m_h \sim \mathcal{O}(\Lambda^2)$ :
  - $m_h^2 = m_0^2 + \Lambda^2 imes ( ext{loop factors})$
- ♦ Light Higgs favoured by EW precision observables  $(m_h < 0.5 \text{ TeV})$
- $m_h \ll \Lambda \quad \Leftrightarrow \quad \text{Fine-Tuning } !?$

 $\sim \Lambda^2$ 

 Solutions: Large number of ideas since 1970s



# **Overview of Solutions**

#### (1) Light Scalar as Pseudo-Goldstone Boson

- a) Higgs as massless Goldstone Boson, Higgs mass connected to explicit symmetry breaking
- b) No fundamental scalars in Nature: Technicolor (Repetition of QCD); EW Precision Data problematic



### **Overview of Solutions**

#### (1) Light Scalar as Pseudo-Goldstone Boson

- a) Higgs as massless Goldstone Boson, Higgs mass connected to explicit symmetry breaking
- b) No fundamental scalars in Nature: Technicolor (Repetition of QCD); EW Precision Data problematic
- (2) Mechanism (Symmetry) for Elimination of Loop Corrections:
  - a) Supersymmetry: **Spin-Statistics** → Loops of bosons and fermions cancel
  - (b) Little Higgs mechanism: Global symmetries ⇒ Loops of particles of like statistics cancel Incorporates the ideas of (1a) and (1b)



# **Overview of Solutions**

#### (1) Light Scalar as Pseudo-Goldstone Boson

- a) Higgs as massless Goldstone Boson, Higgs mass connected to explicit symmetry breaking
- b) No fundamental scalars in Nature: Technicolor (Repetition of QCD); EW Precision Data problematic
- (2) Mechanism (Symmetry) for Elimination of Loop Corrections:
  - a) Supersymmetry: **Spin-Statistics** → Loops of bosons and fermions cancel
  - (b) Little Higgs mechanism: Global symmetries ⇒ Loops of particles of like statistics cancel Incorporates the ideas of (1a) and (1b)

#### (3) Removal of Hierarchy:

- a) Large Extra Dimensions: Gravity looks only weak; no fundamental scalars, but components of (higher-dem.) gauge fields
- b) Warped Extra Dimensions (Randall-Sundrum): Gravity only weak in our world

#### (4) Numbers chosen by Providence

Anthropic principle: Values are because we can observe them



# Higgs as Pseudo-Nambu-Goldstone Boson (PNGB)

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

*Light Higgs* as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model

**w**/o Fine-Tuning:  $v \sim \Lambda/4\pi$ 



# Higgs as Pseudo-Nambu-Goldstone Boson (PNGB)

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

*Light Higgs* as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model

**w/o Fine-Tuning:**  $v \sim \Lambda/4\pi$ 

**Nambu-Goldstone Theorem:** For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.



# Higgs as Pseudo-Nambu-Goldstone Boson (PNGB)

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

*Light Higgs* as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model

**w**/o Fine-Tuning:  $v \sim \Lambda/4\pi$ 

**Nambu-Goldstone Theorem:** For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

$$\pi_i \to i\theta^a T^a_{ik} \pi_k \quad \Rightarrow \quad \frac{\partial \mathcal{V}}{\partial \pi_i} T^a_{ij} \pi_j = 0 \quad \Rightarrow \quad \underbrace{\frac{\partial^2 \mathcal{V}}{\partial \pi_i \partial \pi_j}}_{=(m^2)_{ij}} T^a_{jk} f_k + \underbrace{\frac{\partial \mathcal{V}}{\partial \pi_j}}_{=0} T^a_{ji} = 0$$



# Higgs as Pseudo-Nambu-Goldstone Boson (PNGB)

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

*Light Higgs* as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model

**w/o Fine-Tuning:**  $v \sim \Lambda/4\pi$ 

**Nambu-Goldstone Theorem:** For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

Nonlinear Realization (Example  $SU(3) \rightarrow SU(2)$ ):

$$\mathcal{V}(\Phi) = \left(f^2 - (\Phi^{\dagger}\Phi)\right)^2 \Rightarrow \Phi = \exp\left[\frac{i}{f}\left(\frac{0 \mid \vec{\pi}}{\vec{\pi}^{\dagger} \mid \pi_0}\right)\right] \begin{pmatrix} 0\\ f + \sigma \end{pmatrix} \equiv e^{i\pi}\Phi_0$$

 $\vec{\pi} \in \text{fundamental } SU(2) \text{ rep.}, \qquad \pi_0 \text{ singlet}$ 



▶  $\vec{\pi} \equiv h$  ??



•  $\vec{\pi} \equiv h$  ?? Let's try!



- $\vec{\pi} \equiv h$  ?? Let's try!
- ► Lagrangian has translational symmetry:  $\vec{\pi} \rightarrow \vec{\pi} + \vec{a} \Rightarrow$  (exact) Goldstones have only derivative interactions



- $\vec{\pi} \equiv h$  ?? Let's try!
- Lagrangian has translational symmetry:  $\vec{\pi} \rightarrow \vec{\pi} + \vec{a} \Rightarrow$  (exact) Goldstones have only derivative interactions
- Gauge and Yukawa interactions?
- Expanding the kinetic term:

 $f^{2}|\partial\Phi|^{2} = |\partial h|^{2} + \frac{1}{f^{2}}(h^{\dagger}h)|\partial h|^{2} + \dots$ 

- $\vec{\pi} \equiv h$  ?? Let's try!
- ► Lagrangian has translational symmetry:  $\vec{\pi} \rightarrow \vec{\pi} + \vec{a} \Rightarrow$  (exact) Goldstones have only derivative interactions
- Gauge and Yukawa interactions?
- Expanding the kinetic term:

 $f^{2}|\partial\Phi|^{2} = |\partial h|^{2} + \frac{1}{f^{2}}(h^{\dagger}h)|\partial h|^{2} + \dots$ 

- $\rightarrow$  Theory becomes stronly interacting at  $\Lambda = 4\pi f$ .
- Bad news Easy attempts: no potential or quadratic divergences again

Collective Symmetry breaking: Two ways of model building:

simple Higgs representation , doubled gauge group
simple gauge group, doubled Higgs representation



 $\partial h^{\dagger} = \partial h \sim {1 \over f^2} {\Lambda^2 \over 16 \pi}$ 

# Prime Example: Simple Group Model

- enlarged gauge group:  $SU(3) \times U(1)$ ; globally  $U(3) \rightarrow U(2)$
- Two nonlinear  $\Phi$  representations  $\mathcal{L} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}}\Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix}$$

$$\Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h \\ 0 & \eta & h \\ h^T & h \end{pmatrix}$$



# Prime Example: Simple Group Model

- ▶ enlarged gauge group:  $SU(3) \times U(1)$ ; globally  $U(3) \rightarrow U(2)$
- Two nonlinear  $\Phi$  representations  $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\ 0\\ f_{1/2} \end{pmatrix} \qquad \Theta$$

$$\Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0\\ 0 & \eta\\ h^T \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

$$\frac{g^2}{16\pi^2}\Lambda^2 \left( |\Phi_1|^2 + |\Phi_2|^2 \right) \sim \frac{g^2}{16\pi^2} f^2$$



DES

# Prime Example: Simple Group Model

- ▶ enlarged gauge group:  $SU(3) \times U(1)$ ; globally  $U(3) \rightarrow U(2)$
- Two nonlinear  $\Phi$  representations  $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\ 0\\ f_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h^*\\ 0 & \eta & h^*\\ h^T & \eta \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

$$= \frac{g^2}{16\pi^2} \Lambda^2 \left( |\Phi_1|^2 + |\Phi_2|^2 \right) \sim \frac{g^2}{16\pi^2} f^2$$
  
but: 
$$\frac{\Phi_1^{\dagger}}{\Phi_1} \bigwedge \bigwedge \Phi_2^{\dagger} = \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) |\Phi_1^{\dagger} \Phi_2|^2 \Rightarrow \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) f^2(h^{\dagger} h)$$



Yukawa interactions and heavy Top Simplest Little Higgs ("µ Model") Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content  $(SU(3)_c \times SU(3)_w \times U(1)_X$  quantum numbers) Lagrangian  $\mathcal{L} = \mathcal{L}_{kin.} + \mathcal{L}_{Yuk.} + \mathcal{L}_{pot.}$   $\Psi_{Q,L} = (u, d, U)_L, \Psi_{\ell} = (\nu, \ell, N)_L$ :  $\mathcal{L}_{\mathsf{Yuk.}} = -\,\lambda_1^u \overline{u}_{1,R} \Phi_1^\dagger \Psi_{T,L} \,-\, \lambda_2^u \overline{u}_{2,R} \Phi_2^\dagger \Psi_{T,L} \,-\, \frac{\lambda^d}{\Lambda} \epsilon^{ijk} \overline{d}_R^b \Phi_1^i \Phi_2^j \Psi_{T,L}^k$  $- \ \lambda^n \overline{n}_{1,R} \Phi_1^\dagger \Psi_{Q,L} - \frac{\lambda^e}{\Lambda} \epsilon^{ijk} \overline{e}_R \Phi_1^i \Phi_2^j \Psi_{Q,L}^k + \text{h.c.},$ 



Yukawa interactions and heavy Top Simplest Little Higgs ("µ Model") Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content  $(SU(3)_c \times \overline{SU(3)}_w \times U(1)_X$  quantum numbers) Lagrangian  $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{Yuk} + \mathcal{L}_{pot}$   $\Psi_{Q,L} = (u, d, U)_L, \Psi_\ell = (\nu, \ell, N)_L$  $\mathcal{L}_{\mathsf{Yuk.}} = -\,\lambda_1^u \overline{u}_{1,R} \Phi_1^\dagger \Psi_{T,L} \,-\, \lambda_2^u \overline{u}_{2,R} \Phi_2^\dagger \Psi_{T,L} \,-\, \frac{\lambda^d}{\Lambda} \epsilon^{ijk} \overline{d}_R^b \Phi_1^i \Phi_2^j \Psi_{T,L}^k$  $- \ \lambda^n \overline{n}_{1,R} \Phi_1^{\dagger} \Psi_{Q,L} - \frac{\lambda^e}{\Lambda} \epsilon^{ijk} \overline{e}_R \Phi_1^i \Phi_2^j \Psi_{Q,L}^k + \text{h.c.},$  $\mathcal{L}_{pot} = \mu^2 \Phi_1^{\dagger} \Phi_2 + h.c.$ 



Yukawa interactions and heavy Top Simplest Little Higgs ("µ Model") Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content  $(SU(3)_c \times \overline{SU(3)}_w \times U(1)_X$  quantum numbers) Lagrangian  $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{Yuk} + \mathcal{L}_{pot}$   $\Psi_{Q,L} = (u, d, U)_L, \Psi_{\ell} = (\nu, \ell, N)_L$  $\mathcal{L}_{\mathsf{Yuk.}} = -\,\lambda_1^u \overline{u}_{1,R} \Phi_1^\dagger \Psi_{T,L} \,-\, \lambda_2^u \overline{u}_{2,R} \Phi_2^\dagger \Psi_{T,L} \,-\, \frac{\lambda^d}{\Lambda} \epsilon^{ijk} \overline{d}_R^b \Phi_1^i \Phi_2^j \Psi_{T,L}^k$  $- \lambda^n \overline{n}_{1,R} \Phi_1^{\dagger} \Psi_{Q,L} - \frac{\lambda^e}{\Lambda} \epsilon^{ijk} \overline{e}_R \Phi_1^i \Phi_2^j \Psi_{Q,L}^k + \text{h.c.},$  $\mathcal{L}_{\text{pot}} = \mu^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}$ Hypercharge embedding (remember: diag $(1, 1, -2)/(2\sqrt{3})$ ):  $Y = X - T^8 / \sqrt{3}$ 

$$D_{\mu}\Phi = (\partial_{\mu} - \frac{1}{3}g_X B^X_{\mu}\Phi + igW^w_{\mu})\Phi$$







Cancellations of Divergencies in Yukawa sector



#### Little Higgs global symmetry imposes relation





Cancellations of Divergencies in Yukawa sector



#### Little Higgs global symmetry imposes relation





Cancellations of Divergencies in Yukawa sector



#### Little Higgs global symmetry imposes relation

Collective Symm. breaking:  $\lambda_t \propto \lambda_1 \lambda_2$  ,  $\lambda_1 = 0$ or  $\lambda_2 = 0 \Rightarrow SU(3) \rightarrow [SU(3)]^2$ 



# Outline

Hierarchy Problem Higgs as Pseudo-Naribu-Goldstone Boson (PNGB The Little Higgs nechanism

#### **Generic properties**

Examples of Models

#### Phenomenology

Effective Field Theories Electroweak Precision Observed Neutrino masses Heavy Quark States Heavy Vectors

Reconstruction of Little Higgs Models

Pseudo Axions in LHM

T parity and Dark Matter

#### Conclusions



# Generic properties — Scales and Masses

Extended scalar (Higgs-) sector

Extended global symmetry

- Specific form of scalar potential
- **Extended Gauge Sector:**  $B', Z', W'^{\pm}$
- Extended top sector: new heavy quarks, t, t' loops  $\Rightarrow M_h^2 < 0$  $\Rightarrow EWSB$





Extended scalar (Higgs-) sector

Extended global symmetry

- Specific form of scalar potential
- **Extended Gauge Sector:**  $B', Z', W'^{\pm}$

**Extended top sector:** new heavy quarks, t, t' loops  $\Rightarrow M_h^2 < 0$ ⇒ EWSB



- $\diamond$  Scale  $\Lambda$ : global SB, new dynamics, UV embedding
- ◊ Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs,  $W^{\pm}$ , Z,  $\ell^{\pm}$ , .



# Outline

Hierarchy Problem Higgs as Pseudo-Narrou-Goldstone Boson (PNGB) The Little Higgs mechanism

Generic properties

#### **Examples of Models**

Phenomenology

Effective Field Theories Electroweak Precision Obsc Neutrino masses

Heavy Quark States

Heavy Vectors Heavy Scalars Reconstruction of Exter Higgs Models Pseudo Axions in LHM T parity and Dark Matter

Conclusions



# Little Higgs Models

#### Plethora of "Little Higgs Models" in 3 categories:

#### Moose Models

- Orig. Moose
- Simple Moose
- Linear Moose

#### (Arkani-Hamed/Cohen/Georgi, 0105239)

(Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, 0206020)

(Casalbuoni/De Curtis/Dominici, 0405188)

#### Simple (Goldstone) Representation Models

Littlest Higgs

- (Arkani-Hamed/Cohen/Katz/Nelson, 0206021)
- Antisymmetric Little Higgs
- Custodial SU(2) Little Higgs
- Littlest Custodial Higgs
- Little SUSY

(Low/Skiba/Smith, 0207243)

(Chang/Wacker, 0303001)

(Chang, 0306034)

(Birkedal/Chacko/Gaillard, 0404197)

#### Simple (Gauge) Group Models

- Orig. Simple Group Model
- Holographic Little Higgs
- Simplest Little Higgs
- Simplest Little SUSY
- Simplest T parity

(Kaplan/Schmaltz, 0302049)

(Contino/Nomura/Pomarol, 0306259)

(Schmaltz, 0407143)

(Roy/Schmaltz, 0509357)

(Kilian/Rainwater/JR/Schmaltz,...)



### Varieties of Particle spectra





### Varieties of Particle spectra





### Varieties of Particle spectra


## Outline

Hierarchy Problem Higgs as Pseudo-Narrou-Goldstone Boson (PNGB The Little Higgs nechanism

Generic properties

Examples of Models

#### Phenomenology

Effective Field Theories Electroweak Precision Observables Neutrino masses Heavy Quark States Heavy Vectors Heavy Scalars Reconstruction of Little Higgs Models Pseudo Axions in LHM *T* parity and Dark Matter

Conclusions



## **Effective Field Theories**



How to *clearly* separate effects of heavy degrees of freedom?



## **Effective Field Theories**



How to *clearly* separate effects of heavy degrees of freedom?

Toy model: Two interacting scalar fields  $\varphi, \Phi$ 

$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \, \exp \left[ i \int dx \Big( rac{1}{2} (\partial arphi)^2 - rac{1}{2} \Phi(\Box + M^2) \Phi - \lambda arphi^2 \Phi - \ldots + J \Phi + j arphi \Big) \right]$$

Low-energy effective theory ⇒ integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting Kilian/JR, 2003



## **Effective Field Theories**



How to *clearly* separate effects of heavy degrees of freedom?

Toy model: Two interacting scalar fields  $\varphi, \Phi$ 

$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \, \exp\left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi(\Box + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J \Phi + j\varphi\right)\right]$$

Low-energy effective theory ⇒ integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting Kilian/JR, 2003

Completing the square:

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left( 1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \Rightarrow \quad \longrightarrow \quad \blacksquare$$

$$\frac{1}{2}(\partial\Phi)^2 - \frac{1}{2}M^2\Phi^2 - \lambda\varphi^2\Phi = -\frac{1}{2}\Phi'(M^2 + \partial^2)\Phi' + \frac{\lambda^2}{2M^2}\varphi^2\left(1 + \frac{\partial^2}{M^2}\right)^{-1}\varphi^2.$$





# Oblique Corrections: S, T, U $Z_L \qquad Z_L \qquad Z_L \qquad Z_L \qquad Z_L \qquad \Delta T \sim \Delta \rho \sim \Delta M_Z^2 Z \cdot Z$ $Z_T \qquad Z_T \qquad Z_T \qquad Z_T \qquad Z_T \qquad \Delta S \sim W^0_{\mu\nu} B^{\mu\nu}, \Delta U \sim W^0_{\mu\nu} W^{0\mu\nu}$

- $\diamond$  All low-energy effects order  $v^2/F^2$  (Wilson coefficients)
- ♦ Low-energy observables with low-energy input  $G_F$ ,  $\alpha$ ,  $M_Z$  affected by **non-oblique** contributions:

$$G_F = \frac{1}{v} \longrightarrow \frac{1}{v} \left(1 - \alpha \Delta T + \delta\right), \qquad \delta \equiv -\frac{v^2}{4} f_{JJ}^{(3)} \stackrel{\text{LHM}}{\longrightarrow} -\frac{c^4 v^2}{F^2}$$



# Oblique Corrections: *S*, *T*, *U*

$$Z_{L} \qquad Z_{L} \qquad Z_{L} \qquad Z_{L} \qquad \Delta T \sim \Delta \rho \sim \Delta M_{Z}^{2} Z \cdot Z$$

$$Z_{T} \qquad Z_{T} \qquad Z_{T} \qquad Z_{T} \qquad \Delta S \sim W^{0}_{\ \mu\nu} B^{\mu\nu}, \Delta U \sim W^{0}_{\ \mu\nu} W^{0\mu\nu}$$

- $\diamond$  All low-energy effects order  $v^2/F^2$  (Wilson coefficients)
- ♦ Low-energy observables with low-energy input  $G_F$ ,  $\alpha$ ,  $M_Z$  affected by **non-oblique** contributions:

$$G_F = \frac{1}{v} \longrightarrow \frac{1}{v} (1 - \alpha \Delta T + \delta),$$

 $S_{\text{eff}} = \Delta S$ 

 $T_{\text{eff}} = \Delta T - \frac{1}{\alpha} \delta$ 

 $U_{\text{eff}} = \left[\Delta U = 0\right] + \frac{4s_w^2}{s_w^2}\delta$ 

$$\delta \equiv - \frac{v^2}{4} f^{(3)}_{JJ} \xrightarrow{\text{LHM}} - \frac{c^4 v^2}{F^2}$$

- ► Little Higgs Models: S<sub>eff</sub>, T<sub>eff</sub>, c, c'
- ► non-oblique flavour-dependent corrections ⇒ enforce flavour-dependent EW fit

## **Constraints on LHM**

Constraints from contact IA: (  $f_{JJ}^{(3)}$ ,  $f_{JJ}^{(1)}$  ) 4.5 TeV  $\lesssim F/c^2$  10 TeV  $\lesssim F/c'^2$ 

♦ Constraints evaded  $\iff c, c' \ll 1$  $B', Z', W'^{\pm}$  superheavy ( $\mathcal{O}(\Lambda)$ ) decouple from fermions



# Constraints on LHM

Constraints from contact IA:  $(f_{JJ}^{(3)}, f_{JJ}^{(1)}) = 4.5 \text{ TeV} \lesssim F/c^2 = 10 \text{ TeV} \lesssim F/c'^2$ 

♦ Constraints evaded  $\iff c, c' \ll 1$  $B', Z', W'^{\pm}$  superheavy ( $\mathcal{O}(\Lambda)$ ) decouple from fermions

 $\Delta S$ ,  $\Delta T$  in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003

$$\frac{\Delta S}{8\pi} = -\left[\frac{c^2(c^2-s^2)}{g^2} + 5\frac{c'^2(c'^2-s'^2)}{g'^2}\right]\frac{v^2}{F^2} \to 0 \qquad \alpha \Delta T \to \frac{5}{4}\frac{v^2}{F^2} - \frac{2v^2\lambda_{2\phi}^2}{M_{\phi}^4} \gtrsim \frac{v^2}{F^2}$$



# Constraints on LHM

Constraints from contact IA: (  $f_{JJ}^{(3)}$ ,  $f_{JJ}^{(1)}$  ) 4.5 TeV  $\lesssim$   $F/c^2$  10 TeV  $\lesssim$   $F/c'^2$ 

♦ Constraints evaded  $\iff c, c' \ll 1$  $B', Z', W'^{\pm}$  superheavy ( $\mathcal{O}(\Lambda)$ ) decouple from fermions

 $\Delta S$ ,  $\Delta T$  in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003

$$\frac{\Delta S}{8\pi} = -\left[\frac{c^2(c^2-s^2)}{g^2} + 5\frac{c'^2(c'^2-s'^2)}{g'^2}\right]\frac{v^2}{F^2} \to 0 \qquad \alpha \Delta T \to \frac{5}{4}\frac{v^2}{F^2} - \frac{2v^2\lambda_{2\phi}^2}{M_{\phi}^4} \gtrsim \frac{v^2}{F^2}$$

## **General models**

- Triplet sector: (almost) identical to Littlest Higgs (ΔS only)
- More freedom in U(1) sector: ( $\Delta T$ )



#### **EW Precision Observables** Т Higgs mass variable (Coleman-Weinberg, LHM -0.6F = 3.5 TeVUV completion -0.4 $\Delta S = \frac{1}{12\pi} \ln \frac{m_H^2}{m_0^2}$ -0.2 $\Delta T = -\frac{3}{16\pi c_w^2} \ln \frac{m_H^2}{m_0^2}$ $m_{\rm H}=700\,GeV$ 400-GeV- $250\,{ m GeV}$ LHM $120\,\mathrm{GeV}$ F = 4.5 TeVPeskin/Takeuchi, 1992; Hagiwara et -0.2 al., 1992 S -0.4

Making the Higgs heavier reduces amount of fine-tuning



## Neutrino masses

Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005

 Naturalness does not require cancellation mechanism for light fermions

Lepton-number violating interactions can generate **neutrino masses** (due to presence of triplet scalars)



## Neutrino masses

Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005

 Naturalness does not require cancellation mechanism for light fermions

Lepton-number violating interactions can generate **neutrino masses** (due to presence of triplet scalars)

Lagrangian invariant under full gauge symmetry

$$\mathcal{L}_N = -g_N F(\bar{L}^c)^T \Xi L \quad \text{with} \quad L = (\mathrm{i}\tau^2 \ell_L, 0, 0)^T$$

EWSB: Generation of neutrino masses  $\mid m_{
u} \sim$ 

$$m_{\nu} \sim g_N v^2 / F$$



## Neutrino masses

Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005

 Naturalness does not require cancellation mechanism for light fermions

Lepton-number violating interactions can generate **neutrino masses** (due to presence of triplet scalars)

Lagrangian invariant under full gauge symmetry

$$\mathcal{L}_N = -g_N F(\bar{L}^c)^T \Xi L \quad \text{with} \quad L = (\mathrm{i}\tau^2 \ell_L, 0, 0)^T$$

EWSB: Generation of neutrino masses  $\mid m_{
u} \sim g_{II}$ 

$$m_{\nu} \sim g_N v^2 / F$$

, Caveat:  $m_{
u}$  too large compared to observations

 $\Rightarrow g_N$  small, e.g.  $F/\Lambda'$ , where  $\Lambda'$  : scale of lepton number breaking



# **Heavy Quark States**

► EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03





# **Heavy Quark States**

EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03



Characteristic branching ratios :

$$\Gamma(T \to th) \approx \Gamma(T \to tZ) \approx \frac{1}{2} \Gamma(T \to bW^+) \approx \frac{M_T \lambda_T^2}{64\pi}, \qquad \Gamma_T \sim 10-50 \, {\rm GeV}$$

Proof of T as EW singlet; but:  $T \rightarrow Z'T, W'b, t\eta$  !

AIM: Determination of  $M_T$ ,  $\lambda_T$ ,  $\lambda_{T'}$ 

 $\lambda_{T'}$  indirect ( $T\bar{T}h$  impossible)



- ▶  $E_T > 100 \text{ GeV}, \ell \ell \ell, p_T > 100/30 \text{ GeV}, b, p_T > 30 \text{ GeV}$
- **b** Bkgd.: WZ, ZZ, btZ
- Observation for  $M_T \lesssim 1.4 \,\mathrm{TeV}$







- Bkgd.:  $t\bar{t}, Wb\bar{b}$ , single t
- Observation for  $M_T \lesssim 2.5 \,\mathrm{TeV}$





 $T 
ightarrow th 
ightarrow \ell 
u bbb$  sn-atlas-2004-038

- ℓ, p<sub>T</sub> > 100 GeV, jjj, p<sub>T</sub> > 130 GeV, at least 1 b-tag
- Bkgd.:  $t\bar{t}, Wb\bar{b}$ , single t
- Observation for  $M_T \lesssim 2.5 \,\text{TeV}$







- ℓ, p<sub>T</sub> > 100 GeV, jjj, p<sub>T</sub> > 130 GeV, at least 1 b-tag
- Bkgd.:  $t\bar{t}, Wb\bar{b}$ , single t
- Observation for  $M_T \lesssim 2.5 \,\text{TeV}$



Additional heavy quarks (Simple Group Models): U, C or D, S Han et al., 05

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction







- ℓ, p<sub>T</sub> > 100 GeV, jjj, p<sub>T</sub> > 130 GeV, at least 1 b-tag
- Bkgd.:  $t\bar{t}, Wb\bar{b}$ , single t
- Observation for  $M_T \lesssim 2.5 \,\text{TeV}$



Additional heavy quarks (Simple Group Models): U, C or D, S Han et al., 05



 $T 
ightarrow th 
ightarrow \ell 
u bbb$  sn-atlas-2004-038

- ℓ, p<sub>T</sub> > 100 GeV, jjj, p<sub>T</sub> > 130 GeV, at least 1 b-tag
- Bkgd.:  $t\bar{t}, Wb\bar{b}$ , single t
- Observation for  $M_T \lesssim 2.5 \,\text{TeV}$



Additional heavy quarks (Simple Group Models): U, C or D, S Han et al., 05

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction



#### Tevatron Limits $\sim 500-600\,{\rm GeV}$





#### Tevatron Limits $\sim 500 - 600 \, \mathrm{GeV}$





#### Tevatron Limits $\sim 500-600\,{\rm GeV}$

- ▶ Dominant decays: Product group:  $Z' \rightarrow Zh, WW$ ,  $W' \rightarrow Wh, WZ$ Simple group:  $Z' \rightarrow qq$ ,  $X \rightarrow fF$
- Discovery channel:  $Z' \to \ell \ell, W' \to \ell \nu$
- ►  $\Gamma_{Z'} \sim 10 50 \, \text{GeV}, \quad \Gamma_X \sim 0.1 10 \, \text{GeV}$





#### Tevatron Limits $\sim 500-600\,{\rm GeV}$

- ► Dominant decays: Product group:  $Z' \rightarrow Zh, WW$ ,  $W' \rightarrow Wh, WZ$ Simple group:  $Z' \rightarrow qq$ ,  $X \rightarrow fF$
- Discovery channel:  $Z' \rightarrow \ell \ell, W' \rightarrow \ell \nu$
- ►  $\Gamma_{Z'} \sim 10 50 \, \text{GeV}, \quad \Gamma_X \sim 0.1 10 \, \text{GeV}$







DESY



**Proof:** Sum rule for cancellation of divergences:  $g_{HHVV} + g_{HHV'V'} = 0$ , associated production  $pp \rightarrow V'h$ 

## **Heavy Scalars**

#### Generally: Large model dependence no states complex singlet complex triplet

- Littlest Higgs, complex triplet: Φ<sup>0</sup>, Φ<sub>P</sub>, Φ<sup>±</sup>, Φ<sup>±±</sup>
- ► Cleanest channel:  $q\bar{q} \rightarrow \Phi^{++}\Phi^{--} \rightarrow \ell\ell\ell\ell\ell$ : Killer: PS
- ▶ WW-Fusion:  $dd \rightarrow uu\Phi^{++} \rightarrow uuW^+W^+$
- 2 hard forward jets, hard close  $\ell^+ \ell^+$  $p_T$ -unbalanced



### Alternative: Model-Independent search in WW fusion:

- ILC: Beyer/Kilian/Krstonosic/Mönig/JR/Schmidt/Schröder, 2006
- LHC: ATLAS-note, Kilian/Mertens/JR/Schumacher



## **Reconstruction of LHM**



How to unravel the structure of LHM @ colliders?

Kilian/JR, 2003; Han et al., 2005

- $\Rightarrow$  Quadr. Div. Cancell.
- Nonlinear Goldstone boson structure



## Reconstruction of LHM



How to unravel the structure of LHM @ colliders?

- Kilian/JR, 2003; Han et al., 2005
  - $\Rightarrow$  Quadr. Div. Cancell.
- Nonlinear Goldstone boson structure
- Anom. Triple Gauge Couplings: WWZ,  $WW\gamma$

SIGNALS:

- ► Anom. Higgs Coupl.: H(H)WW, H(H)ZZ
- ► Anom. Top Couplings: *ttZ*, *tbW*



# Reconstruction of LHM



How to unravel the structure of LHM @ colliders?

- Kilian/JR, 2003; Han et al., 2005
  - $\Rightarrow$  Quadr. Div. Cancell.
- Nonlinear Goldstone boson structure
- Anom. Triple Gauge Couplings: WWZ,  $WW\gamma$

SIGNALS:

- Anom. Higgs Coupl.: H(H)WW, H(H)ZZ
- ► Anom. Top Couplings: ttZ, tbW
- Direct Search (LHC)  $M_V, F, c, c'$
- ► ILC: <u>Contact Terms</u>  $e^+e^- \rightarrow \ell^+\ell^-, [\nu\bar{\nu}\gamma] \Rightarrow M_{B'} \lesssim 10[5]$  TeV

#### Vectors:

- Higgsstr., WW fusion: HZff, HWff angular distr./energy dependence  $\Rightarrow f_{VJ}^{(1/3)}$ 
  - Check from <u>TGC</u> (ILC: per mil precision), GigaZ  $\Rightarrow f_{JJ}^{(3)}$

#### Combining $\Rightarrow$ Determination of *all* coefficients in the gauge sector



Scalars: Affected by scalars and vectors •  $\Delta T$ ,  $f_{VV}^{(1)}$ , B' known  $\Rightarrow (\lambda_{2\phi}/M_{\phi}^2)^2$ 

• Higgsstr., WW fusion  $\Rightarrow$  Higgs coupl.,  $f_{VV}^{(3)}$ 

• Higgs BRs  $\Rightarrow f_{VV}^{(1)}, f_{VV}^{(3)}$ ; (take care of t)

 $f_{VV}^{(3)}$  Goldstone contr.  $\Rightarrow$  Evidence for nonlinear nature

• *HH* production  $\Rightarrow$  *f*<sub>*h*,3</sub> (difficult!)

LHC  $\bowtie$  ILC  $\Rightarrow$  1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to  $F \sim 2 \text{ TeV}$ 



Scalars: Affected by scalars and vectors •  $\Delta T$ ,  $f_{VV}^{(1)}$ , B' known  $\Rightarrow (\lambda_{2\phi}/M_{\phi}^2)^2$ 

• Higgsstr., WW fusion  $\Rightarrow$  Higgs coupl.,  $f_{VV}^{(3)}$ 

• Higgs BRs  $\Rightarrow f_{VV}^{(1)}, f_{VV}^{(3)}$ ; (take care of t)

 $f_{VV}^{(3)}$  Goldstone contr.  $\Rightarrow$  Evidence for nonlinear nature

• *HH* production  $\Rightarrow$  *f*<sub>*h*,3</sub> (difficult!)

LHC  $\bowtie$  ILC  $\Rightarrow$  1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to  $F \sim 2 \text{ TeV}$ 

Direct production @ LHC

Top:

- $t\bar{t}$  production  $\Rightarrow f_{Vq}, v_t, a_t$ ; accuracy 1-2 %
- ► tbW from t decays, single t production  $g_{ttH}/g_{bbH} \Rightarrow$  anom. Yukawa coupl.  $\Rightarrow f_{hq}$ , nonlin. structure w.  $\sim 2.5\%$  accuracy



Scalars: Affected by scalars and vectors •  $\Delta T$ ,  $f_{VV}^{(1)}$ , B' known  $\Rightarrow (\lambda_{2\phi}/M_{\phi}^2)^2$ 

• Higgsstr., WW fusion  $\Rightarrow$  Higgs coupl.,  $f_{VV}^{(3)}$ 

• Higgs BRs  $\Rightarrow f_{VV}^{(1)}, f_{VV}^{(3)}$ ; (take care of t)

 $f_{VV}^{(3)}$  Goldstone contr.  $\Rightarrow$  Evidence for nonlinear nature

• *HH* production  $\Rightarrow$  *f*<sub>*h*,3</sub> (difficult!)

LHC  $\bowtie$  ILC  $\Rightarrow$  1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to  $F \sim 2 \text{ TeV}$ 

Direct production @ LHC

Top:

- $t\bar{t}$  production  $\Rightarrow f_{Vq}, v_t, a_t$ ; accuracy 1-2 %
- ► tbW from t decays, single t production  $g_{ttH}/g_{bbH} \Rightarrow$  anom. Yukawa coupl.  $\Rightarrow f_{hq}$ , nonlin. structure w.  $\sim 2.5\%$  accuracy

Include all observables in a combined fit if Little Higgs signals are found (sufficient data from LHC and ILC)



## Pseudo Axions in LHM

Kilian/Rainwater/JR, 2004

- broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion


#### Pseudo Axions in LHM

Kilian/Rainwater/JR, 2004

- broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion



#### Pseudo Axions in LHM

Kilian/Rainwater/JR, 2004

- broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion



- explicit symmetry breaking  $\Rightarrow m_{\eta}$  and  $g_{\eta\gamma\gamma}$  independent  $\Rightarrow$  axion bounds *not applicable*
- no new hierarchy problem  $\Rightarrow m_\eta \lesssim v \sim 250 \, \text{GeV}$
- $\eta$  EW singlet, couplings an to SM particles v/F suppressed



### Example: Simple Group Model

Scalar Potential:  $\mu \Phi_1^{\dagger} \Phi_2$  + h.c. + Coleman-Weinberg pot.:

$$\boxed{m_{\eta} = \sqrt{\kappa} \mu \ge \sqrt{2} \mu} \qquad m_{H}^{2} = -2(\delta m^{2} + m_{\eta}^{2})$$



DESY

# Example: Simple Group Model

Scalar Potential:  $\mu \Phi_1^{\dagger} \Phi_2$  + h.c. + Coleman-Weinberg pot.:

$$\boxed{m_{\eta} = \sqrt{\kappa}\,\mu \,\geq\, \sqrt{2}\,\mu} \qquad m_H^2 = -2(\delta m^2 + m_{\eta}^2)$$

new Higgs decays  $(H \rightarrow Z\eta, H \rightarrow \eta\eta)$ 

$$\mathsf{BR}(H \to \eta \eta) < 10^{-4} \ [\sim 5 - 10\% \ \mathsf{OSG}]$$

| $m_H$ [GeV] | $m_{\eta}$ [GeV] | $BR(Z\eta)$ |
|-------------|------------------|-------------|
| 341         | 223              | 0.1 %       |
| 375         | 193              | 0.5 %       |
| 400         | 167              | 0.8 %       |
| 422         | 137              | 1.0 %       |
| 444         | 96               | 1.2 %       |
| 464         | 14               | 1.4 %       |



# Pseudo Axions at LHC and ILC

• LHC: Gluon Fusion ( $U(1)_{\eta}$  anomaly), Peak in diphoton spectrum



#### Pseudo Axions at LHC and ILC

- LHC: Gluon Fusion ( $U(1)_{\eta}$  anomaly), Peak in diphoton spectrum
- ILC: associated production Problem: Cross section vs. bkgd.



 $\frac{\text{Possibility: } Z^* \to H\eta \text{ (analogous to } A \text{ in 2HDM)}}{\text{Distinction between Simple and Product Group Models}}$ 

Kilian/JR/Rainwater (in prep.)



#### Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)



- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM
  - (  $\hookrightarrow$  Mühlleitner et al. (2001))



#### Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM

(  $\hookrightarrow$  Mühlleitner et al. (2001))









# T parity and Dark Matter

Cheng/Low, 2003; Hubisz/Meade, 2005

- ▶ *T* parity:  $T^a \to T^a$ ,  $X^a \to -X^a$ , automorphism of coset space
- analogous to R parity in SUSY, KK parity in extra dimensions
- Bounds on *f* MUCH relaxed,
- but: Pair production!, typical cascade decays
- ► Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter



# T parity and Dark Matter

Cheng/Low, 2003; Hubisz/Meade, 2005

- ▶ T parity:  $T^a \to T^a$ ,  $X^a \to -X^a$ , automorphism of coset space
- analogous to R parity in SUSY, KK parity in extra dimensions
- Bounds on *f* MUCH relaxed,
- but: Pair production!, typical cascade decays
- ► Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

Littlest Higgs: A' LTP  $W', Z' \sim 650$  GeV  $\Phi \sim 1$  TeV  $T, T' \sim 0.7$ -1 TeV Annihilation:  $A'A' \rightarrow h \rightarrow WW, ZZ, hh$ 



MA. (GeV)





# T parity and Dark Matter

Cheng/Low, 2003; Hubisz/Meade, 2005

- ▶ T parity:  $T^a \to T^a$ ,  $X^a \to -X^a$ , automorphism of coset space
- analogous to R parity in SUSY, KK parity in extra dimensions
- Bounds on *f* MUCH relaxed,
- but: Pair production!, typical cascade decays
- ► Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter





# Outline

Hierarchy Problem Higgs as Pseudo-Nanou-Goldstone Boson (PNGB) The Little Higgs mechanism

Generic properties

Examples of Models

#### Phenomenology

Effective Field Theories Electroweak Precision Obsource Neutrino masses Heavy Quark States Heavy Vectors Heavy Scalars Reconstruction of Liver Higgs

Pseudo Axions in LHM

T parity and Dark Matter

#### Conclusions



Little Higgs elegant alternative to SUSY Gauge/Global Symmetry structure stabilizes EW scale

Generics: new heavy gauge bosons, scalars, quarks

Little Higgs in accord w EW precision observ. w/o Fine Tuning  $(M_H!)$ 

New developments: Pseudo-Axions, T-parity, LH Dark Matter



Little Higgs elegant alternative to SUSY Gauge/Global Symmetry structure stabilizes EW scale

Generics: new heavy gauge bosons, scalars, quarks

Little Higgs in accord w EW precision observ. w/o Fine Tuning  $(M_H!)$ 

New developments: Pseudo-Axions, T-parity, LH Dark Matter

Ś

UV embedding, GUT, Flavor ?

Clear experimental signatures:

direct search [Gauge & Top sector, LHC (ILC)] ↔ precision observables [Gauge, Scalar, Top sector ILC (LHC)]

Strategy for Reconstruction by Complementarity of ILC & LHC



Little Higgs elegant alternative to SUSY Gauge/Global Symmetry structure stabilizes EW scale

Generics: new heavy gauge bosons, scalars, quarks

Little Higgs in accord w EW precision observ. w/o Fine Tuning  $(M_H!)$ 

New developments: Pseudo-Axions, T-parity, LH Dark Matter





Little Higgs elegant alternative to SUSY Gauge/Global Symmetry structure stabilizes EW scale

Generics: new heavy gauge bosons, scalars, quarks

Little Higgs in accord w EW precision observ. w/o Fine Tuning  $(M_H!)$ 

New developments: Pseudo-Axions, T-parity, LH Dark Matter





Little Higgs elegant alternative to SUSY Gauge/Global Symmetry structure stabilizes EW scale

Generics: new heavy gauge bosons, scalars, quarks

Little Higgs in accord w EW precision observ. w/o Fine Tuning  $(M_H!)$ 

New developments: Pseudo-Axions, T-parity, LH Dark Matter

