The Big Deal with the Little Higgs

Jürgen Reuter

DESY Theory Group, Hamburg

Seminar Dresden, 16.Dec.2005

Outline

Hierarchy Problem, Goldstone-Bosons and Little Higgs

Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism

Examples of Models

Phenomenology

For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM *T* parity and Dark Matter

Conclusions

Outline

Hierarchy Problem, Goldstone-Bosons and Little Higgs

Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism

Examples of Models

Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theores Electroweak Precision Observation Direct Searches Reconstruction of Little Higgs Mod Pseudo Axions in LHM

Conclusions

Electroweak Theory: $SU(2) \times U(1)$ gauge theory

$$U = \exp[ig\theta^a \tau^a/2], \quad V = \exp[ig'\theta_Y Y/2]$$

$$Q_L \equiv \begin{pmatrix} u \\ d \end{pmatrix}_L \to UQ_L, \qquad f_R \to f_R, \qquad \mathbf{W}_\mu \to U\mathbf{W}_\mu U^\dagger + \frac{i}{g}(\partial_\mu U)U^\dagger$$

Electroweak Theory: $SU(2) \times U(1)$ gauge theory

$$U = \exp[ig\theta^a \tau^a/2], \quad V = \exp[ig'\theta_Y Y/2]$$

$$Q_L \equiv \begin{pmatrix} u \\ d \end{pmatrix}_L o UQ_L, \qquad f_R o f_R, \qquad \mathbf{W}_\mu o U\mathbf{W}_\mu U^\dagger + rac{i}{g} (\partial_\mu U) U^\dagger$$

Problem: Mass terms for W, Z and fermions not gauge invariant

Electroweak Theory: $SU(2) \times U(1)$ gauge theory

$$U = \exp[ig\theta^a \tau^a/2], \quad V = \exp[ig'\theta_Y Y/2]$$

$$Q_L \equiv \begin{pmatrix} u \\ d \end{pmatrix}_L \to UQ_L, \qquad f_R \to f_R, \qquad \mathbf{W}_\mu \to U\mathbf{W}_\mu U^\dagger + \frac{i}{g} (\partial_\mu U) U^\dagger$$

Problem: Mass terms for W, Z and fermions not gauge invariant

 Solution: Introduction of a field which absorbs the mismatch of transformation laws: Higgs field

Electroweak Theory: $SU(2) \times U(1)$ gauge theory

$$U = \exp[ig\theta^a \tau^a/2], \quad V = \exp[ig'\theta_Y Y/2]$$

$$Q_L \equiv \begin{pmatrix} u \\ d \end{pmatrix}_L o UQ_L, \qquad f_R o f_R, \qquad \mathbf{W}_\mu o U\mathbf{W}_\mu U^\dagger + rac{i}{g} (\partial_\mu U) U^\dagger$$

Problem: Mass terms for W, Z and fermions not gauge invariant

- Solution: Introduction of a field which absorbs the mismatch of transformation laws: Higgs field
- Spontaneous symmetry breaking: Higgs gets a Vacuum Expectation value (VEV):

$$\mathcal{V}(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2, \Rightarrow \Phi \to \exp[i\pi/v] \begin{pmatrix} 0\\ v+H \end{pmatrix}$$

$$|D_{\mu}\Phi|^2 \rightarrow \frac{1}{2}M_W^2 W_a^2, \qquad -Y_d \overline{Q}_L \Phi d_R \rightarrow -m_d \overline{d}_L d_R$$

Hierarchy Problem $M_h[\text{GeV}]$

Motivation: Hierarchy Problem

Effective theories below a scale Λ

 \Rightarrow

Hierarchy Problem

Motivation: Hierarchy Problem

- Effective theories below a scale $\Lambda \Rightarrow$
- Loop integration cut off at order $\sim \Lambda$:

- **Problem:** Naturally, $m_h \sim \mathcal{O}(\Lambda^2)$:
 - $m_h^2 = m_0^2 + \Lambda^2 \times (\text{loop factors})$
- \therefore Light Higgs favoured by EW precision observables $(m_h < 0.5 \,\text{TeV})$

 $\sim \Lambda^2$

- $m_h \ll \Lambda \quad \Leftrightarrow \quad \text{Fine-Tuning } !?$
- Solution: Mechanism for eliminating loop contributions

Higgs as Pseudo-Goldstone Boson

Invent (approximate) symmetry to protect particle mass

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Higgs as Pseudo-Goldstone Boson

Invent (approximate) symmetry to protect particle mass

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Little Higgs:

Gauge group structure/Global Symmetries \implies Loops of particles of *like statistics*

Old Idea:

Higgs as Pseudo-Goldstone Boson

Invent (approximate) symmetry to protect particle mass

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Little Higgs:

Gauge group structure/Global Symmetries \implies Loops of particles of *like statistics*

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as Pseudo-Goldstone boson ⇔ spontaneously broken (approximate) *global* symmetry; non-linear sigma model

w/o Fine-Tuning: $v \sim \Lambda/4\pi$

Old Idea:

Higgs as Pseudo-Goldstone Boson

Invent (approximate) symmetry to protect particle mass

Traditional (SUSY): **Spin-Statistics** \implies Loops of bosons and fermions

Little Higgs:

Gauge group structure/Global Symmetries \implies Loops of particles of *like statistics*

Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as Pseudo-Goldstone boson \Leftrightarrow spontaneously broken (approximate) *global* symmetry; non-linear sigma model

w/o Fine-Tuning: $v \sim \Lambda/4\pi$

New Ingredience: Arkani-Hamed/Cohen/Georgi/..., 2001

Collective Symmetry Breaking eliminates quadratic divergences @ 1-loop level \implies 3-scale model

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

$$\pi_{i} \rightarrow i\theta^{a}T_{ik}^{a}\pi_{k} \quad \Rightarrow \quad \frac{\partial\mathcal{V}}{\partial\pi_{i}}T_{ij}^{a}\pi_{j} = 0 \quad \Rightarrow \quad \underbrace{\frac{\partial^{2}\mathcal{V}}{\partial\pi_{i}\partial\pi_{j}}\Big|_{f}}_{=(m^{2})_{ij}}T_{jk}^{a}f_{k} + \underbrace{\frac{\partial\mathcal{V}}{\partial\pi_{j}}\Big|_{v}}_{=0}T_{ji}^{a} = 0$$

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

$$\pi_i \to i\theta^a T^a_{ik} \pi_k \quad \Rightarrow \quad \frac{\partial \mathcal{V}}{\partial \pi_i} T^a_{ij} \pi_j = 0 \quad \Rightarrow \underbrace{\frac{\partial^2 \mathcal{V}}{\partial \pi_i \partial \pi_j}}_{=(m^2)_{ij}} T^a_{jk} f_k + \underbrace{\frac{\partial \mathcal{V}}{\partial \pi_j}}_{=0} T^a_{ji} = 0$$

Nonlinear Realization (Example $SU(3) \rightarrow SU(2)$):

$$\mathcal{V}(\Phi) = \left(f^2 - (\Phi^{\dagger}\Phi)\right)^2 \Rightarrow \Phi = \exp\left[\frac{i}{f}\left(\frac{0 \mid \vec{\pi}}{\vec{\pi}^{\dagger} \mid \pi_0}\right)\right] \begin{pmatrix} 0\\ f + \sigma \end{pmatrix} \equiv e^{i\pi}\Phi_0$$

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

$$\pi_i \to i\theta^a T^a_{ik} \pi_k \quad \Rightarrow \quad \frac{\partial \mathcal{V}}{\partial \pi_i} T^a_{ij} \pi_j = 0 \quad \Rightarrow \underbrace{\frac{\partial^2 \mathcal{V}}{\partial \pi_i \partial \pi_j}}_{=(m^2)_{ij}} T^a_{jk} f_k + \underbrace{\frac{\partial \mathcal{V}}{\partial \pi_j}}_{=0} T^a_{ji} = 0$$

Nonlinear Realization (Example $SU(3) \rightarrow SU(2)$):

$$\mathcal{V}(\Phi) = \left(f^2 - (\Phi^{\dagger}\Phi)\right)^2 \Rightarrow \Phi = \exp\left[\frac{i}{f}\left(\frac{0 \mid \vec{\pi}}{\vec{\pi}^{\dagger} \mid \pi_0}\right)\right] \begin{pmatrix}0\\f+\sigma\end{pmatrix} \equiv e^{i\pi}\Phi_0$$

$$\Phi \to U_2 \Phi = (U_2 \Phi U_2^{\dagger}) U_2 \Phi_0 = e^{i(U_2 \pi U_2^{\dagger})} \Phi_0 \qquad U_2 = \begin{pmatrix} \hat{U}_2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \quad \vec{\pi} \to \hat{U}_2 \vec{\pi}, \quad \pi_0 \to \pi_0 \qquad \vec{\pi} \in \text{fundamental } SU(2) \text{ rep.}, \pi_0 \text{ single}$$

▶ $\vec{\pi} \equiv h$??

• $\vec{\pi} \equiv h$?? Let's try!

- $\vec{\pi} \equiv h$?? Let's try!
- ► Lagrangian has translational symmetry: $\vec{\pi} \rightarrow \vec{\pi} + \vec{a} \Rightarrow$ (exact) Goldstones have only derivative interactions

- $\vec{\pi} \equiv h$?? Let's try!
- Lagrangian has translational symmetry: $\vec{\pi} \rightarrow \vec{\pi} + \vec{a} \Rightarrow$ (exact) Goldstones have only derivative interactions
- Gauge and Yukawa interactions?
- Expanding the kinetic term:

 $f^{2}|\partial\Phi|^{2} = |\partial h|^{2} + \frac{1}{f^{2}}(h^{\dagger}h)|\partial h|^{2} + \dots$

- $\vec{\pi} \equiv h$?? Let's try!
- ► Lagrangian has translational symmetry: $\vec{\pi} \rightarrow \vec{\pi} + \vec{a} \Rightarrow$ (exact) Goldstones have only derivative interactions
- Gauge and Yukawa interactions?
- Expanding the kinetic term:

 $f^{2}|\partial\Phi|^{2} = |\partial h|^{2} + \frac{1}{f^{2}}(h^{\dagger}h)|\partial h|^{2} + \dots$

- \rightarrow Theory becomes stronly interacting at $\Lambda = 4\pi f$.
- Bad news Easy attempts: no potential or quadratic divergences again

Collective Symmetry breaking: Two ways of model building:

simple Higgs representation , doubled gauge group
 simple gauge group, doubled Higgs representation

 $\partial_h ^\dagger \partial_h \sim {1 \over f^2} {\Lambda^2 \over 16 \pi}$

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix}$$

$$\Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h \\ 0 & \eta & h \\ h^T & \eta \end{pmatrix}$$

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\ 0\\ f_{1/2} \end{pmatrix} \qquad \Theta$$

$$\Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 \\ 0 & \eta \\ h^T \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

$$\frac{g^2}{16\pi^2}\Lambda^2 \left(|\Phi_1|^2 + |\Phi_2|^2 \right) \sim \frac{g^2}{16\pi^2} f^2$$

DES

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h^*\\0 & \eta & \\h^T & \eta \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

$$= \frac{g^2}{16\pi^2} \Lambda^2 \left(|\Phi_1|^2 + |\Phi_2|^2 \right) \sim \frac{g^2}{16\pi^2} f^2$$

but:
$$\frac{\Phi_1^{\dagger}}{\Phi_1} \bigwedge \bigwedge \Phi_2^{\dagger} = \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) |\Phi_1^{\dagger}\Phi_2|^2 \Rightarrow \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) f^2(h^{\dagger}h)$$

Yukawa interactions and heavy Top Simplest Little Higgs ("µ Model") Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content $(SU(3)_c \times SU(3)_w \times U(1)_X$ quantum numbers) Lagrangian $\mathcal{L} = \mathcal{L}_{kin.} + \mathcal{L}_{Yuk.} + \mathcal{L}_{pot.}$ $\Psi_{Q,L} = (u, d, U)_L, \Psi_{\ell} = (\nu, \ell, N)_L$: $\mathcal{L}_{\mathsf{Yuk.}} = -\,\lambda_1^u \overline{u}_{1,R} \Phi_1^\dagger \Psi_{T,L} \,-\, \lambda_2^u \overline{u}_{2,R} \Phi_2^\dagger \Psi_{T,L} \,-\, \frac{\lambda^d}{\Lambda} \epsilon^{ijk} \overline{d}_R^b \Phi_1^i \Phi_2^j \Psi_{T,L}^k$ $- \ \lambda^n \overline{n}_{1,R} \Phi_1^\dagger \Psi_{Q,L} - \frac{\lambda^e}{\Lambda} \epsilon^{ijk} \overline{e}_R \Phi_1^i \Phi_2^j \Psi_{Q,L}^k + \text{h.c.},$

Yukawa interactions and heavy Top Simplest Little Higgs ("µ Model") Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content $(SU(3)_c \times \overline{SU(3)}_w \times U(1)_X$ quantum numbers) Lagrangian $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{Yuk} + \mathcal{L}_{pot}$ $\Psi_{Q,L} = (u, d, U)_L, \Psi_\ell = (\nu, \ell, N)_L$ $\mathcal{L}_{\mathsf{Yuk.}} = -\,\lambda_1^u \overline{u}_{1,R} \Phi_1^\dagger \Psi_{T,L} \,-\, \lambda_2^u \overline{u}_{2,R} \Phi_2^\dagger \Psi_{T,L} \,-\, \frac{\lambda^d}{\Lambda} \epsilon^{ijk} \overline{d}_R^b \Phi_1^i \Phi_2^j \Psi_{T,L}^k$ $- \ \lambda^n \overline{n}_{1,R} \Phi_1^{\dagger} \Psi_{Q,L} - \frac{\lambda^e}{\Lambda} \epsilon^{ijk} \overline{e}_R \Phi_1^i \Phi_2^j \Psi_{Q,L}^k + \text{h.c.},$ $\mathcal{L}_{pot} = \mu^2 \Phi_1^{\dagger} \Phi_2 + h.c.$

 $Y = X - T^8 / \sqrt{3}$

Yukawa interactions and heavy Top Simplest Little Higgs ("µ Model") Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content $(SU(3)_c \times \overline{SU(3)}_w \times U(1)_X$ quantum numbers) Lagrangian $\mathcal{L} = \mathcal{L}_{kin} + \mathcal{L}_{Yuk} + \mathcal{L}_{pot}$ $\Psi_{Q,L} = (u, d, U)_L, \Psi_{\ell} = (\nu, \ell, N)_L$ $\mathcal{L}_{\mathsf{Yuk.}} = -\,\lambda_1^u \overline{u}_{1,R} \Phi_1^\dagger \Psi_{T,L} \,-\, \lambda_2^u \overline{u}_{2,R} \Phi_2^\dagger \Psi_{T,L} \,-\, \frac{\lambda^d}{\Lambda} \epsilon^{ijk} \overline{d}_R^b \Phi_1^i \Phi_2^j \Psi_{T,L}^k$ $- \lambda^n \overline{n}_{1,R} \Phi_1^{\dagger} \Psi_{Q,L} - \frac{\lambda^e}{\Lambda} \epsilon^{ijk} \overline{e}_R \Phi_1^i \Phi_2^j \Psi_{Q,L}^k + \text{h.c.},$ $\mathcal{L}_{\text{pot}} = \mu^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}$ Hypercharge embedding (remember: diag $(1, 1, -2)/(2\sqrt{3})$):

$$D_{\mu}\Phi = (\partial_{\mu} - \frac{1}{3}g_X B^X_{\mu}\Phi + igW^w_{\mu})\Phi$$

Cancellations of Divergencies in Yukawa sector

Little Higgs global symmetry imposes relation

Cancellations of Divergencies in Yukawa sector

Little Higgs global symmetry imposes relation

Cancellations of Divergencies in Yukawa sector

Little Higgs global symmetry imposes relation

Collective Symm. breaking: $\lambda_t \propto \lambda_1 \lambda_2$, $\lambda_1 = 0$ or $\lambda_2 = 0 \Rightarrow SU(3) \rightarrow [SU(3)]^2$

Scales and Masses

- ♦ Scale Λ: global SB, new dynamics, UV embedding
- Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

Scales and Masses

- ♦ Scale Λ: global SB, new dynamics, UV embedding
- Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions
- ♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic corrections @ 1-loop level

Scales and Masses

♦ Scale Λ: global SB, new dynamics, UV embedding

 Scale F: Pseudo-Goldstone bosons, new vector bosons and fermions

♦ Scale v: Higgs, W^{\pm} , Z, ℓ^{\pm} , ...

 $\mathcal{H}
ightarrow \mathcal{H}_0$

 $[\mathcal{H}_1, \mathcal{H}_2] \neq 0$

 $\mathcal{W}_2 \subset \mathcal{F}$

 $M_H \sim g_1 g_2 \Lambda / 16 \pi^2$

 $g_2 \neq 0$

Generic properties

Extended scalar (Higgs-) sector

Extended global symmetry

Extended top sector: new heavy quarks, t, t' loops $\Rightarrow M_h^2 < 0$ $\Rightarrow EWSB$

Outline

Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseude-Goldstone Boson Nambu-Goldstone Sesons The Little Higgs mechanism

Examples of Models

Phenomenology For example: Littlest Hig Neutrino masses Effective Field Themps Electroweak Precision O Direct Searches

Reconstruction of Little Higgs Pseudo Axions in LHM 7 parity and Dark Matter

Conclusions

Little Higgs Models

Plethora of "Little Higgs Models" in 3 categories:

Moose Models

- Orig. Moose
- Simple Moose
- Linear Moose

(Arkani-Hamed/Cohen/Georgi, 0105239)

(Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, 0206020)

(Casalbuoni/De Curtis/Dominici, 0405188)

Simple (Goldstone) Representation Models

Littlest Higgs

- (Arkani-Hamed/Cohen/Katz/Nelson, 0206021)
- Antisymmetric Little Higgs
- Custodial SU(2) Little Higgs
- Littlest Custodial Higgs
- Little SUSY

(Low/Skiba/Smith, 0207243)

(Chang/Wacker, 0303001)

(Chang, 0306034)

(Birkedal/Chacko/Gaillard, 0404197)

Simple (Gauge) Group Models

- Orig. Simple Group Model
- Holographic Little Higgs
- Simplest Little Higgs
- Simplest Little SUSY
- Simplest T parity

(Kaplan/Schmaltz, 0302049)

(Contino/Nomura/Pomarol, 0306259)

(Schmaltz, 0407143)

(Roy/Schmaltz, 0509357)

(Kilian/Rainwater/JR/Schmaltz,...)

Varieties of Particle spectra

Varieties of Particle spectra

Varieties of Particle spectra

Outline

Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseude-Goldstone Boson Nambu-Goldstone Posons The Little Higgs mechanism

Examples of Models

Phenomenology

For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM *T* parity and Dark Matter

Conclusions

The Littlest Higgs Model Setup Symmetry breaking:

 $SU(5) \rightarrow SO(5)$ (global) $[SU(2) \times U(1)]^2 \rightarrow SU(2)_L \times U(1)_Y$ (local) 1 heavy triplet X_{μ} , 1 heavy singlet Y_{μ}

1 heavy triplet X_{μ} ,

1 heavy singlet Y_{μ}

The Littlest Higgs Model Setup Symmetry breaking:

 $\begin{array}{ccc} SU(5) \rightarrow & SO(5) & (\text{global}) \\ \left[SU(2) \times U(1)\right]^2 \rightarrow & SU(2)_L \times U(1)_Y & (\text{local}) \end{array}$

<u>The unbroken Lagrangian</u>: $\mathcal{L} = \mathcal{L}_0^{(3)} + \mathcal{L}_0^{(1)} + \mathcal{L}_0^G$.

$$\mathcal{L}_{0}^{(3)} = -\frac{1}{2g_{1}^{2}} \operatorname{Tr} \mathbf{A}_{1\mu\nu} \mathbf{A}_{1}^{\mu\nu} - \frac{1}{2g_{2}^{2}} \operatorname{Tr} \mathbf{A}_{2\mu\nu} \mathbf{A}_{2}^{\mu\nu} - 2 \operatorname{tr} A_{1}^{\mu} J^{(3)}{}_{\mu}$$
$$\mathcal{L}_{0}^{(1)} = -\frac{1}{2g_{1}^{\prime 2}} \operatorname{Tr} \mathbf{B}_{1\mu\nu} \mathbf{B}_{1}^{\mu\nu} - \frac{1}{2g_{2}^{\prime 2}} \operatorname{Tr} \mathbf{B}_{2\mu\nu} \mathbf{B}_{2}^{\mu\nu} - B_{1}^{\mu} J^{(1)}{}_{\mu}.$$

Gauge group generators:

$$T_1^a = \frac{1}{2} \begin{pmatrix} \tau^a & \\ & 0 \\ & & 0 \end{pmatrix}, T_2^a = \frac{1}{2} \begin{pmatrix} 0 & \\ & 0 \\ & & -\tau^{a*} \end{pmatrix}, \begin{array}{c} Y_1 = & \frac{1}{10} \operatorname{diag}(3, 3, -2, -2, -2) \\ Y_2 = & \frac{1}{10} \operatorname{diag}(2, 2, 2, -3, -3) \end{pmatrix}$$

1 heavy triplet X_{μ} ,

1 heavy singlet Y_{μ}

The Littlest Higgs Model Setup Symmetry breaking:

 $SU(5) \to SO(5) \quad (\text{global})$ $[SU(2) \times U(1)]^2 \to SU(2)_L \times U(1)_Y \quad (\text{local})$

The unbroken Lagrangian: $\mathcal{L} = \mathcal{L}_0^{(3)} + \mathcal{L}_0^{(1)} + \mathcal{L}_0^G.$

$$\mathcal{L}_{0}^{(3)} = -\frac{1}{2g_{1}^{2}} \operatorname{Tr} \mathbf{A}_{1\mu\nu} \mathbf{A}_{1}^{\mu\nu} - \frac{1}{2g_{2}^{2}} \operatorname{Tr} \mathbf{A}_{2\mu\nu} \mathbf{A}_{2}^{\mu\nu} - 2 \operatorname{tr} A_{1}^{\mu} J^{(3)}{}_{\mu}$$
$$\mathcal{L}_{0}^{(1)} = -\frac{1}{2g_{1}^{\prime 2}} \operatorname{Tr} \mathbf{B}_{1\mu\nu} \mathbf{B}_{1}^{\mu\nu} - \frac{1}{2g_{2}^{\prime 2}} \operatorname{Tr} \mathbf{B}_{2\mu\nu} \mathbf{B}_{2}^{\mu\nu} - B_{1}^{\mu} J^{(1)}{}_{\mu}.$$

Gauge group generators:

$$T_1^a = \frac{1}{2} \begin{pmatrix} \tau^a & \\ & 0 \\ & & 0 \end{pmatrix}, \ T_2^a = \frac{1}{2} \begin{pmatrix} 0 & \\ & 0 \\ & & -\tau^{a*} \end{pmatrix}, \ \ \begin{array}{c} Y_1 = & \frac{1}{10} \operatorname{diag}(3, 3, -2, -2, -2) \\ Y_2 = & \frac{1}{10} \operatorname{diag}(2, 2, 2, -3, -3) \\ \end{array}$$

Triplet current: $J^{(3)}{}_{\mu} = J^{(3),a}_{\mu} \frac{\tau^a}{2}$ Singlet current: $J^{(1)}{}_{\mu}$ Couplings not unique, but:(Anomaly cancellation!)

J. Reuter

$$\mathcal{L}_{0}^{G} = \frac{F^{2}}{8} \operatorname{Tr}(D_{\mu}\Xi)(D^{\mu}\Xi)^{*}, \qquad \Xi = \left(\exp\frac{2i}{F}\Pi\right)\Xi_{0}, \qquad \Xi_{0} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$

$$\Pi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & h & \phi\\ h^{\dagger} & 0 & h^{T}\\ \phi^{\dagger} & h^{*} & 0 \end{pmatrix}, \qquad \phi = \begin{pmatrix} \sqrt{2} \, \Phi^{++} & \Phi^{+}\\ \Phi^{+} & \Phi_{0} + i \Phi_{1} \end{pmatrix}.$$

$$\mathcal{L}_{0}^{G} = \frac{F^{2}}{8} \operatorname{Tr}(D_{\mu}\Xi)(D^{\mu}\Xi)^{*}, \qquad \Xi = \left(\exp\frac{2i}{F}\Pi\right)\Xi_{0}, \qquad \Xi_{0} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$
$$\Pi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & h & \phi\\ h^{\dagger} & 0 & h^{T}\\ \phi^{\dagger} & h^{*} & 0 \end{pmatrix}, \qquad \phi = \begin{pmatrix} \sqrt{2}\Phi^{++} & \Phi^{+}\\ \Phi^{+} & \Phi_{0} + i\Phi_{1} \end{pmatrix}.$$

Covariant derivative:

$$D^{\mu}\Xi = \partial^{\mu}\Xi + i\sum_{k=1,2} \left[\left(\mathbf{A}_{k}^{\ \mu}\Xi + \Xi (\mathbf{A}_{k}^{\ \mu})^{T} \right) + \left(\mathbf{B}_{k}^{\ \mu}\Xi + \Xi (\mathbf{B}_{k}^{\ \mu})^{T} \right) \right]$$

$$\mathcal{L}_{0}^{G} = \frac{F^{2}}{8} \operatorname{Tr}(D_{\mu}\Xi)(D^{\mu}\Xi)^{*}, \qquad \Xi = \left(\exp\frac{2i}{F}\Pi\right)\Xi_{0}, \qquad \Xi_{0} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$
$$\Pi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & h & \phi\\ h^{\dagger} & 0 & h^{T}\\ \phi^{\dagger} & h^{*} & 0 \end{pmatrix}, \qquad \phi = \begin{pmatrix} \sqrt{2} \Phi^{++} & \Phi^{+}\\ \Phi^{+} & \Phi_{0} + i\Phi_{1} \end{pmatrix}.$$

Covariant derivative:

$$D^{\mu}\Xi = \partial^{\mu}\Xi + i\sum_{k=1,2} \left[(\mathbf{A}_{k}^{\ \mu}\Xi + \Xi(\mathbf{A}_{k}^{\ \mu})^{T}) + (\mathbf{B}_{k}^{\ \mu}\Xi + \Xi(\mathbf{B}_{k}^{\ \mu})^{T}) \right]$$

Chiral fields: \mathbf{Q}_R : b_R , t_R , T_R , and \mathbf{Q}_L : $q_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, T_L ,

$$\mathcal{L}_{0}^{G} = \frac{F^{2}}{8} \operatorname{Tr}(D_{\mu}\Xi)(D^{\mu}\Xi)^{*}, \qquad \Xi = \left(\exp\frac{2i}{F}\Pi\right)\Xi_{0}, \qquad \Xi_{0} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{pmatrix}$$
$$\Pi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & h & \phi\\ h^{\dagger} & 0 & h^{T}\\ \phi^{\dagger} & h^{*} & 0 \end{pmatrix}, \qquad \phi = \begin{pmatrix} \sqrt{2}\Phi^{++} & \Phi^{+}\\ \Phi^{+} & \Phi_{0} + i\Phi_{1} \end{pmatrix}.$$

Covariant derivative:

$$D^{\mu}\Xi = \partial^{\mu}\Xi + i\sum_{k=1,2} \left[(\mathbf{A}_{k}^{\ \mu}\Xi + \Xi (\mathbf{A}_{k}^{\ \mu})^{T}) + (\mathbf{B}_{k}^{\ \mu}\Xi + \Xi (\mathbf{B}_{k}^{\ \mu})^{T}) \right]$$

Chiral fields: \mathbf{Q}_R : b_R , t_R , T_R , and \mathbf{Q}_L : $q_L = \begin{pmatrix} t_L \\ b_L \end{pmatrix}$, T_L ,

Use a global SU(3) subsymmetry

$$\chi_L = \begin{pmatrix} i\tau^2 \mathbf{T}_L & i\mathbf{q}_L & 0\\ -i\mathbf{q}_L^T & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} \qquad \boxed{\mathcal{L}_Y = \lambda_1 \mathbf{F} \, \overline{\mathbf{t}}_R \operatorname{Tr} \left[\Xi^*(iT_2^2) \Xi^* \hat{\chi}_L \right] + \mathsf{h.c.}}$$

Neutrino masses

Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005

 Naturalness does not require cancellation mechanism for light fermions

Lepton-number violating interactions can generate **neutrino masses** (due to presence of triplet scalars)

Neutrino masses

Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005

 Naturalness does not require cancellation mechanism for light fermions

Lepton-number violating interactions can generate **neutrino masses** (due to presence of triplet scalars)

Lagrangian invariant under full gauge symmetry

$$\mathcal{L}_N = -g_N \mathbf{F}(\bar{\mathbf{L}}^c)^T \Xi \mathbf{L} \quad \text{with} \quad L = (\mathrm{i}\tau^2 \boldsymbol{\ell}_L, 0, 0)^T$$

EWSB: Generation of neutrino masses $|m_{\nu} \sim g_N v^2 / F|$

Neutrino masses

Kilian/JR. 2003: del Aguila et al., 2004: Han/Logan/Wang, 2005

 Naturalness does not require cancellation mechanism for light fermions

Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars)

Lagrangian invariant under full gauge symmetry

$$\mathcal{L}_N = -g_N F(\bar{L}^c)^T \Xi L \quad \text{with} \quad L = (\mathrm{i}\tau^2 \ell_L, 0, 0)^T$$

EWSB: Generation of neutrino masses $|m_{\nu} \sim g_N v^2 / F|$

Caveat: m_{ν} too large compared to observations

 $\Rightarrow g_N$ small, e.g. F/Λ' , where Λ' : scale of lepton number breaking

Heavy Vector Fields

Mixing of the gauge fields:

 $A_1^{\ \mu} = W^{\mu} + g_X c^2 X^{\mu},$ $A_2^{\ \mu} = W^{\mu} - q_X s^2 X^{\mu},$

 $B_1{}^{\mu} = B^{\mu} + g_Y c'{}^2 Y^{\mu},$ $B_2{}^{\mu} = B^{\mu} - g_Y s'{}^2 Y^{\mu},$

Heavy Vector Fields

Mixing of the gauge fields:

 $A_1{}^{\mu} = W^{\mu} + g_X c^2 X^{\mu},$ $A_2{}^{\mu} = W^{\mu} - g_X s^2 X^{\mu},$

$$B_1{}^{\mu} = B^{\mu} + g_Y c'{}^2 Y^{\mu},$$

$$B_2{}^{\mu} = B^{\mu} - g_Y s'{}^2 Y^{\mu},$$

Expand the Goldstone Lagrangian

$$\mathcal{L}_{0}^{G} = M_{X}^{2} \operatorname{tr} X \cdot X + g_{X} \frac{c^{2} - s^{2}}{2} \operatorname{tr} [X \cdot V^{(3)}] + \frac{1}{2} M_{Y}^{2} Y \cdot Y + g_{Y} \frac{c'^{2} - s'^{2}}{4} Y \cdot V^{(1)} + \frac{1}{2} \operatorname{tr} (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) + (D_{\mu} h)^{\dagger} (D^{\mu} h) - \frac{1}{6F^{2}} \operatorname{tr} \left[V^{(3)} \cdot V^{(3)} \right] + \dots,$$

 $/5^{'}$

Heavy Vector Fields

Mixing of the gauge fields:

 $A_1^{\ \mu} = W^{\mu} + g_X c^2 X^{\mu},$ $A_2^{\ \mu} = W^{\mu} - g_X s^2 X^{\mu},$

$$B_1{}^{\mu} = B^{\mu} + g_Y c'{}^2 Y^{\mu},$$

$$B_2{}^{\mu} = B^{\mu} - g_Y s'{}^2 Y^{\mu},$$

Expand the Goldstone Lagrangian

$$\mathcal{L}_{0}^{G} = M_{X}^{2} \operatorname{tr} X \cdot X + g_{X} \frac{c^{2} - s^{2}}{2} \operatorname{tr} [X \cdot V^{(3)}] + \frac{1}{2} M_{Y}^{2} Y \cdot Y + g_{Y} \frac{c^{\prime 2} - s^{\prime 2}}{4} Y \cdot V^{(1)} + \frac{1}{2} \operatorname{tr} (D_{\mu} \phi)^{\dagger} (D^{\mu} \phi) + (D_{\mu} h)^{\dagger} (D^{\mu} h) - \frac{1}{6F^{2}} \operatorname{tr} \left[V^{(3)} \cdot V^{(3)} \right] + \dots,$$

M

Heavy vector masses:

$$M_Y = g_X \mathbf{F}/2$$

$$M_Y = g_Y \mathbf{F}/(2\sqrt{2})$$

Higgs current

$$V_{\mu} = i \left[h(D_{\mu}h)^{\dagger} - (D_{\mu}h)h^{\dagger} \right] \qquad \mathbf{1}_{0}: \quad V^{(1)} = \operatorname{tr} V, \qquad \mathbf{3}_{0}: \quad V^{(3)} = V - \frac{1}{2} \operatorname{tr} V.$$

Effective Field Theories

How to *clearly* separate effects of heavy degrees of freedom?

Effective Field Theories

How to *clearly* separate effects of heavy degrees of freedom?

Toy model: Two interacting scalar fields φ, Φ

$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \, \exp \left[i \int dx \Big(rac{1}{2} (\partial arphi)^2 - rac{1}{2} \Phi(\Box + M^2) \Phi - \lambda arphi^2 \Phi - \ldots + J \Phi + j arphi \Big) \right]$$

Low-energy effective theory \Rightarrow integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting

Effective Field Theories

How to *clearly* separate effects of heavy degrees of freedom?

Toy model: Two interacting scalar fields φ, Φ

$$\mathcal{Z}[j,J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \, \exp\left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi(\Box + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J \Phi + j \varphi\right)\right]$$

Low-energy effective theory \Rightarrow integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting

Completing the square:

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \Rightarrow \quad \longrightarrow \quad \blacksquare$$

$$\frac{1}{2}(\partial\Phi)^2 - \frac{1}{2}M^2\Phi^2 - \lambda\varphi^2\Phi = -\frac{1}{2}\Phi'(M^2 + \partial^2)\Phi' + \frac{\lambda^2}{2M^2}\varphi^2\left(1 + \frac{\partial^2}{M^2}\right)^{-1}\varphi^2.$$

Integrating out

Integrating out the X and Y vector fields \Rightarrow

$$\mathcal{L}^{(1)} + \mathcal{L}^{(3)} = \mathcal{L}_{g,gf}^{\mathsf{EW}} + f_{JJ}^{(3)} \operatorname{tr}[J^{(3)} \cdot J^{(3)}] + f_{VJ}^{(3)} \operatorname{tr}[V^{(3)} \cdot J^{(3)}] + f_{VV}^{(1)} \operatorname{tr}[V^{(3)} \cdot V^{(3)}] + f_{JJ}^{(1)} J^{(1)} \cdot J^{(1)} + f_{VJ}^{(1)} V^{(1)} \cdot J^{(1)} + f_{VV}^{(1)} V^{(1)} \cdot V^{(1)}$$

In the Littlest Higgs e.g.

$$f_{VV}^{(3)} = -\frac{1}{6F^2} \left(1 + \frac{3}{2}(c^2 - s^2)^2 \right)$$

Integrating out

Integrating out the X and Y vector fields \Rightarrow

$$\mathcal{L}^{(1)} + \mathcal{L}^{(3)} = \mathcal{L}_{g,gf}^{\mathsf{EW}} + f_{JJ}^{(3)} \operatorname{tr}[J^{(3)} \cdot J^{(3)}] + f_{VJ}^{(3)} \operatorname{tr}[V^{(3)} \cdot J^{(3)}] + f_{VV}^{(1)} \operatorname{tr}[V^{(3)} \cdot V^{(3)}] + f_{JJ}^{(1)} J^{(1)} \cdot J^{(1)} + f_{VJ}^{(1)} V^{(1)} \cdot J^{(1)} + f_{VV}^{(1)} V^{(1)} \cdot V^{(1)}$$

In the Littlest Higgs e.g.

$$_{VV}^{(3)} = -\frac{1}{6F^2} \left(1 + \frac{3}{2}(c^2 - s^2)^2 \right)$$

Coleman-Weinberg potential of the scalar fields @ 1-loop:

$$\mathcal{L}_{0}^{CW} = -\frac{1}{2}M_{\phi}^{2}\operatorname{tr}[\phi\phi^{\dagger}] + \mu^{2}(h^{\dagger}h) - \lambda_{4}(h^{\dagger}h)^{2} - \lambda_{2\phi}\operatorname{i}\left(h^{\dagger}\phi h^{*} - h^{T}\phi^{\dagger}h\right) \\ - \lambda_{2\phi\phi}\operatorname{tr}[(\phi\phi^{\dagger})(hh^{\dagger})] - \lambda_{4\phi}\operatorname{i}(h^{\dagger}h)\left(h^{\dagger}\phi h^{*} - h^{T}\phi^{\dagger}h\right) - \lambda_{6}(h^{\dagger}h)^{3}$$

Sensitive to UV completion, dimensionless parameters k and k'. EWSB \Rightarrow Constraints on k,k'

Integrate out the heavy scalar (Power counting!)

 $\lambda_4^{\text{eff}} > 0$

$$oldsymbol{\phi}' = oldsymbol{\phi} - rac{2\mathrm{i}\lambda_{2\phi}}{M_{\phi}^2} \left(1 + rac{D^2}{M_{\phi}^2} + rac{2\lambda_{2\phi\phi}}{M_{\phi}^2}hh^\dagger
ight)^{-1} imes \left(1 + rac{\lambda_{4\phi}}{\lambda_{2\phi}}h^\dagger h
ight)hh^T$$

$$\begin{split} \text{Higgs mass up to order } v^4/F^2 \\ m_H^2 &= 2\lambda_4^{\text{eff}} v^2 \\ &= -2v^2 \left(\frac{e^2}{s_w^2 c^2} + \frac{e^2}{c_w^2 c'^2}\right) k \cdot \frac{\left(\frac{e^2}{s_w^2 s^2} + \frac{e^2}{c_w^2 s'^2}\right) k + \frac{\lambda_t^2}{c_t^2} k'}{\left(\frac{e^2}{s_w^2 s^2 c^2} + \frac{e^2}{c_w^2 s'^2 c'^2}\right) k + \frac{\lambda_t^2}{c_t^2} k'} \\ \text{(Remember } \mu^2 &= m_H^2/2 \text{)} \end{split}$$

EWSB

$$\Rightarrow \quad \frac{\lambda_{2\phi}^2}{M_{\phi}^4} < \frac{1}{8 F^2}$$

Equations of Motion (EOM)

- Couplings V J induce after SSB anom. couplings of W, Z to fermions
- Applying EOM eliminates corrections from field redefinitions

Equations of Motion (EOM)

- Couplings V J induce after SSB anom. couplings of W, Z to fermions
- Applying EOM eliminates corrections from field redefinitions

Custodial-SU(2) Conserving Terms

$$0 = \operatorname{tr}[V^{(3)}_{\mu}\frac{\delta\mathcal{L}}{\delta W_{\mu}}] = \operatorname{tr}[V^{(3)} \cdot V^{(3)}] - \frac{2}{g^2}\operatorname{tr}[V^{(3)}_{\mu}D_{\nu}W^{\mu\nu}] - 2\operatorname{tr}[V^{(3)} \cdot J^{(3)}]$$
$$\mathcal{L}^{(3)} = \mathcal{L}_{g,gf}^{\mathsf{EW}} + f_{JJ}^{(3)}\mathcal{O}_{JJ}^{(3)} + f_{VW}\mathcal{O}_{VW} + f_{VV}^{(3)}\mathcal{O}_{VV}^{(3)}$$
$$\mathcal{O}_{VW} = \operatorname{tr}V^{(3)}_{\mu\nu}W^{\mu\nu}, \qquad \mathcal{O}_{JJ}^{(3)} = \operatorname{tr}J^{(3)} \cdot J^{(3)}, \qquad \mathcal{O}_{VV}^{(3)} = \operatorname{tr}V^{(3)} \cdot V^{(3)}$$

Equations of Motion (EOM)

- Couplings V J induce after SSB anom. couplings of W, Z to fermions
- Applying EOM eliminates corrections from field redefinitions

Custodial-SU(2) Conserving Terms

$$0 = \operatorname{tr}[V^{(3)}_{\mu}\frac{\delta\mathcal{L}}{\delta W_{\mu}}] = \operatorname{tr}[V^{(3)} \cdot V^{(3)}] - \frac{2}{g^2}\operatorname{tr}[V^{(3)}_{\mu}D_{\nu}W^{\mu\nu}] - 2\operatorname{tr}[V^{(3)} \cdot J^{(3)}]$$
$$\mathcal{L}^{(3)} = \mathcal{L}_{g,gf}^{\mathsf{EW}} + f_{JJ}^{(3)}\mathcal{O}_{JJ}^{(3)} + f_{VW}\mathcal{O}_{VW} + f_{VV}^{(3)}\mathcal{O}_{VV}^{(3)}$$
$$\mathcal{O}_{VW} = \operatorname{tr}V^{(3)}_{\mu\nu}W^{\mu\nu}, \qquad \mathcal{O}_{JJ}^{(3)} = \operatorname{tr}J^{(3)} \cdot J^{(3)}, \qquad \mathcal{O}_{VV}^{(3)} = \operatorname{tr}V^{(3)} \cdot V^{(3)}$$

Custodial-SU(2) Violating Terms

$$\mathcal{L}^{(1)} = \mathcal{L}_{g,gf}^{\mathsf{EW}} + f_{JJ}^{(1)} \ \mathcal{O}_{JJ}^{(1)} + f_{VB} \ \mathcal{O}_{VB} + f_{VV}^{(1)} \ \mathcal{O}_{VV}^{(1)}$$

Oblique Corrections: S, T, U

- \diamond All low-energy effects order v^2/F^2
- \diamond Low-energy observables parameterized by ΔS , ΔT , 2 parameters for contact interactions (no ΔU here)

 $\mathcal{O}_{VW}, \mathcal{O}_{VB} \Rightarrow$ Change in gauge couplings g and g'

$$g = \frac{e}{s_w} \left[1 + M_W^2 (f_{VW} + 2f_{VB}) \right]$$
$$g' = \frac{e}{c_w} \left[1 + [M_Z^2 - M_W^2] (f_{VW} + 2f_{VB}) \right]$$

Oblique Corrections: S, T, U

- $\diamond~$ All low-energy effects order v^2/F^2
- \diamond Low-energy observables parameterized by ΔS , ΔT , 2 parameters for contact interactions (no ΔU here)

 $\mathcal{O}_{VW}, \mathcal{O}_{VB} \Rightarrow$ Change in gauge couplings g and g'

$$g = \frac{e}{s_w} \left[1 + M_W^2 (f_{VW} + 2f_{VB}) \right]$$
$$g' = \frac{e}{c_w} \left[1 + [M_Z^2 - M_W^2] (f_{VW} + 2f_{VB}) \right]$$

S parameter $(\mathcal{O}_{VW}, \mathcal{O}_{VB})$

$$\Delta S = 8\pi v^2 (f_{VW} + 2f_{VB})$$

 $SU(2)_c$ -violating sector ($\mathcal{O}'_{h,1}$)

$$\alpha \Delta T = \Delta M_W^2 / M_W^2 = -2v^2 f_{VV}^{(1)} - \frac{2v^2 \lambda_{2\phi}^2}{M_{\phi}^4}$$

Shift in physical vector masses:

$$M_W^2 = \left(\frac{ev}{2s_w}\right)^2 (1+x)$$

$$x = \alpha \left(\frac{\Delta S}{(4s_w^2)} + \frac{\Delta T}{2} \right)$$

$$M_Z^2 = \left(\frac{ev}{2s_w c_w}\right)^2 (1+y)$$

$$y = \alpha \Delta S / (4s_w^2 c_w^2)$$

Shift in physical vector masses:

$$M_W^2 = \left(\frac{ev}{2s_w}\right)^2 (1+x)$$

$$x = \alpha \left(\Delta S / (4s_w^2) + \Delta T \right)$$

$$M_Z^2 = \left(\frac{ev}{2s_w c_w}\right)^2 (1+y)$$

$$y = \alpha \Delta S / (4s_w^2 c_w^2)$$

0

Four-Fermion Interactions

Very low energies \Rightarrow Fermi theory

$$\sqrt{2} G_F = rac{1}{v^2} (1+z)$$
 with $z = -lpha \Delta T - rac{v^2}{4} f_{JJ}^{(3)}$

Shift in physical vector masses:

$$M_W^2 = \left(\frac{ev}{2s_w}\right)^2 (1+x)$$

$$x = \alpha \left(\frac{\Delta S}{(4s_w^2)} + \frac{\Delta T}{2} \right)$$

$$M_Z^2 = \left(\frac{ev}{2s_w c_w}\right)^2 (1+y)$$

$$y = \alpha \Delta S / (4s_w^2 c_w^2)$$

Four-Fermion Interactions

Very low energies \Rightarrow Fermi theory

$$\sqrt{2} G_F = rac{1}{v^2} (1+z)$$
 with $z = -lpha \Delta T - rac{v^2}{4} f_{JJ}^{(3)}$.

 $G_F\text{-}M_Z\text{-}\alpha$ scheme (muon decay, LEP I, Bhabha), define the parameters \hat{v}_0 and \hat{s}_0 by

$$\hat{v}_0 = (\sqrt{2} G_F)^{-1/2} \text{ and } M_Z = \frac{ev_0}{2\hat{s}_0\hat{c}_0} \Longrightarrow$$
$$s_w^2 = \hat{s}_0^2 \left(1 + \frac{\hat{c}_0^2}{\hat{c}_0^2 - \hat{s}_0^2} (y+z) \right) \qquad c_w^2 = \hat{c}_0^2 \left(1 - \frac{\hat{s}_0^2}{\hat{c}_0^2 - \hat{s}_0^2} (y+z) \right)$$

Constraints on LHM

Constraints from contact IA: ($f_{JJ}^{(3)}$, $f_{JJ}^{(1)}$) $c^2 \lesssim F/4.5 \,\text{TeV}$ $c'^2 \lesssim F/10 \,\text{TeV}$

♦ Constraints evaded $\iff c, c' \ll 1$ $B', Z', W'^{,\pm}$ superheavy ($\mathcal{O}(\Lambda)$) decouple from fermions

Constraints on LHM

Constraints from contact IA: ($f_{JJ}^{(3)}$, $f_{JJ}^{(1)}$) $c^2 \lesssim F/4.5 \, {\rm TeV}$ $c'^2 \lesssim F/10 \, {\rm TeV}$

 \diamond Constraints evaded $\iff c, c' \ll 1$ B', Z', W', \pm superheavy ($\mathcal{O}(\Lambda)$) decouple from fermions

 ΔS , ΔT in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003

♦ Mixing of (Z, B', Z') and (W^{\pm}, W'^{\pm})

$$\frac{\Delta S}{8\pi} = -\left[\frac{c^2(c^2-s^2)}{g^2} + 5\frac{c'^2(c'^2-s'^2)}{g'^2}\right]\frac{v^2}{F^2} \to 0 \qquad \alpha \Delta T \to \frac{5}{4}\frac{v^2}{F^2} - \frac{2v^2\lambda_{2\phi}^2}{M_{\phi}^4} \gtrsim \frac{v^2}{F^2}$$

Constraints on LHM

Constraints from contact IA: ($f_{JJ}^{(3)}$, $f_{JJ}^{(1)}$) $c^2 \lesssim F/4.5 \, {\rm TeV}$ $c'^2 \lesssim F/10 \, {\rm TeV}$

 \diamond Constraints evaded $\iff c, c' \ll 1$ B', Z', W', \pm superheavy ($\mathcal{O}(\Lambda)$) decouple from fermions

 ΔS , ΔT in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002: Hewett et al., 2002: Han et al., 2003; Kilian/JR, 2003

♦ Mixing of (Z, B', Z') and (W^{\pm}, W'^{\pm})

$$\frac{\Delta S}{8\pi} = -\left[\frac{c^2(c^2-s^2)}{g^2} + 5\frac{c'^2(c'^2-s'^2)}{g'^2}\right]\frac{v^2}{F^2} \to 0 \qquad \alpha \Delta T \to \frac{5}{4}\frac{v^2}{F^2} - \frac{2v^2\lambda_{2\phi}^2}{M_{\phi}^4} \gtrsim \frac{v^2}{F^2}$$

General models

- Triplet sector: (almost) identical to Littlest Higgs (ΔS only)
- More freedom in U(1) sector: (ΔT)

400 GeV

-0.4

 $250\,{
m GeV}$

 $120\,\mathrm{GeV}$

-0.2

0

-0.2

EW Precision Observables т Higgs mass variable (Coleman-Weinberg, LHM ·0.6· F = 3.5 TeVUV completion ·0.4· 0.2 $m_{\rm H}=700\,GeV$

 $\Delta S = \frac{1}{12\pi} \ln \frac{m_H^2}{m_0^2}$ $\Delta T = -\frac{3}{16\pi c_w^2} \ln \frac{m_H^2}{m_0^2}$ Peskin/Takeuchi, 1992; Hagiwara et

al., 1992

Making the Higgs heavier reduces amount of fine-tuning

S

LHM

F = 4.5 TeV

0 2

- $\begin{array}{ll} \diamond \ \ \Phi_P: & e^+e^-, q\bar{q} \rightarrow \Phi_P h, \ \ \Phi_P \rightarrow h Z_L \\ \diamond \ \ \Phi^{\pm}: & e^+e^-, q\bar{q} \rightarrow \Phi^+ W_L^-, \ \ \Phi^{\pm} \rightarrow W_L Z_L \\ \diamond \ \ \Phi^{\pm\pm}: & e^-e^- \rightarrow \nu\nu\Phi^{--}, \ \ \Phi^{\pm\pm} \rightarrow W_L^- W_L^- \end{array}$
- $\diamond \Phi^0$: $e^+e^-, q\bar{q} \to Z_L \Phi, \Phi \to Z_L Z_L, hh, \text{ not } W^+W^-$

$$\begin{array}{ll} \diamond \ \Phi_P: & e^+e^-, q\bar{q} \to \Phi_P h, \quad \Phi_P \to h Z_L \\ \diamond \ \Phi^{\pm}: & e^+e^-, q\bar{q} \to \Phi^+ W_L^-, \quad \Phi^{\pm} \to W_L Z_L \\ \diamond \ \Phi^{\pm\pm}: & e^-e^- \to \nu \nu \Phi^{--}, \quad \Phi^{\pm\pm} \to W_-^- W_-^- \end{array}$$

 $\diamond \Phi^0: e^+e^-, q\bar{q} \to Z_L \Phi, \Phi \to Z_L Z_L, hh, not W^+W^-$

Heavy Quarks:

 $T \text{ production } @ \text{ LHC: } bq \to Tq'$ $Decay T \to W_L^+ b, th, tZ \text{ Perelstein/Peskin/Pierce, 2003}$ Total cross section $BRs (limit g \to 0):$ $\Gamma(T \to th) \approx \Gamma(T \to tZ) \approx \frac{1}{2}\Gamma(T \to bW^+) \approx \frac{m_T \lambda_T^2}{64\pi}$ $Determination \text{ of } \mathbf{m_T}, \lambda_T$

Reconstruction of LHM

How to unravel the structure of LHM @ colliders?

Kilian/JR, 2003; Han et al., 2005 Symmetry structure

- \Rightarrow Quadr. Div. Cancell.
- Nonlinear Goldstone boson structure

Reconstruction of LHM

How to unravel the structure of LHM @ colliders?

Kilian/JR, 2003; Han et al., 2005

- \Rightarrow Quadr. Div. Cancell.
- Nonlinear Goldstone boson structure
- Anom. Triple Gauge Couplings: WWZ, $WW\gamma$

SIGNALS:

- ► Anom. Higgs Coupl.: H(H)WW, H(H)ZZ
- ► Anom. Top Couplings: *ttZ*, *tbW*

Reconstruction of LHM

How to unravel the structure of LHM @ colliders?

- Kilian/JR, 2003; Han et al., 2005
 - \Rightarrow Quadr. Div. Cancell.
- Nonlinear Goldstone boson structure
- Anom. Triple Gauge Couplings: WWZ, $WW\gamma$

SIGNALS:

- Anom. Higgs Coupl.: H(H)WW, H(H)ZZ
- ► Anom. Top Couplings: *ttZ*, *tbW*
- Direct Search (LHC) M_V, F, c, c'
- ► ILC: <u>Contact Terms</u> $e^+e^- \rightarrow \ell^+\ell^-, [\nu\bar{\nu}\gamma] \Rightarrow M_{B'} \lesssim 10[5]$ TeV

Vectors:

- Higgsstr., WW fusion: HZff, HWff angular distr./energy dependence $\Rightarrow f_{VJ}^{(1/3)}$
 - Check from <u>TGC</u> (ILC: per mil precision), GigaZ $\Rightarrow f_{JJ}^{(3)}$

Combining \Rightarrow Determination of *all* coefficients in the gauge sector

Scalars: Affected by scalars and vectors • ΔT , $f_{VV}^{(1)}$, B' known $\Rightarrow (\lambda_{2\phi}/M_{\phi}^2)^2$

• Higgsstr., WW fusion \Rightarrow Higgs coupl., $f_{VV}^{(3)}$

• Higgs BRs $\Rightarrow f_{VV}^{(1)}, f_{VV}^{(3)}$; (take care of t)

 $f_{VV}^{(3)}$ Goldstone contr. \Rightarrow Evidence for nonlinear nature

• *HH* production \Rightarrow *f*_{*h*,3} (difficult!)

LHC \bowtie ILC \Rightarrow 1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to $F \sim 2 \text{ TeV}$

Scalars: Affected by scalars and vectors • ΔT , $f_{VV}^{(1)}$, B' known $\Rightarrow (\lambda_{2\phi}/M_{\phi}^2)^2$

Higgsstr., WW fusion \Rightarrow Higgs coupl., $f_{VV}^{(3)}$

• Higgs BRs $\Rightarrow f_{VV}^{(1)}, f_{VV}^{(3)}$; (take care of t)

 $f_{VV}^{(3)}$ Goldstone contr. \Rightarrow Evidence for nonlinear nature

$$HH$$
 production $\Rightarrow f_{h,3}$ (difficult!)

LHC \bowtie ILC \Rightarrow 1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to $F \sim 2 \text{ TeV}$

Direct production @ LHC

Top:

- $t\bar{t}$ production $\Rightarrow f_{Vq}, v_t, a_t$; accuracy 1-2 %
- ► tbW from t decays, single t production $g_{ttH}/g_{bbH} \Rightarrow$ anom. Yukawa coupl. $\Rightarrow f_{hq}$, nonlin. structure w. $\sim 2.5\%$ accuracy

Scalars: Affected by scalars and vectors • ΔT , $f_{VV}^{(1)}$, B' known $\Rightarrow (\lambda_{2\phi}/M_{\phi}^2)^2$

• Higgsstr., WW fusion \Rightarrow Higgs coupl., $f_{VV}^{(3)}$

• Higgs BRs $\Rightarrow f_{VV}^{(1)}, f_{VV}^{(3)}$; (take care of t)

 $f_{VV}^{(3)}$ Goldstone contr. \Rightarrow Evidence for nonlinear nature

• *HH* production \Rightarrow $f_{h,3}$ (difficult!)

LHC \bowtie ILC \Rightarrow 1-2 % accuracy @ Higgs measurements Reconstruction of scalar sector up to $F \sim 2 \text{ TeV}$

Direct production @ LHC

Top:

- $t\bar{t}$ production $\Rightarrow f_{Vq}, v_t, a_t$; accuracy 1-2 %
- ► tbW from t decays, single t production $g_{ttH}/g_{bbH} \Rightarrow$ anom. Yukawa coupl. \Rightarrow f_{hq} , nonlin. structure w. $\sim 2.5\%$ accuracy

Include all observables in a combined fit if Little Higgs signals are found (sufficient data from LHC and ILC)

Pseudo Axions in LHM

Kilian/Rainwater/JR, 2004

- broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

Pseudo Axions in LHM

Kilian/Rainwater/JR, 2004

- broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

Pseudo Axions in LHM

Kilian/Rainwater/JR, 2004

- broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion
- analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

- explicit symmetry breaking $\Rightarrow m_{\eta}$ and $g_{\eta\gamma\gamma}$ independent \Rightarrow axion bounds *not applicable*
- no new hierarchy problem $\Rightarrow m_\eta \lesssim v \sim 250 \, \text{GeV}$
- η EW singlet, couplings an to SM particles v/F suppressed

Example: Simple Group Model

Scalar Potential: $\mu \Phi_1^{\dagger} \Phi_2$ + h.c. + Coleman-Weinberg pot.:

$$\boxed{m_{\eta} = \sqrt{\kappa}\mu \ge \sqrt{2}\mu} \qquad m_{H}^{2} = -2(\delta m^{2} + m_{\eta}^{2})$$

DESY

Example: Simple Group Model

Scalar Potential: $\mu \Phi_1^{\dagger} \Phi_2$ + h.c. + Coleman-Weinberg pot.:

$$\boxed{m_{\eta} = \sqrt{\kappa}\,\mu \ge \sqrt{2}\,\mu} \qquad m_H^2 = -2(\delta m^2 + m_{\eta}^2)$$

new Higgs decays $(H \rightarrow Z\eta, H \rightarrow \eta\eta)$

$$\mathsf{BR}(H \to \eta \eta) < 10^{-4} \ [\sim 5 - 10\% \ \mathsf{OSG}]$$

m_H [GeV]	m_{η} [GeV]	$BR(Z\eta)$
341	223	0.1 %
375	193	0.5 %
400	167	0.8 %
422	137	1.0 %
444	96	1.2 %
464	14	1.4 %

Pseudo Axions at LHC and ILC

LHC: Gluon Fusion (axial U(1)_η anomaly), Peak in diphoton spectrum

Pseudo Axions at LHC and ILC

- LHC: Gluon Fusion (axial U(1)_η anomaly), Peak in diphoton spectrum
- ILC: associated production Problem: Cross section vs. bkgd.

Possibility: $Z^* \to H\eta$ (analogous to A in 2HDM)

Kilian/JR/Rainwater (in prep.)

Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM
 - (\hookrightarrow Mühlleitner et al. (2001))

Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM

(\hookrightarrow Mühlleitner et al. (2001))

T parity and Dark Matter

Cheng/Low, 2003; Hubisz/Meade, 2005

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space
- analogous to R parity in SUSY, KK parity
- Bounds on *f* relaxed, *but:* pair production!
- ► Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

T parity and Dark Matter

Cheng/Low, 2003; Hubisz/Meade, 2005

- T parity: $T^a \rightarrow T^a$, $X^a \rightarrow -X^a$, automorphism of coset space
- analogous to R parity in SUSY, KK parity
- Bounds on f relaxed, but: pair production!
- ► Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

T parity and Dark Matter

Cheng/Low, 2003; Hubisz/Meade, 2005

- T parity: $T^a \rightarrow T^a$, $X^a \rightarrow -X^a$, automorphism of coset space
- analogous to R parity in SUSY, KK parity
- Bounds on *f* relaxed, *but:* pair production!
- ► Lightest *T*-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

T parity Simple Group model: Pseudo-Axion η LTP Kilian/Rainwater/JR/Schmaltz

Outline

Hierarchy Problem, Goldstone-Bosons and Little Higg Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Reson The Little Higgs mechanism

Examples of Models

Phenomenology

- For example: Littlest Higgs Neutrino masses Effective Field Theore Electroweak Precision Obs Direct Searches Reconstruction of Little Higgs Mo
 - T parity and Dark Matter

Conclusions

Conclusions

Little Higgs elegant alternative to SUSY Gauge/Global Symmetry structure stabilizes EW scale

?

Generics: new heavy gauge bosons, scalars, quarks

Little Higgs in accord w EW precision observ. w/o Fine Tuning $(M_H!)$

New developments: Pseudo-Axions, T-parity, LH Dark Matter

UV embedding, GUT, Flave

Clear experimental signatures:

direct search [Gauge & Top sector, LHC (ILC)] ↔ precision observables [Gauge, Scalar, Top sector ILC (LHC)]

Strategy for Reconstruction by Complementarity of ILC & LHC

