Status of the Event Generator WHIZARD – SUSY Simulations at the ILC and Radiative Corrections

Jürgen Reuter

University of Freiburg

ALCPG/GDE 07, Fermilab, October 23, 2007

ADVARVEVEVE OQO

Reuter

The need for Multi-Particle Event Generators

New collider environments more complicated

Very complicated signal/background processes

New physics:

- > DM: Conserved discrete parity: pair production, decay chains
- Complicated, quasi-degenerate spectrum at the Terascale
- High-multiplicity final states
- ILC allows for precision measurements at least at per cent-level

Need for Multi-Particle Event Generators

JR, Snowmass 05; Hagiwara et al., 06; Hewett, 07; Kilian/Kobel/Mader/JR/Schumacher

- $\blacktriangleright\,$ BSM processes do not factorize into 2 \rightarrow 2 production/decay
- Interferences of several (partially) resonant diagram groves
- Off-shell effects violate Breit-Wigner approximation

Berdine/Kauer/Rainwater 07; Berdine/Kauer/JR/Rainwater

Sbottom production at the ILC

Hagiwara/.../JR, 06

Cross sections for

- ► In contrast to the LHC: Electroweak production $\sqrt{s} = 800 \text{ GeV}$
- More channels contribute to $e^+e^- \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$:

 $e^+e^- \to Zh, ZH, Ah, HA, \tilde{\chi}^0_1 \tilde{\chi}^0_2, \tilde{\chi}^0_1 \tilde{\chi}^0_3, \tilde{\chi}^0_1 \tilde{\chi}^0_4, \tilde{b}_1 \tilde{b}^*_1, \tilde{b}_1 \tilde{b}^*_2$ (412 diagrams)

► Irreducible SM background: $e^+e^- \rightarrow b\bar{b}\nu_i\bar{\nu}_i$ (*WW* fusion, *Zh*, *ZZ*) (47 diagrams)

Channel	$\sigma_{2\rightarrow 2}$ [fb]	$\sigma imes BR$ [fb]	$\sigma_{\rm BW}$ [fb]]			
Zh	20.574	1.342	1.335	Channel	$\sigma_{2} \rightarrow 2/2$ [fb]	$\sigma \times BR$ [fb]	σ _{PW} [fb]
ZH	0.003	0.000	0.000	77	$2 \rightarrow 2/3 [.2]$	12.6	13.1
hA	0.002	0.001	0.000		202.2	10	10.1
HA	5.653	0.320	0.314		20.0	1.9	1.9
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	69.109	13.078	13.954		0.0	0.0	0.0
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}$	24.268	3.675	4.828	$ Z\bar{\nu}\nu $	626.1	109.9	111.4
$\tilde{v}^{0}\tilde{v}^{0}$	19.337	0.061	0.938	$h\bar{\nu}\nu$	170.5	76.5	76.4
$\tilde{h}_1 \tilde{h}_1$	4 209	0 759	0.757	$H\bar{\nu}\nu$	0.0	0.0	0.0
$\tilde{b}_1 \tilde{b}_2$	0.057	0.002	0.002	Sum		186.5	187.7
Sum	0.031	10.002	22 120	Exact			190 1
Sum		19.230	22.129				174.0
Exact			19.624	w/ion			174.2
w/ISR			22.552				

Use widths to the same order as your process

Sbottom production at the ILC

Hagiwara/.../JR, 06

Cross sections for

- ► In contrast to the LHC: Electroweak production $\sqrt{s} = 800 \text{ GeV}$
- More channels contribute to $e^+e^- \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$:

 $e^+e^- \rightarrow Zh, ZH, Ah, HA, \tilde{\chi}_1^0 \tilde{\chi}_2^0, \tilde{\chi}_1^0 \tilde{\chi}_3^0, \tilde{\chi}_1^0 \tilde{\chi}_4^0, \tilde{b}_1 \tilde{b}_1^*, \tilde{b}_1 \tilde{b}_2^*$ (412 diagrams)

► Irreducible SM background: $e^+e^- \rightarrow b\bar{b}\nu_i\bar{\nu}_i$ (*WW* fusion, *Zh*, *ZZ*) (47 diagrams)

Channel	$\sigma_{2\rightarrow 2}$ [fb]	$\sigma imes BR$ [fb]	$\sigma_{\rm BW}$ [fb]]			
Zh	20.574	1.342	1.335	Channel	$\sigma_{2} \rightarrow a$ [fb]	$\sigma \times BR$ [fb]	σ _{PW} [fb]
ZH	0.003	0.000	0.000	ZZ	$2 \rightarrow 2/3 [10]$	12.6	13.1
hA	0.002	0.001	0.000		20.6	1.0	10.1
HA	5.653	0.320	0.314		20.0	1.9	1.9
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	69.109	13.078	13.954	211	0.0	0.0	0.0
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	24.268	3.675	4.828	$Z\bar{\nu}\nu$	626.1	109.9	111.4
$\tilde{v}_{1}^{0}\tilde{v}_{1}^{0}$	19.337	0.061	0.938	$h\bar{\nu}\nu$	170.5	76.5	76.4
$\tilde{h}_1 \tilde{h}_1$	4 209	0 759	0.757	$H\bar{\nu}\nu$	0.0	0.0	0.0
$\tilde{b}_1 \tilde{b}_2$	0.057	0.002	0.002	Sum		186.5	187.7
0102	0.037	10.002	0.002	Exact			100 1
Sum		19.238	22.129				190.1
Exact			19.624	W/ISR			174.2
w/ISR			22.552				

Use widths to the same order as your process

ILC Results

ISR/beamstrahlung: corrections of same order (effects all p_{miss} observables)

 $b\bar{b}$ invariant mass with SM background:

ILC Results

ISR/beamstrahlung: corrections of same order (effects all pmiss observables)

 $b\bar{b}$ invariant mass with SM background:

cut [fh]

ILC Results: Isolation of the Signal

Channel	$\sigma_{\rm BW}$ [fb]	σ_{BW}^{cut} [fb]
$Z\bar{\nu}\nu$	111.4	2.114
$h\bar{\nu}\nu$	76.4	0.002
$H\bar{\nu}\nu$	0.0	0.000
Sum	187.7	2.117
Exact	190.1	1.765
w/ISR	174.2	1.609

$\sigma_{\rm BW}$ [ID]	$\sigma_{\rm BW}$ [ID]
1.335	0.009
0.314	0.003
13.954	0.458
4.828	0.454
0.938	0.937
0.757	0.451
0.002	0.001
22.129	2.314
19.624	0.487
22.552	0.375
	σ _{BW} [I0] 1.335 0.314 13.954 4.828 0.938 0.757 0.002 22.129 19.624 22.552

[fb]

Channel

 ${ ilde b}_1 o b { ilde \chi}_1^{ extsf{0}}$ decay kinematics affected

ILC Results: Isolation of the Signal

Channel	$\sigma_{\rm BW}$ [fb]	σ_{BW}^{cut} [fb]
$Z\bar{\nu}\nu$	111.4	2.114
$h\bar{\nu}\nu$	76.4	0.002
$H\bar{\nu}\nu$	0.0	0.000
Sum	187.7	2.117
Exact	190.1	1.765
w/ISR	174.2	1.609

Channel	$\sigma_{\rm BW}$ [fb]	σ_{BW}^{cut} [fb]
Zh	1.335	0.009
HA	0.314	0.003
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	13.954	0.458
$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	4.828	0.454
$\tilde{\chi}_1^0 \tilde{\chi}_4^0$	0.938	0.937
$\tilde{b}_1 \tilde{b}_1$	0.757	0.451
$\tilde{b}_1 \tilde{b}_2$	0.002	0.001
Sum	22.129	2.314
Exact	19.624	0.487
w/ISR	22.552	0.375

${ ilde b}_1 o b { ilde \chi}_1^0$ decay kinematics affected

The Multi-Particle Generator WHIZARD

Kilian/Ohl/JR, 07

Very high level of Complexity:

- $e^+e^- \rightarrow t\bar{t}H \rightarrow b\bar{b}b\bar{b}jj\ell\nu$ (110,000 diagrams)
- ▶ $e^+e^- \rightarrow ZHH \rightarrow ZWWWW \rightarrow bb + 8j$ (12,000,000 diagrams)
- ▶ $pp \rightarrow \ell \ell + nj, n = 0, 1, 2, 3, 4, \dots$ (2,100,000 diagrams with 4 jets + flavors)
- ▶ $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 bbbb$ (32,000 diagrams, 22 color flows, $\sim 10,000$ PS channels)
- ▶ $pp \rightarrow VVjj \rightarrow jj\ell\ell\nu\nu$ incl. anomalous TGC/QGC
- Test case $gg \rightarrow 9g$ (224,000,000 diagrams)

Current versions:

S

WHiZard 1.51 / O'Mega 000.011beta $\Omega \rightarrow$ joint version:

WHIZARD 1.99 release date: somehow this or next week

one grand unified package (incl. VAMP, Circe, Circe 2, WHiZard, O'Mega)

New web address:

http://whizard.event-generator.org

 Standard reference for 1.99 + upcoming versions: Kilian/Ohl/JR, 0708.4233
 Major upgrade this fall/winter: WHIZARD 2.0.0

Technical details about WHIZARD

Status of WHIZARD 1.99: Installation

- Download tar-ball from http:whizard.event-generator.org
- unpack, do configure, make install that's it!
- OK, granted: specify locations of external packages and O'Caml language (part of many Linux distributions, http://caml.inria.fr)

WHIZARD is written in Fortran 90/95. Compiler status?

- ▶ works w/ (almost) all commercial compiler: Intel, Lahey, NAG, Pathscale
- Portland has a severe compiler bug
- compiles with g95
- ► compiles with gfortran 4.3.0 (will be part of new Linux SuSe 11.0, Debian 4.1, ...)
- lots of Fortran2003 features coming (No need for reprogramming in C++)

Basic facts:

- Helicity amplitudes
- Iterative adaptive multi-channel phase space (viable for 2 \rightarrow 10)
- Unweighted events (formats: binary, HEPEVT, ATHENA, LHA, STDHEP)
- Graphical analysis tool

Implemented Physics Content

Structured beams:

For Tevatron/LHC: PDFs from LHAPDF (or PDFLIB) For ILC physics:

- ISR (implemented: Skrzypek/Jadach, Kuraev/Fadin)
- arbitrarily polarized beams
- beamstrahlung (CIRCE), photon collider spectra (CIRCE 2)
- external (user-defined) beam spectra can be read in

Supported Physics Models:

- Test models: QED, QCD
- SM
- Littlest/Simplest Little Higgs, Little Higgs Models with T parity
- Moose models: 3-site model
- MSSM, NMSSM, extended SUSY models, incl. gravitinos (SLHA)
- Graviton resonances, Extra dimensions
- Noncommutative Standard Model
- Higher-dimensional operators, SM effective field theory extensions
- Anomalous triple and quartic gauge couplings
- K-matrix/Padé unitarization, unitarized resonances
 Kilian/JR

Comparison of Automated Tools for Perturbative Interactions in SuperSymmetry

cf.http://whizard.event-generator.org/susy_comparison.html

$\tau^+ \tau^- o X$							
Process	status	us Madgraph/Helas		Whizard/O'Mega		Sherpa/A'Megic	
		0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV
$\tilde{\tau}_1 \tilde{\tau}_1^*$	•	257.57(7)	79.63(4)	257.32(1)	79.636(4)	257.30(1)	79.638(4)
$\tilde{\tau}_2 \tilde{\tau}_2^*$	•	46.55(1)	66.86(2)	46.368(2)	66.862(3)	46.372(2)	66.862(3)
$\tilde{\tau}_1 \tilde{\tau}_2^*$	•	95.50(3)	19.00(1)	94.637(3)	19.0015(8)	94.645(5)	19.000(1)
$\tilde{\nu}_{\tau}\tilde{\nu}_{\tau}^{*}$	•	502.26(7)	272.01(8)	502.27(2)	272.01(1)	502.30(3)	272.01(1)
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$	•	249.94(2)	26.431(1)	249.954(9)	26.431(1)	249.96(1)	26.431(1)
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0}$	•	69.967(3)	9.8940(3)	69.969(2)	9.8940(4)	69.968(3)	9.8937(5)
$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	•	17.0387(3)	0.7913(1)	17.0394(1)	0.79136(2)	17.040(1)	0.79137(5)
$\tilde{\chi}_1^0 \tilde{\chi}_4^0$	•	7.01378(4)	1.50743(3)	7.01414(6)	1.5075(5)	7.0141(4)	1.50740(8)
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{2}^{0}$	•	82.351(7)	18.887(1)	82.353(3)	18.8879(9)	82.357(4)	18.8896(1)
$\tilde{\chi}_2^0 \tilde{\chi}_3^0$	•	—	1.7588(1)	-	1.75884(5)	-	1.7588(1)
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{4}^{0}$	•	—	2.96384(7)	_	2.9640(1)	-	2.9639(1)
$\tilde{\chi}_3^0 \tilde{\chi}_3^0$	•	—	0.046995(4)	_	0.0469966(9)	-	0.046999(2)
$\tilde{\chi}_3^0 \tilde{\chi}_4^0$	•	—	8.5852(4)	_	8.55857(3)	-	8.5856(4)
$\tilde{\chi}_4^0 \tilde{\chi}_4^0$	•	-	0.26438(2)	-	0.264389(5)	_	0.26437(1)
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	•	185.09(3)	45.15(1)	185.093(6)	45.147(2)	185.10(1)	45.151(2)
$\tilde{\chi}_{2}^{+}\tilde{\chi}_{2}^{-}$	•	—	26.515(1)	-	26.5162(6)	-	26.515(1)
$\tilde{\chi}_1^+ \tilde{\chi}_2^-$	•	—	4.2127(4)	-	4.21267(9)	_	4.2125(2)
$h^{0}h^{0}$	•	0.3533827(3)	0.0001242(2)	0.35339(2)	0.00012422(3)	0.35340(2)	0.000124218(6)
$h^0 H^0$	•		0.005167(4)	_	0.0051669(3)	- 1	0.0051671(3)
$H^{0}H^{0}$	•	—	0.07931(3)	-	0.079301(6)	-	0.079311(4)
$A^0 A^0$	•		0.07975(3)	_	0.079758(6)	- 1	0.079744(4)
Zh^0	•	59.591(3)	3.1803(8)	59.589(3)	3.1802(1)	59.602(3)	3.1829(2)
ZH ⁰	•	2.8316(3)	4.671(5)	2.83169(9)	4.6706(3)	2.8318(1)	4.6706(2)
ZA^0	•	2.9915(4)	4.682(5)	2.99162(9)	4.6821(3)	2.9917(2)	4.6817(2)
$A^{0}h^{0}$	•	_	0.005143(4)	-	0.0051434(3)	-	0.0051440(3)
$A^0 H^0$	•	_	1.4880(2)	-	1.48793(9)	-	1.48802(8)
$H^{+}H^{-}$	•	—	5.2344(6)	-	5.2344(2)	_	5.2345(3)

Upcoming Features

WHIZARD version 2.0.0 coming out this fall/winter

- (More) Automatized installation tool
- New syntax for defining cuts, scales and analyses: allows for arbitrary functions of kinematical variables
- fancier (and faster) color structures from O'Mega
- WHIZARD uses O'Mega info for better/faster phase space generation
- Cascade decays (apply with great care!!!)
 WHIZARD calls itself recursively, breaks double decay chains down into subprocesses
- Leading order (QCD) parton shower (so only fragmentation/hadronization and PDFs by external routines)
- Dark matter relic density calculator
- Support for ROOT data format
- TAUOLA interface

All points close to finalization; Major restructuring of the code

Upcoming Features / Future Features

Future features, 2008ish

- NLO parton shower with correct matching to hard matrix elements
- New manual
- Graphical User Interface (partially already there)
- Standardized interface to FeynArts/FormCalc/LoopTools
- Full-fledged parallelization (partially under way)
- Own algebraic tool for deriving Feynman rules from Lagrangians
- Web interface

Status of SUSY NLO calculations (for ILC processes)

- 1) Consistent renormalization procedure (DR)
- 2) Higgs observables
 - effective potential approx. + RGE
 - full 1-loop calculation
 - leading 2-loop pieces
- 3) Charginos and Neutralinos
 - full 1-loop: renormalization/spectrum
 - pair production and 2-body decays
 - 3-body decays
- 4) Sfermions
 - 1-loop: renormalization and mass spectrum
 - $ightarrow e^+e^-
 ightarrow \widetilde{q} \widetilde{q}^*, \widetilde{\ell} \widetilde{\ell}^+$ Arhrib/Hollik, Kovaric et al., Freitas et al., 2002-2004
 - 2-body decays
- 5) Unified framework for codes/calculations: SPA convention
- 6) Full matrix elements, Off-shell and Interference effects
 - all particles, all processes, all colliders

Carena/Garcia/Nierste/Wagner, 1999

Degrassi et al., 2005; Heinemeyer et al., 2004-6

Rzehak et al., 2005

Fritzsche/Hollik, 2004; Eberl/Majerotto/Öller, 2004 Fritzsche/Hollik, 2004; Eberl/Majerotto/Öller, 2004 Kovaric/Rolbiecki et al

Hollik/Rzehak, 2005

Guasch/Hollik/Solà, 2004

SPA, 2005

JR et al., 2005; Hagiwara et al., 2006

Classification of NLO corrections

- Loop corrections to SUSY production and decay processes
- nonfactorizable, maximally resonant photon exchange between production and decay
- real radiation of photons
- off-shell kinematics for the signal process
- irreducible background from all other SUSY processes
- reducible, experimentally indistinguishable SM background processes

Multi-pole approximation, justified from EW SM processes

Denner et al., 0006307, 0502063, 0604011.

Classification of NLO corrections

- Loop corrections to SUSY production and decay processes
- nonfactorizable, maximally resonant photon exchange between production and decay
- real radiation of photons
- off-shell kinematics for the signal process
- irreducible background from all other SUSY processes
- reducible, experimentally indistinguishable SM background processes

implemented in Sherpa, Smadgraph, WHIZARD thoroughly checked

Hagiwara et al., 0512260; JR et al., 0512012

Multi-pole approximation, justified from EW SM processes

Denner et al., 0006307, 0502063, 0604011.

Classification of NLO corrections

- Loop corrections to SUSY production and decay processes
- nonfactorizable, maximally resonant photon exchange between production and decay
- real radiation of photons
- off-shell kinematics for the signal process
- irreducible background from all other SUSY processes
- reducible, experimentally indistinguishable SM background processes

implemented in WHIZARD thoroughly checked

Kilian/Robens/JR, ; JR et al., 0512012

Multi-pole approximation, justified from EW SM processes

Denner et al., 0006307, 0502063, 0604011.

SUSY (NLO) Simulations for the ILC

Example: NLO Chargino Production at the ILC

Born helicity amplitudes known analytically

- Implemented in narrow width approx. in many programs
- Full (tree-level) processes in Sherpa, SMadgraph, WHIZARD
- ▶ No massless *t*-channel particles \Rightarrow neglect m_e for phase space
- to clarify notation

$$\sigma_{\mathsf{Born}}(s) = \int d\Gamma_2 \left| \mathcal{M}_{\mathsf{Born}}(s, \cos \theta) \right|^2$$

Virtual Corrections

Virtual corrections from SUSY and SM particles: self energies, vertex corrections, box diagrams (as usual)

(Semi-)automatized calculation with FeynArts/FormCalc

Hahn et al., 9807565, 0012260, 0105349 ; Fritzsche, 05; Fritzsche/Hollik, 0407095

Independent check of numerical results Regulators:

- Electron mass m_e for collinear photon radiation
- Fictitious photon mass λ for infrared divergencies

Interference of Born and virtual corrections

$$\sigma_{\text{virt}}(s,\lambda^2,m_e^2) = \int d\Gamma_2 \left[2\text{Re} \left(\mathcal{M}_{\text{Born}}(s)^* \, \mathcal{M}_{1\text{-loop}}(s,\lambda^2,m_e^2) \right) \right]$$

Eliminate dependence on λ by

- neglecting power corrections in λ
- Adding real (1st order) photon radiation with E_γ < ΔE_γ
- Correction (terms $\propto \log \Delta E_{\gamma}$) is shifted into soft-photon factor

Öller/Eberl/Majerotto, 0504109

Öller/Eberl/Majerotto, 0504109

Virtual Corrections

Virtual corrections from SUSY and SM particles: self energies, vertex corrections, box diagrams (as usual)

(Semi-)automatized calculation with FeynArts/FormCalc

Hahn et al., 9807565, 0012260, 0105349 ; Fritzsche, 05; Fritzsche/Hollik, 0407095

Independent check of numerical results Regulators:

- Electron mass m_e for collinear photon radiation
- Fictitious photon mass λ for infrared divergencies

Interference of Born and virtual corrections

$$\sigma_{\text{virt}}(s,\lambda^2,m_e^2) = \int d\Gamma_2 \left[2\text{Re} \left(\mathcal{M}_{\text{Born}}(s)^* \, \mathcal{M}_{1\text{-loop}}(s,\lambda^2,m_e^2) \right) \right]$$

Soft-photon factor:

$$f_{\mathsf{soft}} = -\frac{\alpha}{2\pi} \sum_{i,j\,=\,e^{\pm},\widetilde{\chi}^{\pm}} \int_{|\mathbf{k}| \leq \mathbf{\Delta} \mathbf{E}_{\gamma}} \frac{d^3k}{2\omega_k} \, \frac{(\pm)p_i p_j \, Q_i \, Q_j}{(p_i k)(p_j k)}$$

Real and Collinear Photons

"Virtual + Soft"

$$\sigma_{\mathsf{v+s}}(s, \Delta E_{\gamma}, m_e^2) = \int d\Gamma_2 \left[f_{\mathsf{soft}}(\frac{\Delta E_{\gamma}}{\lambda}) \left| \mathcal{M}_{\mathsf{Born}}(s) \right|^2 + 2\mathsf{Re} \left(\mathcal{M}_{\mathsf{Born}}(s)^* \, \mathcal{M}_{\mathsf{1-loop}}(s, \lambda^2, m_e^2) \right) \right]$$

for simulation choose $\Delta E_{\gamma} \leq \Delta E_{\gamma}^{exp}$ Real radiation (i.e. the process $e^-e^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$):

$$\sigma_{2 \to 3}(s, \Delta E_{\gamma}, m_e^2) = \int_{\Delta E_{\gamma}} d\Gamma_3 |\mathcal{M}_{2 \to 3}(s, m_e^2)|^2.$$

"Total" cross section (fixed order):

$$\sigma_{\text{tot}}(s, m_e^2) = \sigma_{\text{Born}}(s) + \sigma_{\text{v+s}}(s, \Delta E_{\gamma}, m_e^2) + \sigma_{2 \to 3}(s, \Delta E_{\gamma}, m_e^2)$$

should not depend on $\Delta E_{\gamma},$ but power corrections only in $\sigma_{\rm 2\to 3},$ not in $\sigma_{\rm v+s}$

As usual, split $2 \rightarrow 3$ cross section:

$$\sigma_{2 \to 3}(s, \Delta E_{\gamma}, m_{e}^{2}) = \sigma_{\text{hard,non-coll}}(s, \Delta E_{\gamma}, \Delta \theta_{\gamma}) + \sigma_{\text{hard,coll}}(s, \Delta E_{\gamma}, \Delta \theta_{\gamma}, m_{e}^{2})$$

 $x = 1 - 2E_{\gamma}/\sqrt{s}$ electron energy fraction after radiation

Approximate collinear radiation by convoluting the Born cross section with a structure function

$$\begin{split} \sigma_{\mathsf{hard},\mathsf{coll}}(s,\Delta E_{\gamma},\Delta \theta_{\gamma},m_e^2) &= \int_{\Delta E_{\gamma},\Delta \theta_{\gamma}} d\Gamma_3 \, |\mathcal{M}_{2\to3}(s,m_e^2)|^2 \\ &= \int_0^{x_0} dx \, f(x;\Delta \theta_{\gamma},\frac{m_e^2}{s}) \int d\Gamma_2 \, |\mathcal{M}_{\mathsf{Born}}(xs,m_e^2)|^2. \end{split}$$

collinear structure functions (helicity conserving/flip): Böhm/Dittmaier, 1993

$$\begin{aligned} f^+(x) &= \frac{\eta}{4} \frac{1+x^2}{1-x} \\ f^-(x) &= \frac{\alpha}{2\pi} (1-x) \end{aligned} \qquad \eta := \frac{2\alpha}{\pi} \left[\log \left(\frac{s}{4m_e^2} (\Delta \theta_\gamma)^2 \right) - 1 \right] \end{aligned}$$

Cutoff $\Delta E_{\gamma} \rightarrow x_0 = 1 - 2\Delta E_{\gamma}/\sqrt{s}$ (no power corrections in $\Delta \theta_{\gamma}$)

Simulation

Combining all parts:

$$\begin{split} \sigma_{\rm tot}(s, m_e^2) &= \int dx \, f_{\rm eff}(x_1, \, x_2; \Delta E_{\gamma}, \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \, \int d\Gamma_2 \, |\mathcal{M}_{\rm eff}(s, x_1, \, x_2; m_e^2)|^2 \\ &+ \int_{\Delta E_{\gamma}, \Delta \theta_{\gamma}} d\Gamma_3 \, |\mathcal{M}_{2 \to 3}(s)|^2, \end{split}$$

with

$$\begin{split} f_{\text{eff}}(x_1, \, x_2; \Delta E_{\gamma}, \Delta \theta_{\gamma}, \frac{m_e^2}{s}) &= \delta(1 - x_1) \, \delta(1 - x_2) \\ &+ \delta(1 - x_1) \, f(x_2; \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \, \theta(x_0 - x_2) \\ &+ f(x_1; \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \, \delta(1 - x_2) \, \theta(x_0 - x_1) \end{split}$$

$$\begin{split} |\mathcal{M}_{\text{eff}}(s, x_1, x_2; m_e^2)|^2 &= \left[1 + f_{\text{soft}}(\Delta E_{\gamma}, \lambda^2) \,\theta(x_1, x_2))\right] \, |\mathcal{M}_{\text{Born}}(s)|^2 \\ &+ 2\text{Re} \left[\mathcal{M}_{\text{Born}}(s) \,\mathcal{M}_{1\text{-loop}}(s, \lambda^2, m_e^2)\right] \theta(x_1 - x_0) \theta(x_2 - x_0) \end{split}$$

All corrections defined as a generalized structure function \Rightarrow suitable for implementation in an event generator

Reuter

Technical Details and Failure of Approach

Generate Born + 2 \rightarrow 3 by O'Mega, convolute Born with generalized structure function ("user-defined structure function" in WHIZARD) Sampling δ -functions:

- ▶ splitting sampling region $[0, x_0] \cup [x_0, 1]$
- map first region as exactly as possible
- set x = 1 in the 2nd region (δ -functions)
- reweighting according to

$$w(x > x_0) : w(x < x_0) = 1 : \int_0^{x_0} dx f(x; \Delta \theta_{\gamma}, \frac{m_e^2}{s})$$

For fixed-order simulation avoid double-counting: $f(x_1 < x_0, x_2 < x_0) \equiv 0$ (strictly here) Numerical agreement: WHIZARD and fixed-order calculation

Technical Details and Failure of Approach

For fixed-order simulation avoid double-counting: $f(x_1 < x_0, x_2 < x_0) \equiv 0$ (strictly here) Numerical agreement: WHIZARD and fixed-order calculation In the soft-photon region: negative event weights

- ▶ 2 \rightarrow 2 and 2 \rightarrow 3 runs separately
- ► Lowering the cutoff from $\Delta E_{\gamma}/\sqrt{s} < 10^{-2}$ to $\Delta E_{\gamma}/\sqrt{s} < 10^{-3}$: 2 → 2 NLO becomes negative, compensating the 2 → 3

Resumming photons

Experimental resolution drives one into negative weights region Soft-collinear region: $E_{\gamma} < \Delta E_{\gamma}$, $\Delta \theta_{\gamma} < \theta_{\gamma}$: double logs $\frac{\alpha}{\pi} \log \frac{E_{\gamma}^2}{s} \log \theta_{\gamma}$ invalidate perturbative series In that region resummation of all orders is possible

$$\sigma_{\mathsf{Born}+\mathsf{ISR}}(s,\Delta\theta_{\gamma},m_{e}^{2}) = \int dx \, f_{\mathsf{ISR}}(x;\Delta\theta_{\gamma},\frac{m_{e}^{2}}{s}) \int d\Gamma_{2} \, |\mathcal{M}_{\mathsf{Born}}(xs)|^{2},$$

 $f_{\rm ISR}$ includes all order soft-photon radiation (LLA), hard-collinear up to 3rd order Skrzypek/Jadach, 1991

For collinear photons cancellation of infrared divergencies built in, main source of negative weights removed

Matching with NLO

Kilian/JR/Robens,2006

Combine ISR-resummed LO with NLO, avoid double-counting Subtract contribution of one soft photon (already in soft-photon factor)

$$f_{\text{soft,ISR}}(\Delta E_{\gamma}, \Delta \theta_{\gamma}, m_e^2) = \frac{\eta}{4} \int_{x_0}^1 dx \left(\frac{1+x^2}{1-x}\right)_+ = \frac{\eta}{4} \left(2\ln(1-x_0) + x_0 + \frac{1}{2}x_0^2\right)$$

After this subtraction we have

$$\begin{split} |\widetilde{\mathcal{M}}_{\mathsf{eff}}(\hat{s}; \Delta E_{\gamma}, \Delta \theta_{\gamma}, m_e^2)|^2 &= \left[1 + f_{\mathsf{soft}}(\frac{\Delta E_{\gamma}}{\lambda}) - 2f_{\mathsf{soft},\mathsf{ISR}}(\Delta E_{\gamma}, \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \right] \, |\mathcal{M}_{\mathsf{Born}}(\hat{s})|^2 \\ &+ 2\mathsf{Re}\left[\mathcal{M}_{\mathsf{Born}}(\hat{s}) \, \mathcal{M}_{1-\mathsf{loop}}(\hat{s}, \lambda^2, m_e^2) \right], \end{split}$$

contains Born, virtual + soft contr. with LL part of virtual and soft-coll. removed New "s+v" term (contains also soft/coll. corrections to Born/1-loop interference)

$$\begin{split} \sigma_{\mathsf{V+S,ISR}}(s, \Delta E_{\gamma}, \Delta \theta_{\gamma}, m_e^2) \\ &= \int dx_1 f_{\mathsf{ISR}}(x_1; \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \int dx_2 f_{\mathsf{ISR}}(x_2; \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \int d\Gamma_2 |\widetilde{\mathcal{M}}_{\mathsf{eff}}(\hat{s}; \Delta E_{\gamma}, \Delta \theta_{\gamma}, m_e^2)|^2 \end{split}$$

Simulation

Kilian/JR/Robens,2006

Resummation approach eliminates problem of negative weights:

Only source for negative weights: soft-noncollinear region, does not cause problems

Final improvement:

- convoluting $2 \rightarrow 3$ part with ISR structur function
- add $2 \rightarrow 4$ part

$$\begin{aligned} \sigma_{\text{tot,ISR+}}(s, m_e^2) &= \int dx_1 f_{\text{ISR}}(x_1; \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \int dx_2 f_{\text{ISR}}(x_2; \Delta \theta_{\gamma}, \frac{m_e^2}{s}) \\ &\times \left(\int d\Gamma_2 \left| \widetilde{\mathcal{M}}_{\text{eff}}(\hat{s}; \Delta E_{\gamma}, \Delta \theta_{\gamma}, m_e^2) \right|^2 + \int_{\Delta E_{\gamma}, \Delta \theta_{\gamma}} d\Gamma_3 \left| \mathcal{M}_{2 \to 3}(\hat{s}) \right|^2 \right) \\ &+ \int_{\Delta E_{\gamma,i}, \Delta \theta_{\gamma,i}} d\Gamma_4 \left| \mathcal{M}_{2 \to 4}(s) \right|^2 \end{aligned}$$

O L C

Choosing Cutoffs

Collinear (angular) cutoff

Collinear approximation breaks down at $\theta_{\gamma} > 10^{\circ}$

Higher-order effects for emission angles below 0.1°

Energy cutoff

Fixed order/semianalytic agree

Small angles: interference term overshoots

5 % correction from higher order γ radiation

ILC statist. fluctuation: 2.5 ‰

 $\Rightarrow \Delta E_{\gamma} \lesssim 0.5 \, {
m GeV}$

Results and Distributions

Kilian/JR/Robens,2006

NLO corrections -5% (Xsec max.)

-2% (-1.5%) fixedorder (resummed) @ 1 TeV

Binned distribution of chargino scattering angle

Cutoffs: $\Delta \theta_{\gamma} = 1^{\circ}$, $\Delta E_{\gamma} = 3 \,\text{GeV}$ (fixed-order)

K-factor approach in-sufficient

Summary and Outlook

- Extended WHIZARD: 1st NLO SUSY MC Event Generator for the ILC
- All possible distributions available at NLO
- Matching of resummed soft-collinear photons and explicit NLO parts avoids negative weights
- ▶ Interface to FeynArts: all MSSM 2 → 2 processes for ILC available
- Open issues/Next step(s):
 - Include chargino decays Kalinowski/Kilian/Kovaric/JR/Robens/Rolbiecki
 - Resummation of Coulomb singularity: improved threshold behavior
 - Semiautomatized version / Program library

New version WHIZARD 1.99 \rightarrow 2.0.0

http://whizard.event-generator.org Functional cut/analysis syntax, more models, recursive cascades, improved phase space, parton shower, ...

as usual: we're open to users wish list!

