Beyond the Standard Model at the International Linear Collider

Jürgen R. Reuter, DESY

BSM at the ILC

ILC — 500 GeV e+ e- Collider

- e+ e- collider, 31 km length, c.m. energy: 500 GeV (tunable, 200-x) [Upgrade: I TeV]
- Polarisation: 80% e- and at least 30% e+
- Integrated Luminosity: 250/fb/yr
- Two detectors/experiments (shared interaction point)
- Experimental setup:
- * Well-defined initial state
- * Pure electroweak production (small theory errors)
- * Triggerless operation
- Concurrent running with LHC high-luminosity phase

BSM at the ILC

Proposal from Japan: 北上市 (Kitakami-Shi Site)

BSM at the ILC

Proposal from Japan: 北上市 (Kitakami-Shi Site)

BSM at the ILC

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

BSM at the ILC

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

A) Deep Inelastic Scattering: 1969, SLAC: QCD/Quark Substructure (e⁻ beams)

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

A) Deep Inelastic Scattering: 1969, SLAC: QCD/Quark Substructure (e⁻ beams)

B) Neutral currents: 1973, Gargamelle, CERN: Weak Gauge Structure $(\nu_{\mu} \text{ beams})$

BSM at the ILC

(FALSE) PARADIGM: "Hadron colliders are discovery machines, lepton colliders are precision machines."

A) Deep Inelastic Scattering: 1969, SLAC: QCD/Quark Substructure (e⁻ beams)

B) Neutral currents: 1973, Gargamelle, CERN: Weak Gauge Structure $(\nu_{\mu} \text{ beams})$

C) Charm/tau discovery: 1974/76 SLAC: SM flavor structure $(e^-e^+$ beams)

PANIC 2014, Hamburg, 28.8.2014

BSM at the ILC

Dark Matter Searches

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: $ee \rightarrow vv\gamma$,

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

 Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639

Dark Matter Searches

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: $ee \rightarrow vv\gamma$,

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

- Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639
- Veto from low-angle calorimeter hits against radiative Bhabha
- Search for signals in the photon recoil spectrum

BSM at the ILC

Dark Matter Searches

- Assumption: weakly interacting particle χ
- ee $\rightarrow \chi \chi$ invisible, use bremsstrahlung:

ee $\rightarrow \chi \chi \gamma$ (analogous to LHC: pp $\rightarrow \chi \chi j$)

• Irreducible backgrounds: ee $\rightarrow VVY$,

.R.Reuter

 $ee \rightarrow ee\gamma$ with ee lost in the beampipe

- Polarisation to suppress backgrounds: W exchange killed a lot by P(e+,e-) Bartels/Berggren/List: arXiv: 1206.6639
- Veto from low-angle calorimeter hits against radiative Bhabha
- Search for signals in the photon recoil spectrum

* Vector operator: "spin-independent"
* Axial-vector operator: "spin-dependent"

LHC accesses higher masses, ILC lower cross sections (few caveats)

BSM at the ILC

PANIC 2014, Hamburg, 28.8.2014

CMS-PAS EXO-12-048; arXiv:1307.5327

Model-Independent Electroweak Searches

- Main advantage of ee machine: perfectly defined initial state, elementary particle collision
- Testbed SUSY: Scan over all NLSP candidates
- Model-independent exclusion/discovery reach in $M_{
 m NLSP} M_{
 m LSP}$ plane
- Examples: $\tilde{\mu}_R$ NLSP

 $\tilde{\tau}_1$ NLSP min. χ sec

Berggren, arXiv:1308.1461

Model-Independent Electroweak Searches

- Main advantage of ee machine: perfectly defined initial state, elementary particle collision
- Testbed SUSY: Scan over all NLSP candidates
- Model-independent exclusion/discovery reach in $M_{\rm NLSP} M_{\rm LSP}$ plane
- Examples: $\tilde{\mu}_R$ NLSP
 - $\tilde{\tau}_1$ NLSP min. χ sec

Discover/exclude close to kinematical limit

BSM at the ILC

Model-Independent Electroweak Searches

- Main advantage of ee machine: perfectly defined initial state, elementary particle collision
- Testbed SUSY: Scan over all NLSP candidates
- Model-independent exclusion/discovery reach in
- $M_{\rm NLSP} M_{\rm LSP}$ plane Examples: $\tilde{\mu}_R$ NLSP
 - $ilde{ au}_1$ NLSP min. χ sec

Discover/exclude close to kinematical limit

Even for sneutrino NLSP

Kalinowski/Kilian/JRR/Robens/Rolbiecki, arXiv: 0809.997

BSM at the ILC

New Neutral Currents: Z' searches

- * Neutral current paved path to understanding gauge structure of the SM
- * Promising way to go beyond: many GUT models predict additional neutral currents (Z')
- * High-precision ILC measurements allows model discrimination
- * Access to scales up to tens of TeV!!

New Neutral Currents: Z' searches

- * Neutral current paved path to understanding gauge structure of the SM
- * Promising way to go beyond: many GUT models predict additional neutral currents (Z')
- * High-precision ILC measurements allows model discrimination
- * Access to scales up to tens of TeV!!

* ILC allows partial revelation of GUT group structure

Braam/Knochel/JRR, arXiv: 1001.4074

BSM at the ILC

New Neutral Currents: Z' searches

- * Neutral current paved path to understanding gauge structure of the SM
- Promising way to go beyond: many GUT models predict additional neutral currents (Z') \star
- High-precision ILC measurements allows model discrimination \star

* Access to scales up to tens of TeV!!

* ILC allows partial revelation of GUT group structure

Braam/Knochel/JRR, arXiv: 1001.4074

Contact interactions are sensitive to scales close to 100 TeV

I.R.Reuter

BSM at the ILC

- Vector Boson Scattering: access to New Physics in W, Z selfcoupl. Beyer/JRR/Mönig, arXiv:hep-ph/0604048
- I TeV, I/ ab , full 6-fermion states, P(80% e-, 60% e+), binned likelihood
- Contributing channels: $WW \rightarrow WW$, $WW \rightarrow ZZ$, $WZ \rightarrow WZ$, $ZZ \rightarrow ZZ$

Process	Subprocess	σ [fb]	
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \to WW$	23.19	
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \to ZZ$	7.624	
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$V \rightarrow VVV$	9.344	
$e^+e^- \rightarrow \nu e q \bar{q} q \bar{q}$	$WZ \to WZ$	132.3	
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \to ZZ$	2.09	
$e^+e^- \rightarrow e^+e^-q\bar{q}q\bar{q}$	$ZZ \to W^+W^-$	414.	
$e^+e^- \to b\bar{b}X$	$e^+e^- \to t\bar{t}$	331.768	
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108	
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221	
$e^+e^- \to e\nu q\bar{q}$	$e^+e^- \to e\nu W$	279.588	
$e^+e^- \rightarrow e^+e^-q\bar{q}$	$e^+e^- \rightarrow e^+e^-Z$	134.935	
$e^+e^- \to X$	$e^+e^- \to q\bar{q}$	1637.405	

 $SU(2)_c$ conserved case, all channels

coupling	$\sigma-$	$\sigma +$
$16\pi^2\alpha_4$	-1.41	1.38
$16\pi^2\alpha_5$	-1.16	1.09

 $SU(2)_c$ broken case, all channels

coupling	$\sigma-$	$\sigma +$
$16\pi^2\alpha_4$	-2.72	2.37
$16\pi^2\alpha_5$	-2.46	2.35
$16\pi^2\alpha_6$	-3.93	5.53
$16\pi^2\alpha_7$	-3.22	3.31
$16\pi^2\alpha_{10}$	-5.55	4.55

- Vector Boson Scattering: access to New Physics in W, Z selfcoupl. Beyer/JRR/Mönig, arXiv:hep-ph/0604048
- I TeV, I/ ab , full 6-fermion states, P(80% e-, 60% e+), binned likelihood
- Contributing channels: $WW \rightarrow WW$, $WW \rightarrow ZZ$, $WZ \rightarrow WZ$, $ZZ \rightarrow ZZ$

Process	Subprocess	σ [fb]	
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \to WW$	23.19	
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \to ZZ$	7.624	
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$V \rightarrow VVV$	9.344	
$e^+e^- \rightarrow \nu e q \bar{q} q \bar{q}$	$WZ \to WZ$	132.3	
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \to ZZ$	2.09	
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \rightarrow W^+W^-$	414.	
$e^+e^- \to b\bar{b}X$	$e^+e^- \to t\bar{t}$	331.768	
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108	
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221	
$e^+e^- \to e\nu q\bar{q}$	$e^+e^- \to e\nu W$	279.588	
$e^+e^- \rightarrow e^+e^-q\bar{q}$	$e^+e^- \rightarrow e^+e^-Z$	134.935	
$e^+e^- \to X$	$e^+e^- \to q\bar{q}$	1637.405	

 $SU(2)_c$ conserved case, all channels

coupling	$\sigma-$	$\sigma +$
$16\pi^2\alpha_4$	-1.41	1.38
$16\pi^2 \alpha_5$	-1.16	1.09

$SU(2)_c$ broken case, all channels

coupling	$\sigma-$	$\sigma +$
$16\pi^2\alpha_4$	-2.72	2.37
$16\pi^2\alpha_5$	-2.46	2.35
$16\pi^2\alpha_6$	-3.93	5.53
$16\pi^2\alpha_7$	-3.22	3.31
$16\pi^2\alpha_{10}$	-5.55	4.55

I.R.Reuter

BSM at the ILC

* Access also via Triboson Production: $e^+e^- \rightarrow WWZ/ZZZ$

* Polarization populates longitudinal modes, suppresses background
 A) unpolarized
 B) P(80% e-, 0% e+)
 C) P

C) P(80% e-, 60% e+)

- * Access also via Triboson Production: $e^+e^- \rightarrow WWZ/ZZZ$
- * Polarization populates longitudinal modes, suppresses background
 - A) unpolarized

B) P(80% e-, 0% e+)

C) P(80% e-, 60% e+)

- Simulation with WHIZARD
- Fast detector simulation
- I TeV, I / ab , full 6-fermion final states
- Use of 32% full-hadronic decays
- Durham jet algorithm
- Main background: $tt \rightarrow 6$ jets
- Veto against $E_{\rm mis}^2 + p_{\perp,{\rm mis}}^2$
- Obs.: $M^2_{WW}, M^2_{WZ}, \sphericalangle(e^-, Z)$

- * Access also via Triboson Production: $e^+e^- \rightarrow WWZ/ZZZ$
- * Polarization populates longitudinal modes, suppresses background
 - A) unpolarized

B) P(80% e-, 0% e+)

C) P(80% e-, 60% e+)

- Simulation with WHIZARD
- Fast detector simulation
- I TeV, I / ab , full 6-fermion final states
- Use of 32% full-hadronic decays
- Durham jet algorithm
- Main background: $tt \rightarrow 6$ jets
- Veto against $E_{\rm mis}^2 + p_{\perp,\rm mis}^2$
- Obs.: $M^2_{WW}, M^2_{WZ}, \sphericalangle(e^-, Z)$

- * Access also via Triboson Production: $e^+e^- \rightarrow WWZ/ZZZ$
- * Polarization populates longitudinal modes, suppresses background
 - A) unpolarized

B) P(80% e-, 0% e+)

C) P(80% e-, 60% e+)

- Simulation with WHIZARD
- Fast detector simulation
- I TeV, I / ab , full 6-fermion final states
- Use of 32% full-hadronic decays
- Durham jet algorithm
- Main background: $tt \rightarrow 6$ jets
- Veto against $E_{\rm mis}^2 + p_{\perp,{\rm mis}}^2$
- Obs.: $M^2_{WW}, M^2_{WZ}, \sphericalangle(e^-, Z)$

* Interpretation as limits on Electroweak Resonances:

Spin	I = 0	I = 1	I=2	Spin	I = 0	I = 1	I=2
0	1.55	_	1.95	0	1.39	1.55	1.95
1		2.49	_	1	1.74	2.67	—
2	3.29	—	4.30	2	3.00	3.01	5.84

- * Results for I TeV, but very good discovery potential already at 500 GeV
- * No final conclusion on LHC reach yet: Alboteanu/Kilian/JRR, 0806.4145; Kilian/Ohl/JRR/Sekulla, 1408.6207

J.R.Reuter

BSM at the ILC

- * ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$

BSM at the ILC

- ★ ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line

- ★ ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- ★ LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb

BSM at the ILC

- ★ ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_{2,3,4}^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
 No gaugino-mass GUT relation below line
 * LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
 500 GeV ILC generic searches

- ★ ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_2^0 \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- ★ LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
- 500 GeV ILC generic searches
- Upgrade to I TeV covers parameter space

- ★ ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles
- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad \text{BR}(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = \text{BR}(\tilde{\chi}_2^0 \circ A \to Z^0 \tilde{\chi}_1^0) = 1$
- LEP chargino search (all decay modes)
- No gaugino-mass GUT relation below line
- ★ LHC projections to 14 TeV (arXiv: 1307.7292) 300 / fb and 3000 / fb
- 500 GeV ILC generic searches

Upgrade to I TeV covers parameter space

Benchmark searches for degenerate EW-inos

 $\Delta(M) = 1600 \text{ MeV}, M_{\tilde{\chi}_1^0} = 164.2 \text{ GeV}$

Sert et al.: arXiv:1307.3566

 $\Delta(M) = 770 \text{ MeV}, M_{\tilde{\chi}_1^0} = 166.6 \text{ GeV}$

BSM at the ILC

★ ILC: electroweak production ⇒ allows (more) model-independent searches for EW particles

- * Example: SUSY searches for partners of electroweak particles (EW gauginos / Higgsinos)
- * LHC searches: assumptions $M_{\tilde{\chi}_1^0} = M_{\tilde{\chi}_1^\pm} \quad BR(\tilde{\chi}_1^\pm \to W^\pm \tilde{\chi}_1^0) = BR(\tilde{\chi}_2^0 \to Z^0 \tilde{\chi}_1^0) = 1$

SUSY signals: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$, $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$ (all s-channel, no t-channel [Higgsino])

BSM at the ILC

+ Dig out of γγ background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

BSM at the ILC

+ Dig out of γγ background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

Select chargino (semi-leptonic mode) vs. neutralino (radiative decay)

$$\begin{split} \tilde{\chi}_1^{\pm} &\to \tilde{\chi}_1^0 j j, \tilde{\chi}_0^1 \ell^{\pm} \nu \\ \tilde{\chi}_2^0 &\to \tilde{\chi}_1^0 \gamma \end{split}$$

Dig out of YY background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

- Select chargino (semi-leptonic mode) vs. neutralino (radiative decay)
- ISR quasi-'scan': linear fits allow to extract masses up to \approx I GeV

BSM at the ILC

 $\tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} j j, \tilde{\chi}_{0}^{1} \ell^{\pm} \nu$

 $\tilde{\chi_2^0}
ightarrow \tilde{\chi}_1^0 \gamma$

Dig out of YY background: tag ISR photon (only moderate 'kick' for signal / accesses bkgd.)

- Select chargino (semi-leptonic mode) vs. neutralino (radiative decay)
- ISR quasi-'scan': linear fits allow to extract masses up to \approx I GeV

• Parameter extraction: from E_{π} : $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 100 \text{ MeV}$ and $\mu \sim 4\%$

BSM at the ILC

PANIC 2014, Hamburg, 28.8.2014

 $\tilde{\chi}_{\underline{1}}^{\pm} \to \tilde{\chi}_{1}^{0} j j, \tilde{\chi}_{0}^{1} \ell^{\pm} \nu$

 $\chi_2^0 \to \tilde{\chi}_1^0 \gamma$

- * Other candidates: axion-like particles in strongly-interacting models
- * Prime example: Little Higgs Models

Kilian/Rainwater/JRR, arXiv: hep-ph/0411213, hep-ph/0609119

* Axion-like particles:

- * Other candidates: axion-like particles in strongly-interacting models
- * Prime example: Little Higgs Models

Kilian/Rainwater/JRR, arXiv: hep-ph/0411213, hep-ph/0609119

- * Axion-like particles:
 - Gauged U(I) group: $Z' \leftrightarrow Ungauged U(I)$ group: η
 - Couples to fermions like pseudoscalar
 - $m[\eta] \approx 400 \text{ GeV}$ (at LHC only accessible for $\approx 200 \text{ GeV}$)
 - SM singlet, couplings to SM fermion suppressed v / F

BSM at the ILC

- Other candidates: axion-like particles in strongly-interacting models \star
- Prime example: Little Higgs Models \star

Kilian/Rainwater/JRR, arXiv: hep-ph/0411213, hep-ph/0609119

bb

0.1

BR [η]

 $\tau^+\tau^-$

- * Axion-like particles:
 - Gauged U(I) group: $Z' \leftrightarrow Ungauged U(I)$ group: η
 - Couples to fermions like pseudoscalar
 - $m[\eta] \lesssim 400 \text{ GeV}$ (at LHC only accessible for $\gtrsim 200 \text{ GeV}$)

Paradigmatic Standard Candle Telescopes

- 3 main pillars of ILC physics:
 - I. Higgs Physics
 - ← Felix Sefkow's Talk
 - 2. Top Physics
 - ↔ Frank Simon's Talk
 - 3. BSM Physics
 - ("direct searches")

Standard (Model) candles can be used as Telescopes for [indirect] BSM searches

BSM at the ILC

Paradigmatic Standard Candle Telescopes

BSM at the ILC

3 main pillars of ILC physics:

- I. Higgs Physics
 - ← Felix Sefkow's Talk
- 2. Top Physics

I.R.Reuter

- ↔ Frank Simon's Talk
- 3. BSM Physics
 - ("direct searches")

Standard (Model) candles can be used as Telescopes for [indirect] BSM searches

Search for anomalous Higgs couplings

$$\mathcal{L}_{hWW} = 2m_W^2 \left(\frac{1}{v} + \frac{a}{\Lambda}\right) hW_{\mu}^+ W^{\mu,-} + \frac{b}{\Lambda} W_{\mu\nu}^+ W^{\mu\nu,-}$$

Paradigmatic Standard Candle Telescopes

3 main pillars of ILC physics:

- I. Higgs Physics
 - ← Felix Sefkow's Talk
- 2. Top Physics

I.R.Reuter

- ↔ Frank Simon's Talk
- 3. BSM Physics
 - ("direct searches")

Standard (Model) candles can be used as Telescopes for [indirect] BSM searches

Search for anomalous Higgs couplings

$$\mathcal{L}_{hWW} = 2m_W^2 \left(\frac{1}{v} + \frac{a}{\Lambda}\right) hW^+_{\mu}W^{\mu,-} + \frac{b}{\Lambda}W^+_{\mu\nu}W^{\mu\nu,-}$$

5D Emergent

Richard: 1403.2893

BSM at the ILC

PANIC 2014, Hamburg, 28.8.2014

RS with Custodial SU(2)

Composite Top

BSM at the ILC

- * ILC 500 GeV e+ e- machine offers large BSM discovery potential
- * Model-independent electroweak searches
- * Dark Matter direct searches
- * ILC resolves many LHC search constraints
- * ILC 500/1000 surpasses LHC energy reach for EW sector and neutral current searches
- * Search for light electroweak particles not covered by LHC
- * ILC is a mandatory tool for discovery and discrimination of New Physics

- * ILC 500 GeV e+ e- machine offers large BSM discovery potential
- * Model-independent electroweak searches
- * Dark Matter direct searches
- * ILC resolves many LHC search constraints
- * ILC 500/1000 surpasses LHC energy reach for
 - EW sector and neutral current searches
- * Search for light electroweak particles not covered by LHC
- * ILC is a mandatory tool for discovery and discrimination of New Physics

- * ILC 500 GeV e+ e- machine offers large BSM discovery potential
- * Model-independent electroweak searches
- * Dark Matter direct searches
- * ILC resolves many LHC search constraints
- * ILC 500/1000 surpasses LHC energy reach for EW sector and neutral current searches
- * Search for light electroweak particles not covered by LHC
- * ILC is a mandatory tool for discovery and discrimination of New Physics

Synergistic potential from both LHC & ILC

3 km tunnel for e- now

J.R.Reuter

BSM at the ILC

ありがとうございます。

Seocien

Neoder

BSM at the ILC