

# Precision Predictions for Top Physics — Threshold & Continuum





Jürgen R. Reuter, DESY



J.R.Reuter

**Top Precision Physics** 



### The importance of top / Higgs



### Top mass and top Yukawa coupling



from [Degrassi et al., 2012]

(note: plot under assumptions of NO additional **BSM**)

**Top Precision Physics** 

### tt continuum production (on- & off-shell)

- Paradigm processes at lepton colliders: precision determination of top properties
- Major background for EW measurements (VVV and VBS); any [most] BSM searches

On-Shell process:  $e^+e^- \rightarrow t\bar{t}$ 

- NLO QCD [Jersak/Laermann/Zerwas, 1982]
- NNLO QCD [Chetyrkin/Kühn/Steinhauser, 1996; Harlander/Steinhauser, 1998]
- NLO EW [Beenakker/von der Marck/Hollik, 1991; Beenakker/Denner/Kraft, 1993]
- Threshold enhancement [Fadin/Khoze, 1987; Strassler/Peskin, 1991; Jezabek/Kühn/ Teubner, 1992; Sumino et al., 1992
  - Top width:  $t \rightarrow W^+ b$ NLO QCD [Jezabek/Kühn, 1989]
  - NNLO QCD [Guo/Li/Zhu, 2012]

Off-Shell process:  $e^+e^- \rightarrow W^+ \bar{b} W^- b$ 

Solution State State

NLO QCD diff. [Chokoufe/JRR/Weiss, 2015; Liebler/Moortgat-Pick/Papanasthasiou, 2015; Chokoufe/ Kilian/Lindert/JRR/Pozzorini/Weiss, 2016]





**Top Precision Physics** 



### WHIZARD: our MC framework

<whizard@desy.de>

Ancient acronym: W, Higgs, Z, and Respective Decays

WHIZARD Team: Wolfgang Kilian, Thorsten Ohl, JRR Simon Braß/Vincent Rothe/Christian Schwinn/Marco Sekulla/So Young Shim/Florian Staub/Pascal Stienemeier/ Zhijie Zhao + 2 Master



#### PUBLICATIONS

General WHIZARD reference: EPJ C71 (2011) 1742, arXiv:0708.4241 0'Mega (ME generator): LC-TOOL (2001) 040; arXiv:hep-ph/0102195 VAMP (MC integrator): CPC 120 (1999) 13; arXiv:hep-ph/9806432 CIRCE (beamstrahlung): CPC 101 (1997) 269; arXiv:hep-ph/9607454 Parton shower: JHEP 1204 (2012) 013; arXiv:1112.1039 Color flow formalism: JHEP 1210 (2012) 022; arXiv:1206.3700 NLO capabilities: JHEP 1612 (2016) 075; arXiv: 1609.03390 Parallelization of MEs: CPC 196 (2015) 58; arXiv:1411.3834 **POWHEG** matching: EPS-HEP (2015) 317; arXiv: 1510.02739

↔ cf.Wolfgang Kilian's talk

J.R.Reuter

**Top Precision Physics** 



## NLO Automation in WHIZARD

#### 5/21

### Working NLO interfaces to:

- GoSam [N. Greiner, G. Heinrich, J. v. Soden-Fraunhofen et al.]
- OpenLoops [F. Cascioli, J. Lindert, P. Maierhöfer, S. Pozzorini]
- ★ Recola

 $\star$ 

[A. Denner, L. Hofer, J.-N. Lang, S. Uccirati]

alpha\_power = 2 alphas\_power = 0

```
process eett = e1,E1 => t, tbar
{ nlo_calculation = "full" }
```

- FKS subtraction [Frixione/Kunszt/Signer, 1995]
- Resonance-aware treatment [Ježo/Nason, 1509.09071]
- Virtual MEs external
- Real and virtual subtraction terms internal
- NLO decays available for the NLO processes
- Fixed order events for plotting (weighted, either LHEF or HepMC)
- Automated POWHEG damping and matching
- NLO QCD (massless & massive emitters) fully supported
- Status of EW corrections: all parts

technically completed, validation phase started [Rothe et al.]



.R.Reuter

**Top Precision Physics** 







## **NLO Automation in WHIZARD**

#### 5/21

### Working NLO interfaces to:

- GoSam [N. Greiner, G. Heinrich, J. v. Soden-Fraunhofen et al.]
- OpenLoops [F. Cascioli, J. Lindert, P. Maierhöfer, S. Pozzorini]
- \* Recola

 $\star$ 

la [A. Denner, L. Hofer, J.-N. Lang, S. Uccirati]

alpha\_power = 2 alphas power = 0

```
process eett = e1,E1 => t, tbar
{ nlo_calculation = "full" }
```

- FKS subtraction [Frixione/Kunszt/Signer, 1995]
- Resonance-aware treatment [Ježo/Nason, 1509.09071]
- Virtual MEs external
- Real and virtual subtraction terms internal
- NLO decays available for the NLO processes
- Fixed order events for plotting (weighted, either LHEF or HepMC)
- Automated POWHEG damping and matching
- NLO QCD (massless & massive emitters) fully supported
- Status of EW corrections: all parts

technically completed, validation phase started [Rothe et al.]



J.R.Reuter

**Top Precision Physics** 





- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Most important for narrow resonances  $(H \rightarrow bb)$
- Additional soft mismatch integration component

$$D_{H}^{\text{Born}} = \left[ \left( \bar{p}_{bb}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1},$$

$$D_{H}^{\text{Real}} = \left[ \left( p_{bbg}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}$$

$$p_{bbg}^2 = \bar{p}_{bb}^2 + \Delta_{bbg}^2 \qquad \qquad \frac{D_H^{\text{Born}}}{D_H^{\text{Real}}} \stackrel{\bar{p}_{bb}^2 \to m_H^2}{=} 1 + \frac{\Delta_{bbg}^4}{m_H^2 \Gamma_H^2}$$





- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Most important for narrow resonances  $(H \rightarrow bb)$
- Additional soft mismatch integration component

$$D_{H}^{\text{Born}} = \left[ \left( \bar{p}_{bb}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}, \\ D_{H}^{\text{Real}} = \left[ \left( p_{bbg}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}$$

$$p_{bbg}^2 = \bar{p}_{bb}^2 + \Delta_{bbg}^2 \qquad \qquad \frac{D_H^{\text{Born}}}{D_H^{\text{Real}}} \stackrel{\bar{p}_{bb}^2 \to m_H^2}{=} 1 + \frac{\Delta_{bbg}^4}{m_H^2 \Gamma_H^2}$$





**Top Precision Physics** 

LCWS 2017, Strasbourg, 24.10.17

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Most important for narrow resonances  $(H \rightarrow bb)$
- Additional soft mismatch integration component

$$D_{H}^{\text{Born}} = \left[ \left( \bar{p}_{bb}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}, \\ D_{H}^{\text{Real}} = \left[ \left( p_{bbg}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}$$

$$p_{bbg}^2 = \bar{p}_{bb}^2 + \Delta_{bbg}^2 \qquad \qquad \frac{D_H^{\text{Born}}}{D_H^{\text{Real}}} \stackrel{\bar{p}_{bb}^2 \to m_H^2}{=} 1 + \frac{\Delta_{bbg}^4}{m_H^2 \Gamma_H^2}$$



 $\stackrel{\bigcirc}{=}$  WHIZARD complete automatic implementation: example  $e^+e^- \rightarrow \mu\mu bb$ 

(ZZ, ZH histories)

| It     | Calls        | Integral[fb]  | Error[fb] | Err[%] | Acc    | Eff[%] | Chi2 N[It | :1 į |  |
|--------|--------------|---------------|-----------|--------|--------|--------|-----------|------|--|
| =====  |              |               |           |        |        |        |           | ==   |  |
| 1      | 11988        | 9.6811847E+00 | 6.42E+00  | 66.30  | 72.60* | 0.65   |           |      |  |
| 2      | 11959        | 2.8539703E+00 | 2.35E-01  | 8.25   | 9.02*  | 0.69   |           |      |  |
| 3      | 11936        | 2.4907574E+00 | 6.54E-01  | 26.25  | 28.68  | 0.35   |           |      |  |
| 4      | 11908        | 2.7695559E+00 | 9.67E-01  | 34.91  | 38.09  | 0.30   |           |      |  |
| 5      | 11874        | 2.4346151E+00 | 4.82E-01  | 19.80  | 21.57* | 0.74   |           |      |  |
|        |              |               |           |        |        |        |           | 1    |  |
| 5      | 59665        | 2.7539078E+00 | 1.97E-01  | 7.15   | 17.47  | 0.74   | 0.49 5    | ; '  |  |
| ====== |              |               |           |        |        |        |           | ==   |  |
|        | standard EKS |               |           |        |        |        |           |      |  |



- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses not respected by modified kinematics of subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Most important for narrow resonances  $(H \rightarrow bb)$
- Additional soft mismatch integration component

$$D_{H}^{\mathsf{Born}} = \left[ \left( \bar{p}_{bb}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}, \\ D_{H}^{\mathsf{Real}} = \left[ \left( p_{bbg}^{2} - m_{H}^{2} \right)^{2} + m_{H}^{2} \Gamma_{H}^{2} \right]^{-1}$$

$$p_{bbg}^2 = \bar{p}_{bb}^2 + \Delta_{bbg}^2 \qquad \qquad \frac{D_H^{\text{Born}}}{D_H^{\text{Real}}} \stackrel{\bar{p}_{bb}^2 \to m_H^2}{=} 1 + \frac{\Delta_{bbg}^4}{m_H^2 \Gamma_H^2}$$



| It           | Calls | Integral[fb]  | Error[fb] | Err[%] | Acc    | Eff[%] | Chi2 N[ | It] |
|--------------|-------|---------------|-----------|--------|--------|--------|---------|-----|
| 1            | 11988 | 9.6811847E+00 | 6.42E+00  | 66.30  | 72.60* | 0.65   |         |     |
| 2            | 11959 | 2.8539703E+00 | 2.35E-01  | 8.25   | 9.02*  | 0.69   |         |     |
| 3            | 11936 | 2.4907574E+00 | 6.54E-01  | 26.25  | 28.68  | 0.35   |         |     |
| 4            | 11908 | 2.7695559E+00 | 9.67E-01  | 34.91  | 38.09  | 0.30   |         |     |
| 5            | 11874 | 2.4346151E+00 | 4.82E-01  | 19.80  | 21.57* | 0.74   |         |     |
| 5            | 59665 | 2.7539078E+00 | 1.97E-01  | 7.15   | 17.47  | 0.74   | 0.49    | 5   |
| standard FKS |       |               |           |        |        |        |         |     |

| It               | Calls                            | Integral[fb]                                                     | Error[fb]                                    | Err[%]                       | Acc                              | Eff[%]                          | Chi2 N[  | It]  |
|------------------|----------------------------------|------------------------------------------------------------------|----------------------------------------------|------------------------------|----------------------------------|---------------------------------|----------|------|
| 1<br>2<br>3<br>4 | 11988<br>11962<br>11936<br>11902 | 2.9057032E+00<br>2.8591952E+00<br>2.9277880E+00<br>2.8512337E+00 | 8.35E-02<br>5.20E-02<br>4.09E-02<br>3.98E-02 | 2.87<br>1.82<br>1.40<br>1.40 | 3.15*<br>1.99*<br>1.52*<br>1.52* | 7.90<br>10.91<br>14.48<br>13.70 |          |      |
| 5<br>            | 11874<br>59662                   | 2.8855399E+00                                                    | 3.87E-02                                     | 1.34<br>                     | 1.46*                            | 17.15                           |          |      |
|                  |                                  |                                                                  | 21041-02                                     |                              |                                  | =======                         | ======== | ==== |

FKS with resonance mappings



**Top Precision Physics** 

### Lepton colliders: tt and ttH (on- & off-shell) 7/21

- $\bigcirc$  Cross checks for 2  $\rightarrow$  2 and 2  $\rightarrow$  4 processes with Sherpa and Munich
- $\bigcirc$  Using massive *b* quarks: no cuts necessary for e<sup>+</sup>e<sup>−</sup> → W<sup>+</sup>W<sup>−</sup>bb
- $\bigcirc$  Full process e<sup>+</sup>e<sup>−</sup> → μ<sup>+</sup>ν<sub>μ</sub>e<sup>−</sup>ν<sub>e</sub>bb exhibits Coulomb singularity:
- *ttH* production: 8% contamination from Higgsstrahlung
- Secontribution from quartic SM vertices





### Lepton colliders: tt and ttH (on- & off-shell)

- Cross checks for  $2 \rightarrow 2$  and  $2 \rightarrow 4$  processes with Sherpa and Munich
- Using massive b quarks: no cuts necessary for  $e^+e^- \rightarrow W^+W^-bb$
- Full process  $e^+e^- \rightarrow \mu^+\nu_{\mu}e^-\nu_e bb$  exhibits Coulomb singularity:
- ttH production: 8% contamination from Higgsstrahlung
- Contribution from quartic SM vertices

 $\Gamma_{H} = 0.000431 \text{ GeV}$ 



 $m_Z = 91.1876 \, \text{GeV},$ 

 $\Gamma_{t \to Wb}^{\text{LO}} = 1.4986 \,\text{GeV},$ 

 $\Gamma_{t \to f\bar{f}b}^{\rm LO} = 1.4757 \,{\rm GeV},$ 

 $m_H = 125 \text{ GeV}$ 

 $m_b = 4.2 \,\mathrm{GeV},$ 



 $e^+$ 

#### complex mass scheme:

$$\mu_i^2 = M_i^2 - i\Gamma_i M_i$$
 for  $i = W, Z, t, H$   $s_w^2 = 1 - c_w^2 = 1 - \frac{\mu_W^2}{\mu_Z^2}$ 



**Top Precision Physics** 

 $\Gamma_{t \to Wb}^{\text{NLO}} = 1.3681 \,\text{GeV},$ 

 $\Gamma_{t \to f\bar{f}b}^{\rm NLO} = 1.3475 \, {\rm GeV}.$ 

LCWS 2017, Strasbourg, 24.10.17

7/21

 $\bar{\nu}_e$ 

W

 $\gamma/Z$ 

### Lepton colliders: tt and ttH (on- & off-shell) 7/21

- $\bigcirc$  Cross checks for 2  $\rightarrow$  2 and 2  $\rightarrow$  4 processes with Sherpa and Munich
- $\bigcirc$  Using massive *b* quarks: no cuts necessary for e<sup>+</sup>e<sup>−</sup> → W<sup>+</sup>W<sup>−</sup>bb
- $\bigcirc$  Full process e<sup>+</sup>e<sup>−</sup> → μ<sup>+</sup>ν<sub>μ</sub>e<sup>−</sup>ν<sub>e</sub>bb exhibits Coulomb singularity:
- ttH production: 8% contamination from Higgsstrahlung
- Contribution from quartic SM vertices



#### **INPUT PARAMETERS:**





### NLO QCD Results for off-shell $e^+e^- \rightarrow tt$



Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

J.R.Reuter

**Top Precision Physics** 

LCWS 2017, Strasbourg, 24.10.17

### NLO QCD Results for off-shell $e^+e^- \rightarrow ttH$ <sup>8/21</sup>



Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390



**Top Precision Physics** 

### Differential Results for off-shell $e^+e^- \rightarrow tt$

9/21



DES



### Differential Results for off-shell ttH







$$E_h = \frac{1}{2\sqrt{s}} \left[ s + M_h^2 - (k_1 + k_2)^2 \right]$$

### Determination of top Yukawa coupling (ttH)

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390



LCWS 2017, Strasbourg, 24.10.17



### Differential Results for off-shell ttH







10/21

$$E_h = \frac{1}{2\sqrt{s}} \left[ s + M_h^2 - (k_1 + k_2)^2 \right]$$

### Determination of top Yukawa coupling (ttH)



Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

### Polarized Results (tt)

- ILC will always run polarized
- Polarized I-loop amplitudes beyond BLHA

|            |          | $\sqrt{s} = 800 \mathrm{GeV}$ |                              |          | $\sqrt{s} = 1500 \mathrm{GeV}$ |                              |          |  |
|------------|----------|-------------------------------|------------------------------|----------|--------------------------------|------------------------------|----------|--|
| $P(e^{-})$ | $P(e^+)$ | $\sigma^{\rm LO}[{\rm fb}]$   | $\sigma^{\rm NLO}[{\rm fb}]$ | K-factor | $\sigma^{\rm LO}[{\rm fb}]$    | $\sigma^{\rm NLO}[{\rm fb}]$ | K-factor |  |
| 0%         | 0%       | 253.7                         | 272.8                        | 1.075    | 75.8                           | 79.4                         | 1.049    |  |
| -80%       | 0%       | 176.5                         | 190.0                        | 1.077    | 98.3                           | 103.1                        | 1.049    |  |
| +80%       | 0%       | 176.5                         | 190.0                        | 1.077    | 53.2                           | 55.9                         | 1.049    |  |
| -80%       | 30%      | 420.8                         | 452.2                        | 1.074    | 124.9                          | 131.0                        | 1.048    |  |
| -80%       | 60%      | 510.7                         | 548.7                        | 1.074    | 151.6                          | 158.9                        | 1.048    |  |
| 80%        | -30%     | 208.4                         | 224.5                        | 1.077    | 63.0                           | 66.1                         | 1.049    |  |
| 80%        | -60%     | 240.3                         | 258.9                        | 1.077    | 72.7                           | 76.3                         | 1.049    |  |

**Top Precision Physics** 



### **Top-Forward Backward Asymmetry**

$$A_{FB} = \frac{\sigma(\cos\theta_t > 0) - \sigma(\cos\theta_t < 0)}{\sigma(\cos\theta_t > 0) + \sigma(\cos\theta_t < 0)}$$

Gluon emission symmetric in  $\theta \Rightarrow$ NLO QCD corrections small

#### A<sub>FB</sub> of the top quark

|          | $e^+e^-  ightarrow$                                           | $A_{FB}^{ m LO}$ | $A_{FB}^{ m NLO}$ | $A_{FB}^{ m NLO}/A_{FB}^{ m LO}$ |
|----------|---------------------------------------------------------------|------------------|-------------------|----------------------------------|
|          | $tar{t}$                                                      | -0.535           | -0.539            | 1.013                            |
| ٨        | $W^+W^-b\overline{b}$                                         | -0.428           | -0.426            | 0.995<br>0.986<br>0.964          |
| $A_{FB}$ | $\mu^+ e^-  u_\mu ar u_e b ar b$                              | -0.415           | -0.409            | 0.986                            |
|          | $\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$ , without neutrinos | -0.402           | -0.387            | 0.964                            |
|          | $tar{t}$                                                      | 0.535            | 0.539             | 1.013                            |
| <u>7</u> | $W^+W^-bar{b}$                                                | 0.428            | 0.426             | 0.995                            |
| $A_{FB}$ | $\mu^+ e^-  u_\mu ar u_e b ar b$                              | 0.415            | 0.409             | 0.986                            |
|          | $\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$ , without neutrinos | 0.377            | 0.350             | 0.928                            |





## Matched NLO QCD results

- Precise predictions of multi-parton final states require properly matched samples
- NLO QCD including POWHEG matching already available [WHIZARD+OpenLoops]
- All descriptions at NLO at the moment for the on-shell process
- Even LO simulations are demanding, e.g.:  $e^+e^- \rightarrow b\bar{b}b\bar{b}jj\ell\nu_\ell$ ,  $b\bar{b}jjjjj\ell\nu_\ell$





.R.Reuter

### Matched NLO QCD results

- Precise predictions of multi-parton final states require properly matched samples
- NLO QCD including POWHEG matching already available [WHIZARD+OpenLoops]
- All descriptions at NLO at the moment for the on-shell process
- Even LO simulations are demanding, e.g.:  $e^+e^- \rightarrow b\bar{b}b\bar{b}jj\ell\nu_\ell$ ,  $b\bar{b}jjjjj\ell\nu_\ell$



<sup>[</sup>Chokoufe/JRR/Weiss]



### **Top Threshold at lepton colliders**

ILC top threshold scan best-known method to measure top quark mass,  $\Delta M \sim 30-70 \text{ MeV}$ 

Heavy quark production at lepton colliders, qualitatively:



Threshold region: top velocity  $v \sim \alpha_s \ll I$ 





**Top Precision Physics** 

- ${}^{\mbox{\tiny $\Theta$}}$  NRQCD is EFT for non-relativistic quark-antiquark systems: separate  $\,M\cdot v\,$  and  $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Series Resummation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14

- Phase space of two massive particles

$$R \equiv \frac{\sigma_{t\bar{t}}}{\sigma_{\mu\mu}} = v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \sum_{i} (\alpha_s \ln v)^i \times \left\{1 (LL); \ \alpha_s, v (NLL); \ \alpha_s^2, \alpha_s v, v^2 (NNLL)\right\}$$

(p/v)NRQCD EFT w/ RG improvement

14/21



**Top Precision Physics** 

- ${\ensuremath{\, \odot}}$  NRQCD is EFT for non-relativistic quark-antiquark systems: separate  $\,M\cdot v\,$  and  $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Series Resummation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14



at NLL differentially!



**Top Precision Physics** 

LCWS 2017, Strasbourg, 24.10.17

- ${\ensuremath{\, \odot}}$  NRQCD is EFT for non-relativistic quark-antiquark systems: separate  $\,M\cdot v\,$  and  $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Series Resummation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14





**Top Precision Physics** 

LCWS 2017, Strasbourg, 24.10.17

- ${}^{\mbox{\tiny $\Theta$}}$  NRQCD is EFT for non-relativistic quark-antiquark systems: separate  $\,M\cdot v\,$  and  $\,M\cdot v^2$
- Integrate out hard quark and gluon d.o.f.
- Series Resummation of singular terms close to threshold (v = 0) Hoang et al. '99-'01; Beneke et al., '13-'14





### Top Threshold in WHIZARD

- Implement resummed threshold effects as effective vertex [form factor] in WHIZARD
- $G^{v,a}(0,p_t,E+i\Gamma_t,\nu)$  from TOPPIK code [Jezabek/Teubner], included in <code>WHIZARD</code>



Default parameters:  

$$M^{1S} = 172 \text{ GeV}, \Gamma_t = 1.54 \text{ GeV},$$
  
 $\alpha_s(M_Z) = 0.118$   
 $M^{1S} = M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL})$ 

Important effects: beamstrahlung; ISR; LO EW terms Exclusive observables accessible

Theory uncertainties from scale variations: hard and soft scale  $\mu_h = h \cdot m_t$   $\mu_s = f \cdot m_t v$ 







**Top Precision Physics** 



### **Top Threshold in WHIZARD**

Implement resummed threshold effects as effective vertex [form factor] in WHIZARD  $G^{v,a}(0, p_t, E + i\Gamma_t, \nu)$  from TOPPIK code [Jezabek/Teubner], included in WHIZARD

| error source                                    | $\Delta m^{\rm PS}$ [MeV] |
|-------------------------------------------------|---------------------------|
|                                                 |                           |
| stat. error $(200 \text{ fb}^{-1})$             | 13                        |
| theory (NNNLO scale variations, PS scheme)      | 40                        |
| parametric ( $\alpha_s$ , current WA)           | 35                        |
| non-resonant contributions (such as single top) | < 40                      |
| residual background / selection efficiency      | 10 - 20                   |
| luminosity spectrum uncertainty                 | < 10                      |
| beam energy uncertainty                         | < 17                      |
| combined theory & parametric                    | 30-50                     |
| combined experimental & backgrounds             | 25 - 50                   |
| total (stat. $+$ syst.)                         | 40 - 75                   |

Default parameters:  

$$M^{1S} = 172 \text{ GeV}, \Gamma_t = 1.54 \text{ GeV},$$
  
 $\alpha_s(M_Z) = 0.118$   
 $M^{1S} = M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL})$ 

#### from 1702.05333

Important effects: beamstrahlung; ISR; LO EW terms Exclusive observables accessible

Theory uncertainties from scale variations: hard and soft scale  $\mu_h = h \cdot m_t \qquad \mu_s = f \cdot m_t v$ 





 $(1 - \Delta_{(Coul.)})$ 



**Top Precision Physics** 



Chokoufé/Hoang/Kilian/JRR/ StahlhofenTeubner/Weiss, to appear very soon

$$f_s(v) = \begin{cases} 1 & v < v_1 \\ 1 - 3\left(\frac{v - v_1}{v_2 - v_1}\right)^2 - 2\left(\frac{v - v_1}{v_2 - v_1}\right)^3 & v_1 \le v \le v_2 \\ 0 & v > v_2 \end{cases}$$



**Top Precision Physics** 

LCWS 2017, Strasbourg, 24.10.17



17/21



Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon



**Top Precision Physics** 



17/21



Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon



**Top Precision Physics** 







Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon



**Top Precision Physics** 

## Matching threshold NLL to continuum NLO



#### Total uncertainty: matching and *h-f* variation band

Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon



**Top Precision Physics** 

LCWS 2017, Strasbourg, 24.10.17



### Threshold matching with QED ISR



Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon



**Top Precision Physics** 

### Matched threshold differential distributions







**Top Precision Physics** 



- Top physics is cornerstone of future lepton collider program
- Leptonic top and associated Higgs fully off-shell at NLO QCD
- Inclusive processes: off-shell background grows with energy
- Top Yukawa extraction @NLO QCD: stronger interference effects
- Complete NRQCD threshold / NLO continuum matching
- Offers framework for new differential top mass measurements
- Next projects: EW corrections, semi-leptonic/hadronic top decays, ttH threshold matching, top threshold matched with EW corrections
- WHIZARD 2.6 framework for automated (QCD) NLO
- Solution NLO QCD (almost) done → WHIZARD 3.0 [EW in validation]
- Automated POWHEG matching



**Top Precision Physics** 



### **Outlook to PDG 203X:**



**Top Precision Physics** 



### **Outlook to PDG 203X:**





**Top Precision Physics** 



# BACKUP



**Top Precision Physics** 



### **Examples and Validation**

List of validated NLO QCD processes

• Simplest hadron collider processes validated:

 $pp \rightarrow (Z \rightarrow II) + X, \ pp \rightarrow (W \rightarrow I_V) + X, \ pp \rightarrow ZZ + X$ 

- $e^+e^- \rightarrow jj$
- $e^+e^- \rightarrow jjj$
- $e^+e^- \rightarrow \ell^+\ell^- jj$
- $e^+e^- \rightarrow \ell^+ \nu_\ell j j$
- $e^+e^- \rightarrow t\bar{t}$
- $e^+e^- \rightarrow t\bar{t}t\bar{t}$
- $e^+e^- \rightarrow t\bar{t}W^+jj$
- $e^+e^- \rightarrow tW^-b$
- $e^+e^- \rightarrow W^+W^-b\bar{b}, \quad \ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}$
- $e^+e^- \rightarrow b\bar{b}\ell^+\ell^-$
- $e^+e^- \rightarrow t\bar{t}H$
- $e^+e^- \to W^+W^-b\bar{b}H$ ,  $\ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}H$
- $pp \rightarrow \ell^+ \ell^-$
- $pp \rightarrow \ell \nu$
- $pp \rightarrow ZZ$





- QCD NLO infrastructure in pp close to complete
- After complete NLO QCD validation: WHIZARD v3.0.0
- Status of EW corrections: all parts technically completed, validation phase started [Rothe et al.]



**Top Precision Physics** 

### Validation of NLO QCD for Lepton Collisions

|                                 |                             | MG5_AMC                      |         |                             | WHIZARD                      |        |
|---------------------------------|-----------------------------|------------------------------|---------|-----------------------------|------------------------------|--------|
| Final state                     | $\sigma^{\rm LO}[{\rm fb}]$ | $\sigma^{\rm NLO}[{\rm fb}]$ | K       | $\sigma^{\rm LO}[{\rm fb}]$ | $\sigma^{\rm NLO}[{\rm fb}]$ | K      |
| jj                              | 622.3(5)                    | 639(1)                       | 1.02684 | 622.73(4)                   | 639.7(2)                     | 1.0272 |
| $b\bar{b}$                      | 92.37(6)                    | 94.89(1)                     | 1.02728 | 92.32(1)                    | 94.78(7)                     | 1.0266 |
| $t\bar{t}$                      | 166.2(2)                    | 174.5(6)                     | 1.04994 | 166.4(1)                    | 175.1(1)                     | 1.0522 |
| $t\bar{t}t\bar{t}$              | $6.45(1) \cdot 10^{-4}$     | $12.21(5) \cdot 10^{-4}$     | 1.89302 | $6.463(2) \cdot 10^{-4}$    | $12.16(2) \cdot 10^{-4}$     | 1.8814 |
| $b \overline{b} b \overline{b}$ | $1.644(3) \cdot 10^{-1}$    | $3.60(1)\cdot 10^{-1}$       | 2.1897  | $1.64(2) \cdot 10^{-1}$     | $3.67(4) \cdot 10^{-1}$      | 2.2378 |
| $t \bar{t} b \bar{b}$           | $1.819(3) \cdot 10^{-1}$    | $2.92(1) \cdot 10^{-1}$      | 1.6052  | $1.86(1) \cdot 10^{-1}$     | $2.93(2)\cdot 10^{-1}$       | 1.5752 |
| $t\bar{t}j$                     | 48.13(5)                    | 53.43(1)                     | 1.11012 | 48.3(2)                     | 53.66(9)                     | 1.1109 |
| $t\bar{t}H$                     | 2.018(3)                    | 1.911(6)                     | 0.947   | 2.022(3)                    | 1.913(3)                     | 0.9461 |
| $tar{t}\gamma$                  | 12.7(2)                     | 13.3(4)                      | 1.04726 | 12.71(4)                    | 13.78(4)                     | 1.0841 |
| $t\bar{t}Z$                     | 4.642(6)                    | 4.95(1)                      | 1.06636 | 4.64(1)                     | 4.94(1)                      | 1.0646 |
| $t\bar{t}HZ$                    | $3.600(6) \cdot 10^{-2}$    | $3.58(1)\cdot 10^{-2}$       | 0.99445 | $3.596(1)\cdot 10^{-2}$     | $3.581(2) \cdot 10^{-2}$     | 0.9958 |
| $t ar{t} \gamma Z$              | 0.2212(3)                   | 0.2364(6)                    | 1.06873 | 0.220(1)                    | 0.240(2)                     | 1.0909 |
| $t \bar{t} \gamma H$            | $9.75(1) \cdot 10^{-2}$     | $9.42(3) \cdot 10^{-2}$      | 0.96614 | $9.748(6) \cdot 10^{-2}$    | $9.58(7) \cdot 10^{-2}$      | 0.9827 |
| $tar{t}\gamma\gamma$            | 0.383(5)                    | 0.416(2)                     | 1.08618 | 0.382(3)                    | 0.420(3)                     | 1.0995 |
| $t\bar{t}ZZ$                    | $3.788(4) \cdot 10^{-2}$    | $4.00(1)\cdot 10^{-2}$       | 1.05597 | $3.756(4) \cdot 10^{-2}$    | $4.005(2) \cdot 10^{-2}$     | 1.0663 |
| $t\bar{t}HH$                    | $1.358(1)\cdot 10^{-2}$     | $1.206(3) \cdot 10^{-2}$     | 0.888   | $1.367(1) \cdot 10^{-2}$    | $1.218(1) \cdot 10^{-2}$     | 0.8909 |
| $t\bar{t}W^+W^-$                | 0.1372(3)                   | 0.1540(6)                    | 1.1225  | 0.1370(4)                   | 0.1538(4)                    | 1.1225 |
| $t\bar{t}W^{\pm}jj$             | $2.400(4) \cdot 10^{-4}$    | $3.72(1) \cdot 10^{-4}$      | 1.54999 | $2.41(1) \cdot 10^{-4}$     | $3.74(2) \cdot 10^{-4}$      | 1.5518 |
|                                 |                             |                              |         |                             |                              |        |
| jjj                             | 340.1(2)                    | 316(2)                       | 0.92914 | 342.4(5)                    | 319(1)                       | 0.9316 |
| jjjj                            | 104.7(1)                    | 109.0(6)                     | 1.04106 | 105.1(4)                    | 118(1)                       | 1.1227 |
| $t ar{t} t ar{t} j$             | $2.719(5) \cdot 10^{-5}$    | $5.34(3) \cdot 10^{-5}$      | 1.96394 | $2.722(1) \cdot 10^{-5}$    | $4.471(5) \cdot 10^{-5}$     | 1.6425 |
| $t\bar{t}Hj$                    | 0.2533(3)                   | 0.2658(9)                    | 1.04935 | 0.254(1)                    | 0.307(1)                     | 1.2087 |
| $tar{t}\gamma j$                | 2.355(2)                    | 2.62(1)                      | 1.11253 | 2.47(1)                     | 3.14(2)                      | 1.2712 |
| $t\bar{t}Zj$                    | 0.6059(6)                   | 0.694(3)                     | 1.14548 | 0.610(4)                    | 0.666(5)                     | 1.0918 |



**Top Precision Physics**