# **Hunting for Heavy Neutral Leptons** at Future Lepton Colliders

### SECOND · ECFA · WORKSHOP on e<sup>+</sup>e<sup>-</sup> Higgs / Electroweak / Top Factories

11-13 October 2023 Paestum / Salerno / Italy



- Physics potential of future Higgs and electroweak/top factories
- Required precision (experimental and theoretical)
- EFT (global) interpretation of Higgs factory measurements
- Reconstruction and simulation
- Software
- Detector R&D

K. Mekała/JRR/A.F. Żarnecki, arXiv: 2202.06793 [JHEP] + 2301.02602 [PLB] + 2310.xxxxx







Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

**CLUSTER OF EXCELLENCE QUANTUM UNIVERSE** 

UH



## **Search for Heavy Neutral Leptons (HNL)**





J. R. Reuter, DESY

2nd ECFA HTE Factory Workshop, Paestum, 11.10.2023





# The neutrino mystery

- Neutrinos masses is already physics beyond the standard model G
- Simple extension of SM: just add  $\nu_R$  and Yukawa couplin
- $-M_{\nu} \overline{\nu^{C}} \nu$ Singlet allows for a Majorana mass term:





ngs 
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)





# The neutrino mystery

- G
- Singlet allows for a Majorana mass term:





ngs 
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$



# **Simplified neutrino model**

Simplified model with right-handed ( $\nu$ SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with  $\nu$ SM neutrinos Lagrangian:  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$  $\mathcal{L}_{N} = \xi_{\nu} \cdot \left( \bar{N}_{k} i \partial N_{k} - m_{N_{k}} \bar{N}_{k} N_{k} \right) \quad \text{for } k = 1, 2, 3 \quad \xi_{\nu} = \frac{1}{2}, 1 \quad [\text{Majorana/Dirac}]$  $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^{\tau} \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_{\mathbf{N}} W$ k=1 l=e



J. R. Reuter, DESY







# **Simplified neutrino model**

Simplified model with right-handed ( $\nu$ SM) and sterile neutrinos Vast (incomplete) literature: Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, After EWSB heavy (sterile) neutrinos do mix with  $\nu$ SM neutrinos 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Lagrangian:  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ Pascoli, Ruiz, Weiland, 1812.08750  $\mathcal{L}_{N} = \xi_{\nu} \cdot \left( \bar{N}_{k} i \partial N_{k} - m_{N_{k}} \bar{N}_{k} N_{k} \right) \quad \text{for } k = 1, 2, 3 \quad \xi_{\nu} = \frac{1}{2}, 1 \quad [\text{Majorana/Dirac}]$  $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^{\tau} \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_{N} W$ k=1 l=e



J. R. Reuter, DESY













# **Simplified neutrino model**

Simplified model with right-handed ( $\nu$ SM) and sterile neutrinos Vast (incomplete) literature: Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, After EWSB heavy (sterile) neutrinos do mix with  $\nu$ SM neutrinos 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Lagrangian:  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$ Pascoli, Ruiz, Weiland, 1812.08750  $\mathcal{L}_N = \xi_{\nu} \cdot \left( \bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3 \quad \xi_{\nu} = \frac{1}{2}, 1 \quad [\text{Majorana/Dirac}]$ At lepton colliders, single production possible  $\checkmark$  Associated production:  $\ell^+\ell^- \to \nu N$  $\mathbf{V} ector boson fusion: \quad \ell^+ \ell^- \to \bar{\nu} \nu N + \ell^+ \ell^- N$  $\mathcal{L}_{ZN\nu} = -\frac{g}{2\cos\theta_W} Z_\mu \sum_{k=1}^3 \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \qquad \sum_{k=1}^\nu Z_k \nabla_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.}$  $\mathbf{M}$  Three neutrino masses:  $M_{N_1}, M_{N_2}, M_{N_3}$ Nine real mixing parameters:  $V_{\ell k}$ ,  $\ell = e, \mu \tau, k = N_1, N_2, N_3$ **M** Three neutrino widths:  $\Gamma_{N_1}, \Gamma_{N_2}, \Gamma_{N_3}$  $\mathcal{L}_{HN\nu} = -\frac{gm_N}{2M_{\text{even}}}h\sum_{l=1}^{3}\sum_{l=1}^{\tau}\bar{N}_k V_{lk}^* P_L \nu_l + \text{ h.c.}$ Studied parameter space: neutrino decays prompt  $2M_W$ No long-lived particles or displaced vertices N



J. R. Reuter, DESY









- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN









- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings:  $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 = |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$ 

- Reference signal sample with  $|V_{\ell N_1}| = 0.0003$ ,  $N_2, N_3$  couplings set to zero
- Neutrinos masses:  $100 \,{\rm GeV} \le M_{M_1} \le 10.5 \,{\rm TeV}$ ,  $M_{N_{2,3}} = 10^{10} \,{\rm GeV}$
- Neutrino widths:  $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$  prompt decays only, no LLP signature displaced vertices possible for  $M_N \lesssim 10 \, {\rm GeV}$



J. R. Reuter, DESY



K. Mękała/JRR/A.F. Żarnecki, 2202.06703; 2301.02602



K. Korshynska/M. Löschner/M. Marinichenko/ JRR/K. Mękała, Febr. 2023







- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings:  $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 = |V_{\tau N_1}|^2 \equiv |V_{\tau N_1}|^2$ 

- Reference signal sample with  $|V_{\ell N_1}| = 0.0003$ ,  $N_2, N_3$  couplings set to zero
- Neutrinos masses:  $100 \,\mathrm{GeV} \le M_{M_1} \le 10.5 \,\mathrm{TeV}$ ,  $M_{N_{2,3}} = 1$
- Neutrino widths:  $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$  prompt decays only, no LLP signature displaced vertices possible for  $M_N \lesssim 10 \, {\rm GeV}$



J. R. Reuter, DESY



$$V_{\ell N_1}|^2$$

$$0^{10}\,{
m GeV}$$





- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings:  $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 = |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$ 

- Reference signal sample with  $|V_{\ell N_1}| = 0.0003$ ,  $N_2, N_3$  couplings set to zero
- Neutrinos masses:  $100 \,\text{GeV} \le M_{M_1} \le 10.5 \,\text{TeV}$ ,  $M_{N_{2,3}} = 10^{10} \,\text{GeV}$
- Neutrino widths:  $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$  prompt decays only, no LLP signature displaced vertices possible for  $M_N \lesssim 10 \, {\rm GeV}$ 
  - Subscription: Without N propagators ("background")
  - Signal simulation:  $\ell \ell \to N \nu \to \ell j j \nu$  ("signal")
  - $S/B \sim 10^{-3}$  e.g. ILC500:  $jj\ell\nu$  bkgd.  $\sim 10$  pb, signal  $\sim 10$  fb
  - Preselection on signal topology: exactly 1 lepton and 2 jets
  - BDT training; CLs method to get final results











# Analysis at ILC / CLIC

Bkgd processes with at least one lepton

- $\bullet ~ e^+e^- \to qq\ell\nu,$
- $\bullet ~ e^+e^- \to qq\ell\ell,$
- $e^+e^- \rightarrow \ell\ell\ell\ell$ ,
- $\bullet ~ e^+e^- \to qq\ell\nu\ell\nu,$
- $\bullet ~ e^+e^- \to qqqq\ell\nu,$
- $\bullet ~ e^+e^- \to qqqq\ell\ell.$

Initial-state  $e^{\pm} \rightarrow \gamma e^{\pm}$ splitting (EPA)

- $e^+\gamma/\gamma e^- \to qq\ell$  (denoted as  $\gamma e^\pm \to qq\ell$ ),
- $\gamma\gamma \rightarrow qq\ell\nu$ ,
- $\gamma\gamma \to qq\ell\ell$ , Caveat or

Bkgd. from beamstrahlung

- ILC500:  $\gamma^B (e^{\pm}/\gamma^E) 57\%, \, \gamma^B \gamma^B 44\%;$
- ILC1000:  $\gamma^B (e^{\pm}/\gamma^E) 65\%, \, \gamma^B \gamma^B 54\%;$
- CLIC3000:  $\gamma^B (e^{\pm}/\gamma^E) 79\%, \, \gamma^B \gamma^B 69\%.$



J. R. Reuter, DESY







# **Analysis at ILC / CLIC**

Bkgd processes with at least one lepton

- $e^+e^- \rightarrow qq\ell\nu$ ,
- $e^+e^- \rightarrow qq\ell\ell$ ,
- $e^+e^- \rightarrow \ell\ell\ell\ell$ ,
- $e^+e^- \rightarrow qq\ell\nu\ell\nu$ ,
- $e^+e^- \rightarrow qqqq\ell\nu$ ,
- $e^+e^- \rightarrow qqqq\ell\ell$ .

Initial-state  $e^{\pm} \rightarrow \gamma e^{\pm}$ splitting (EPA)

- $e^+\gamma/\gamma e^- \to qq\ell$  (denoted as  $\gamma e^\pm \to qq\ell$ ),
- $\gamma \gamma \rightarrow q q \ell \nu$ ,
- $\gamma \gamma \rightarrow q q \ell \ell$ ,



Bkgd. from beamstrahlung

- ILC500:  $\gamma^B (e^{\pm}/\gamma^E) 57\%, \, \gamma^B \gamma^B 44\%;$
- ILC1000:  $\gamma^B (e^{\pm}/\gamma^E) 65\%, \ \gamma^B \gamma^B 54\%;$
- CLIC3000:  $\gamma^B (e^{\pm}/\gamma^E) 79\%, \gamma^B \gamma^B 69\%.$

#### 8 variables considered in BDT

- $m_{qq\ell}$  invariant mass of the dijet-lepton system
- $\alpha$  angle between the dijet-system and the lepton,
- $\alpha_{qq}$  angle between the two jets,
- $E_{\ell}$  lepton energy,
- $E_{qq\ell}$  energy of the dijet-lepton system,
- $p_{\ell}^{T}$  lepton transverse momentum,
- $p_{qq}^T$  dijet transverse momentum,
- $p_{qq\ell}^T$  transverse momentum of the dijet-lepton system.

#### J. R. Reuter, DESY









## **BDT CLs cross section limits**

BDT response used to build model in RooStats to use CLs method to set limits on cross sections: Combination of  $e^{\pm}$  and  $\mu^{\pm}$  channels





J. R. Reuter, DESY



## **BDT CLs cross section limits**

BDT response used to build model in RooStats to use CLs method to set limits on cross sections: Combination of  $e^{\pm}$  and  $\mu^{\pm}$  channels





J. R. Reuter, DESY

2nd ECFA HTE Factory Workshop, Paestum, 11.10.2023



- Exclusion limit very similar for Dirac & Majorana neutrino (except: off-shell production)
- Possible discriminant: lepton emission angle in N rest frame















J. R. Reuter, DESY





Possible discriminant: lepton emission angle in N rest frame





J. R. Reuter, DESY





Possible discriminant: lepton emission angle in N rest frame



More sophisticated variable: lepton and dijet angles



J. R. Reuter, DESY





### **BDT framework for model discrimination**

- 2 independent BDT trainins: Dirac vs. ( $\alpha_{BDT} \cdot Majorana + Bkgd.$ ) & Majorana vs. ( $\alpha_{BDT} \cdot Dirac + Bkgd.$ )
- 2D histograms:  $BDT_D + BDT_M$ ,  $BDT_D - BDT_M$

$$\Im \ \chi^{2} \text{-like statistics:} \ T' = \sum_{bins} \frac{[(B+D) - (B+M)]^{2}}{\frac{1}{2}[(B+D) + (B+M)]} = \sum_{bins} \frac{(D-M)^{2}}{B + \frac{D+M}{2}} \qquad T' = T + \text{DOF} \qquad T' \longrightarrow T'(\alpha_{lim}) = \sum_{bins} \frac{\alpha_{lim}^{2}(D-M)^{2}}{B + \alpha_{lim} \cdot \frac{D+M}{2}}$$

Limit setting procedure: search for  $\alpha_{lim}$  such that:  $T(\alpha_{lim}) \stackrel{!}{=} \chi^2_{crit}(\text{DOF})$ 

- Statistical test:  $T \ge \chi^2_{crit}(DOF) \implies$  signal hypotheses distinguishable
- Technical procedure:
- 1. Train BDT for different values  $\alpha_{BDT}$
- 2. For each  $\alpha_{BDT}$ : calculate 95% CL limit  $\alpha_{lim}$  such that  $T(\alpha_{lim}) = \chi^2_{crit}(\text{DOF})$
- 3. Select the best limit:  $\alpha_{min} = \min \{\alpha_{lim}\}$
- 4. Set final limit as  $V_{\ell N}^{\lim} = \alpha_{\min} \cdot V_{\ell N}^{ref}$





J. R. Reuter, DESY









## **Preliminary results**





J. R. Reuter, DESY



## **Preliminary results**





J. R. Reuter, DESY

Almost directly with a discovery a Majorana vs. Dirac discrimnation possible!







## **Conclusions & Outlook**

- Solution: Search and S
- Lepton collider with weak production excellent tool for discovery and discrimination
- Studies performed in simplified model resembling type-I seesaw model
- BDT analysis based on WHIZARD+Pythia+Delphes simulation chain: CLs limits
- Discovery reach for ILC-250/500/1000, CLIC-3000 [and MuC-3/10]
- Hadron collider reaches higher masses, lepton collider (much) lower couplings [MuC supersedes FCC-hh]
- Combination of charge & angular information allows access on Dirac vs. Majorana nature
- Discrimination almost always possible after a discovery
- Work in progress: complimentarity of electron- and muon measurements on flavor structure of mixings



J. R. Reuter, DESY

2nd ECFA HTE Factory Workshop, Paestum, 11.10.2023





J. R. Reuter, DESY

2nd ECFA HTE Factory Workshop, Paestum, 11.10.2023

## Analysis at MuC

#### Same analysis at muon collider much easier:

- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!



K. Mękała/JRR/A.F. Żarnecki, 2301.02602



## Analysis at MuC

### Same analysis at muon collider much easier:

- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!



K. Mękała/JRR/A.F. Żarnecki, 2301.02602



2nd ECFA HTE Factory Workshop, Paestum, 11.10.2023



## Analysis at MuC

#### Same analysis at muon collider much easier:

- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!



K. Mękała/JRR/A.F. Żarnecki, 2301.02602