Theory Precision Calculations for future e⁺e⁻colliders: status and prospects

versität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Hamburg Factory [Fabrik] — Higgs Factory

J. R. Reuter, DESY

1st ECFA Higgs Factory Workshop, DESY, 5.10.2022

Disclaimer

Cross section [fb] 10^{8} ZH $- t\bar{t}$ 10^{7} $t\overline{t}H$ _ _ _ $---- W^+W^ 10^{6}$ ZZ. jj 10^{5} $c\overline{c},b\overline{b}$ 10^{4} 10^{3} 10^{2} 10^{1} 10^{0} 91350500250

J. R. Reuter, DESY

©(20 min) talk: just a faint glimpse

Disclaimer

Cross section [fb] 10^{8} ZH $t\overline{t}$ 10^{7} $t\overline{t}H$ _ W^+W^- ---- 10^{6} ZZ. jj 10^{5} $c\overline{c},b\overline{b}$ 10^{4} 10^{3} 10^{2} 10^{1} 10^{0} 91350500250

J. R. Reuter, DESY

©(20 min) talk: just a faint glimpse

Theory precision landscape

- LHC HXSWG / LHC EWWG / LHC EFTWG:
- LCGenG: focus mostly on complete SM samples for reconstruction
- FCC-ee theory effort: CERN workshops '18-'22: 1906.05379
- US Snowmass CSS 2021 Reports: 2203.11110, 2209.08078, 2209.14872 etc.

J. R. Reuter, DESY

1101.0593, 1201.3084, 1307.1347, 1610.07922

• ECFA HTEF WS:

Simulation/MCs 11/21 https://indico.cern.ch/event/1078675/ Precision Calc. 05/22 https://indico.cern.ch/event/1140580/

• Other talks at this workshop: A. Freitas (overview precision), S. Heinemeyer (direct vs. indirect), A. Siodmok+A. Price (generators+QED), F. Krauss (hadronization), M. Steinhauser (multi-loop), D. Reichelt+S. Plätzer (QCD: shower+jets etc.), T. Ohl (luminosity spectra)

missing higher-order calculations of observables

imperfect knowledge or theoretic data extraction of SM input

1st ECFA Higgs Factory Workshop, DESY, 5.10.2022

Theoretical Uncertainties

- Strip loop amps. of group theory / mass ratios / multiplicities / couplings. $\rightarrow \mathcal{O}(1)$
- Extrapolate to higher orders from geometric series (beware of renormalons)
- Scale dependence for missing higher order corrections (QCD, $\overline{\mathrm{MS}}$, less useful for EW)
- Compare differences in renormalisation schemes (e.g. On-Shell vs. MS)

Parametric uncertainties

- M_H: Higgsstrahlung at threshold, 10 MeV uncertainty, leptonic recoil, minor th. uncertainties
- M_Z : Z lineshape, ~0.1 MeV exp., QED ISR+ISR/FSR, EW box diagrams, Jadach/Skrzypek/Pietrzik, 1999
- $\alpha_s(M_Z)$: global fit of overconstrained EW pseudo-observables at Z pole, pert. uncertainties
- $m_t^{MS}(m_t)$: N³LO QCD/NNLO EW, resummed NNLL, 4-loop mass translation., off-shell corr. Beneke et al., 1506.06864/1711.10429, Hoang et al. 1309.6323, Marquard et al. 1502.01030, Chokoufé et al. 1609.03390, Bach et al. 1712.02220
- $m_{c/s}^{MS}(m_{c/s})$: lattice QCD, sum rules, NNLO jet ratios.
- $\Delta \alpha$: extracted from e⁺e⁻ \rightarrow hadrons, τ decays (BESIII, VEPP-2000, Belle II), radiative return • Proposal for direct measurement below/above Z pole: subtract EW from QED corrections available @ I-loop; needed fermionic 2-loop corr., $\mathcal{O}(\alpha^2, \alpha^2 \alpha_s)$ corr. $\Rightarrow 10^{-4}$ 2-/3-loop box diagrams: full $\mathcal{O}(\alpha \alpha_s^2)$, double-fermionic $\mathcal{O}(\alpha^3)$ corr. $\Rightarrow 10^{-5}$

J. R. Reuter, DESY

1404.0319, 1401.7035, 0907.2110, 1411.3132, 1504.07638

The "Inclusive" Frontier

 $\delta(\Delta \alpha) = 5 \times 10^{-5} \ (3 \times 10^{-5}).$

Parametric uncertainties

J. R. Reuter, DESY

 $\delta m_t = 50 \text{ MeV}, \quad \delta m_b = 13 \text{ MeV}, \quad \delta M_Z = 0.1 \text{ MeV}, \quad \delta \alpha_s = 0.0002 \ (0.0001),$

Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '98 Freitas '13,14

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05; Chetyrkin et al. '06 Boughezal, Czakon '06

A. Freitas, 1604.00406

← Talk by A. Freitas

← Talk by M. Steinhauser

Higgs Precision Calculations

Higgs: theory situation

Parametric Higgs decay uncertainties, Lepage/McKenzie/Peskin, 1404.0319

 \bigcirc Full NLO EW exists for $ee \rightarrow ZH$, Denner/Dittmaier/Roth/Weber, hep-ph/0311089 Belanger/Boudjema/Fujimoto/Ishikawa/Kaneki/Kato/Shimizu, hep-ph/0212261 $ee \rightarrow vvH$

J. R. Reuter, DESY

Partial width	QCD	electroweak	total
$H \to b\bar{b}/c\bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%
$H \to \tau^+ \tau^- / \mu^+ \mu^-$	_	< 0.3%	< 0.3%
$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$
$H \to \gamma \gamma$	< 0.1%	< 1%	$<\!1\%$
$H \to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	$\sim 5\%$
$H \to WW/ZZ \to 4f$	< 0.5%	< 0.3%	$\sim 0.5\%$

Intrinsic Higgs decay uncertainties, LHCHXSWG

decay	para. m_q	para. α_s	para. M_H
$H \to b\bar{b}$	1.4%	0.4%	—
$H \to c \bar c$	4.0%	0.4%	_
$H \to \tau^+ \tau^-$	_	_	_
$H o \mu^+ \mu^-$		_	—
$H \rightarrow gg$	< 0.2%	3.7%	_
$H\to\gamma\gamma$	< 0.2%	—	—
$H \to Z\gamma$	_	—	2.1%
$H \to WW$	_	—	2.6%
$H \to ZZ$		—	3.0%

5-10% NLO corrections

Higgs Precision Calculations

Parametric Higgs decay uncertainties, Lepage/McKenzie/Peskin, 1404.0319

- \bigcirc Full NLO EW exists for ee \rightarrow ZH, Denner/Dittmaier/Roth/Weber, hep-ph/0311089 Belanger/Boudjema/Fujimoto/Ishikawa/Kaneki/Kato/Shimizu, hep-ph/0212261 $ee \rightarrow vvH$
- \bigcirc Full 2-loop for ee \rightarrow ZH available Chen/Guan/He/Li/Liu/Ma, 2209.14953
- \bigcirc Missing NNLO EW corrections $[2 \rightarrow 2, 2 \rightarrow 3]$: intrinsic uncertainty 1%
- Compared to experimental uncertainty of 0.5-1.0%

C	r	У	

partial results

Partial width	QCD	electroweak	total
$H \to b\bar{b}/c\bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%
$H \to \tau^+ \tau^- / \mu^+ \mu^-$	_	< 0.3%	< 0.3%
$H \to gg$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$
$H \to \gamma \gamma$	< 0.1%	< 1%	$<\!\!1\%$
$H \to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	$\sim 5\%$
$H \to WW/ZZ \to 4 {\rm f}$	< 0.5%	< 0.3%	$\sim 0.5\%$

Intrinsic Higgs decay uncertainties, LHCHXSWG

decay	para. m_q	para. α_s	para. M_H
$H \to b\bar{b}$	1.4%	0.4%	_
$H \to c \bar c$	4.0%	0.4%	—
$H\to\tau^+\tau^-$	_	_	—
$H \to \mu^+ \mu^-$	_	_	_
$H \rightarrow gg$	< 0.2%	3.7%	—
$H\to\gamma\gamma$	< 0.2%	_	_
$H \to Z\gamma$		_	2.1%
$H \to WW$		_	2.6%
$H \to ZZ$		—	3.0%

5-10% NLO corrections

NNLO EW hard task for VBF !

Higgs Precision Calculations

decay	intrinsic	para. m_q	para. α_s	para. M_H	FCC-ee prec. on g_{HXX}^2
$H \to b\bar{b}$	$\sim 0.2\%$	0.6%	< 0.1%	_	$\sim 0.8\%$
$H \rightarrow c \bar{c}$	$\sim 0.2\%$	$\sim 1\%$	< 0.1%	—	$\sim 1.4\%$
$H\to \tau^+\tau^-$	< 0.1%	_		_	$\sim 1.1\%$
$H \to \mu^+ \mu^-$	< 0.1%	_	—	—	$\sim 12\%$
$H \rightarrow gg$	$\sim 1\%$		0.5%~(0.3%)	—	$\sim 1.6\%$
$H\to\gamma\gamma$	< 1%	_		_	$\sim 3.0\%$
$H \to Z \gamma$	$\sim 1\%$	_	—	$\sim 0.1\%$	
$H \to WW$	$\lesssim 0.3\%$	_	_	$\sim 0.1\%$	$\sim 0.4\%$
$H \to ZZ$	$\lesssim 0.3\%^{\dagger}$	_	_	$\sim 0.1\%$	$\sim 0.3\%$
$\Gamma_{ m tot}$	$\sim 0.3\%$	$\sim 0.4\%$	< 0.1%	< 0.1%	$\sim 1\%$
[†] From e^+e^-	$\rightarrow HZ \text{ pr}$	oduction			

Needed theory effort

ILC/FCC-ee projections

J. R. Reuter, DESY

• $H \rightarrow qq \sim N^4 LO QCD, \leq \mathcal{O}(\alpha^2, \alpha \alpha_s)$ [N⁴LO QCD: massless 4-loop] • $H \rightarrow gg \sim N^3 LO QCD$ scale, $\leq O(\alpha^2)$ X • $H \rightarrow \gamma \gamma \leq \mathcal{O}(\alpha^2)$ light-fermion dominate • $H \rightarrow Z\gamma \leq \mathcal{O}(\alpha)$ NLO EW smaller than exp. • $H \rightarrow WW, ZZ$ NLO QCD corr., [non-factorizable NNLO QCD]

Electroweak Precision Physics

 $R_l [10^{-3}]$

$$\begin{split} \sigma_{\rm had}^{0} &= \sum_{q} \sigma_{q}(M_{Z}^{2}), \\ \Gamma_{Z} &= \sum_{f} \Gamma[Z \to f\bar{f}], \qquad (\text{from a fit to } \sigma_{f}(s) \text{ at various values of} \\ R_{\ell} &= \left[\sum_{q} \sigma_{q}(M_{Z}^{2})\right] / \sigma_{\ell}(M_{Z}^{2}), \qquad (\ell = e, \mu, \tau) \\ R_{q} &= \sigma_{q}(M_{Z}^{2}) / \left[\sum_{q} \sigma_{q}(M_{Z}^{2})\right], \qquad (q = b, c) \\ A_{\rm FB}^{f} &= \frac{\sigma_{f}(\theta < \frac{\pi}{2}) - \sigma_{f}(\theta > \frac{\pi}{2})}{\sigma_{f}(\theta < \frac{\pi}{2}) + \sigma_{f}(\theta > \frac{\pi}{2})} \equiv \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f}, \\ A_{\rm LR}^{f} &= \frac{\sigma_{f}(P_{e} < 0) - \sigma_{f}(P_{e} > 0)}{\sigma_{f}(P_{e} < 0) + \sigma_{f}(P_{e} > 0)} \equiv \mathcal{A}_{e} |P_{e}|. \end{split}$$

$$\mathcal{A}_f = \frac{1 - 4|Q_f| \sin^2 \theta_{\text{eff}}^f}{1 - 4|Q_f| \sin^2 \theta_{\text{eff}}^f + 8(Q_f \sin^2 \theta_{\text{eff}}^f)^2}.$$

Theoretical uncertainties for WW threshold don't match exp. precision: 3 GeV uncertainty needed: full 2-loop corr. $e^+e^- \rightarrow W^+W^-$ and $W \rightarrow ff$, ISR & matching (later); 3-loop Coulomb-enhanced

New efforts in $e^+e^- \rightarrow ff$ (2-loop, logarithmic corr.)

J. R. Reuter, DESY

total =	total = $\sqrt{\text{experimental}^2 + \text{para}}$ $\mathcal{O}(\alpha \alpha_s^2) \text{ complet}$ $\mathcal{O}(\alpha^2 \alpha_s) \text{ fermion}$ $\mathcal{O}(\alpha^3) \text{ double-fermion}$		parametric ² + intrinsic plete nionic e-fermionic
	\mathcal{O}	$(\alpha_t \alpha_s)$ 4-10	oop
Quantity	FCC-ee	Current intrinsic	error Projected intrinsic error
$M_W [{\rm MeV}]$	0.5–1‡	4 $(\alpha^3, \alpha^2 \alpha_s)$	1
$\sin^2\theta_{\rm eff}^\ell \ [10^{-5}]$	0.6	4.5 $(\alpha^3, \alpha^2 \alpha_s)$	1.5
$\Gamma_Z \; [\text{MeV}]$	0.1	0.4 $(\alpha^3, \alpha^2 \alpha_s, \alpha \alpha)$	$(\alpha_s^2) = 0.15$
$R_b \ [10^{-5}]$	6	11 $(\alpha^3, \alpha^2 \alpha_s)$	5

Beneke/Falgari/Schwinn/Signer/Zanderighi, 0707.0773; Actis/Beneke/Falgari/Schwinn, 0807.0102; C. Schwinn, in 1905.05078

6

 $(\alpha^3, \alpha^2 \alpha_s)$

← Talk by A. Freitas

1.5

Blümlein/de Freitas/Raab/Schönwald, 1901.08018, 1910.05759, 2003.14283, 2004.04287

The Top Threshold

J. R. Reuter, DESY

NRQCD NNNLO fixed order + α_s logarithms

Kiyo et al., 2005; Beneke et al., 2008-2015

N3LO NRQCD & NNLL resummation Translation IR and MSbar mass under control Event selection needs differential predictions

← Talk by F. Simon + WG1 HTE

The Top Threshold

J. R. Reuter, DESY

NRQCD NNNLO fixed order + α_s logarithms

Kiyo et al., 2005; Beneke et al., 2008-2015

N3LO NRQCD & NNLL resummation Translation IR and MSbar mass under control Event selection needs differential predictions

← Talk by F. Simon + WG1 HTE

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

340

342

344

К

1st ECFA Higgs Factory Workshop, DESY, 5.10.2022

		Ч
100 A 100		
CONTRACTOR OF A		
		_
THE PARTY		
		-
		-
		-
		=
		-
		-
		1
		-
		_
		=
		_
ff		=
11		7
		_
		-
	-	1
symmetri	zed	-
,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
•		
·	200	
0	Lou	1.1.1
	200	Lini
	200	Lulu
	200	Lului
•	200	ليتبلبننا
		hulul
- -		
		L
I	 	
	 	ليتبلينانيا للب
	 	ليتبلينا للبب
	<u> </u>	hundrundud Hunu
	 	h
- 	 	
-	 	
- 	 	
- 	 	
- 	1	
- 	1 1	
-	1	hundrundud Hundred and and and and and and and and and an
- - -	 	
-	1	
- 	1 	h
-	1	hududud hud
	1 	h
		h

The "Exclusive" Frontier — fN(N)LO and MCs

- [Beam spectra and overlays: "non-perturbative"/classical part of event simulation]
- Hard matrix elements @ NN(N)LO QCD @ N(N)LO EW
- QED ISR: correct normalization [inclusive part], ISR photons [exclusive part]
- QED FSR: interference w/ ISR
- QED showers: proper matching of exclusive and resummed prescriptions
- High-energy colliders (CLIC, Plasma, Muon): EW PDFs, EW showers, event selection/definition!?

J. R. Reuter, DESY

Fixed-order N(N)LO, resummation and matching in MCs Determination of efficiencies and systematic uncertainties Need $e^+e^- \rightarrow 2f$, 3f, 4f, 5f, 6f, [7-10f] @ NLO QCD $\oplus EW$ (arbitrary cuts, fully differential)

J. R. Reuter, DESY

The "Exclusive" Frontier — fN(N)LO, Automation and MCs

		Caveats	and	fine-	prints
--	--	---------	-----	-------	--------

				$\mu^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$	$\sigma_{\rm LO}^{\rm incl}$ [fb]	$\sigma_{\rm NLO}^{\rm incl}$ [fb]
	$\sigma_{ m \scriptscriptstyle LO}[{ m fb}]$	$\sigma_{ m \scriptscriptstyle NLO}[{ m fb}]$	K	· · · · ·		
$e^+e^- \rightarrow ii$	622.737(8)	639.39(5)	1.027	W^+W^-	$4.6591(2) \cdot 10^2$	$4.847(7) \cdot 10^2$
$+$ $ \cdot$ \cdot \cdot		917.0(5)	0.000	ZZ	$2.5988(1)\cdot 10^{1}$	$2.656(2) \cdot 10^{1}$
$e \cdot e \rightarrow \jmath \jmath \jmath$	340.6(5)	317.8(5)	0.933	HZ	$1.3719(1)\cdot 10^{0}$	$1.3512(5) \cdot 10^{0}$
$e^+e^- ightarrow jjjjj$	105.0(3)	104.2(4)	0.992	HH	$1.60216(7) \cdot 10^{-7}$	$5.66(1)\cdot 10^{-7}$ *
$e^+e^- \rightarrow jjjjj$	22.33(5)	24.57(7)	1.100	W^+W^-Z	$3.330(2)\cdot 10^{1}$	$2.568(8) \cdot 10^{1}$
$+$ $ \cdot \cdot \cdot \cdot \cdot \cdot$	22.00(0)	21.01(1)	1.100	W^+W^-H	$1.1253(5)\cdot 10^{0}$	$0.895(2) \cdot 10^{0}$
$e^+e^- ightarrow \jmath \jmath \jmath \jmath \jmath \jmath \jmath \jmath$	3.583(17)	4.46(4)	1.245	ZZZ	$3.598(2)\cdot 10^{-1}$	$2.68(1) \cdot 10^{-1}$
$e^+e^- ightarrow t\bar{t}$	166.37(12)	174.55(20)	1.049	HZZ	$8.199(4) \cdot 10^{-2}$	$6.60(3) \cdot 10^{-2}$
$e^+e^- \rightarrow t\bar{t}j$	48.12(5)	53.41(7)	1.110	HHZ	$3.277(1) \cdot 10^{-2}$	$2.451(5) \cdot 10^{-2}$
$a^+a^- \rightarrow t\bar{t}ii$	8 509(10)	10596(91)	1 005	ННН	$2.9699(6) \cdot 10^{-8}$	$0.86(7) \cdot 10^{-8}$ *
$e e \rightarrow iijj$	0.092(19)	10.520(21)	1.220	$W^+W^-W^+W^-$	$1.484(1)\cdot 10^{0}$	$0.993(6) \cdot 10^{0}$
$e^+e^- \rightarrow ttjjj$	1.035(4)	1.405(5)	1.357	W^+W^-ZZ	$1.209(1)\cdot 10^{0}$	$0.699(7) \cdot 10^{0}$
		X /		W^+W^-HZ	$8.754(8)\cdot 10^{-2}$	$6.05(4) \cdot 10^{-2}$
from 2104	4.11141 & 2208.0	09438		W^+W^-HH	$1.058(1)\cdot 10^{-2}$	$0.655(5) \cdot 10^{-2}$
				ZZZZ	$3.114(2)\cdot 10^{-3}$	$1.799(7) \cdot 10^{-3}$
				HZZZ	$2.693(2)\cdot 10^{-3}$	$1.766(6) \cdot 10^{-3}$
Two moi	on hottlen			HHZZ	$9.828(7) \cdot 10^{-4}$	$6.24(2) \cdot 10^{-4}$
iwo maj	or Doulen	ecks		HHHZ	$1.568(1) \cdot 10^{-4}$	$1.165(4) \cdot 10^{-4}$

Virtual integrals with many mass scales / off-shell legs Abreu ea., Badger ea., Baglio ea., Brønnum-Hansen ea. CS, FKS, NS, Stripper, qT/sub-jettiness etc.

HHHZ

FKS soft/eikonal subtraction sufficient for low-energy machines

NNLO QED (massive, virtuals pending): McMule [Whizard]

for NNLO EW need for full-fledged soft+collinear NNLO subtraction

1st ECFA Higgs Factory Workshop, DESY, 5.10.2022

 $1.165(4) \cdot 10^{-4}$

 $1.568(1) \cdot 10^{-4}$

Virtual corrections — (N)NNLO master integrals

IN TIME YOU WILL GALL ME

Status: massless 5-point functions

massless 5-point functions, 1 off-shell line

4-point functions w/ massive propagator(s)

G. Heinrich, DESY Theory Workshop talk, 09/22

current frontiers: •NNLO

•N3LO

- Tensor & IntegrationByParts reduction to master integrals
- Important tools: Fire6, FireFly, LiteRed, FiniteFlow, Caravel
- \mathbf{V} Solution analytical via differential equations (DE)
- ☑ (Semi-)Numerical solution of DE: DiffExp, AMFlow
- \mathbf{V} Using $pp \rightarrow V jj$ towards ee $\rightarrow j j jj \mathbf{O}$ NNLO QCD
- **\checkmark** For NNLO EW: γ_5 scheme
- S. Abreu, C. Duhr, J. Gluza, J. Henn, V. Hirschi, D. Kossower, A. von Manteuffel, E. Panzer, T. Pezaro, V. Sotnikov, S. Weinzierl, M. Zoller amm.
- □ No analytic 2-loop with massive propagators yet: unknown generalized functions (beyond HPLs)
- Cross talk between numerical and analytical methods needed
- Ongoing work on automated 2-loop virtuals, Openloops2loop
- \Box Local unitarity/loop-tree duality: NLO/NNLO at integrand level (α LOOP)
- J. R. Reuter, DESY

efficiency	 2 loops, 4 legs, several mass scale
-	 2 loops, 5 legs
coloureu	 more than 2 loops

QED: ePDFs, Resumation ...

$$\mathbb{P}_{s} = \begin{pmatrix} P_{\Sigma\Sigma} \ P_{\Sigma\gamma} \\ P_{\gamma\Sigma} \ P_{\gamma\gamma} \end{pmatrix}, \qquad \Gamma_{i}^{[0]}(z,\mu_{0}^{2}) = \delta_{ie^{-}}\delta(1-z), \\ \Gamma_{e^{-}}^{[1]}(z,\mu_{0}^{2}) = \left[\frac{1+z^{2}}{1-z}\left(\log\frac{\mu_{0}^{2}}{m^{2}}-2\log(1-z)-1\right)\right]_{+} + K_{ee}(z), \qquad \frac{\partial \mathbb{E}_{N}(t)}{\partial t} = \frac{b_{0}\alpha^{2}(\mu)}{\beta(\alpha(\mu))}\sum_{k=0}^{\infty} \left(\frac{\alpha(\mu)}{2\pi}\right)^{k} \mathbb{P}_{N}^{[k]} \mathbb{E}_{N}(t) \\ = \left[\mathbb{P}_{N}^{[0]} + \frac{\alpha(\mu)}{2\pi}\left(\mathbb{P}_{N}^{[1]} - \frac{2\pi b_{1}}{b_{0}} \mathbb{P}_{N}^{[0]}\right)\right] \mathbb{E}_{N}(t) \\ \Gamma_{e^{+}}^{[1]}(z,\mu_{0}^{2}) = 0, \qquad \Gamma_{e^{\pm}e^{\pm}}^{[1]}(z,\mu_{0}^{2}) = 0,$$

QED ISR [+FSR], exclusive part

QED Full Factorization

Exclusive ("coherent") resummation Yennie/Frautschi/Suura, 1961 Explicitly matches ME photons Jadach/Ward/Yost, hep-ph/0103163+0104049+0211132+0602197, Piccinini ea. Coherent exponentiated EW corrections (CEEX) Jadach/Ward/Was, hep-ph/0006359; 1409.4173; Krauss/Price/Schönherr, 2203.10948

 \Box Fully factorized QED amplitudes for small/vanishing m_e

J. R. Reuter, DESY

QED ISR, inclusive part

Gribov/Lipatov, 1972; Kuraev/Fadin, 1985

Skrzypek/Jadach, 1992

 $d\sigma_{kl}(p_k, p_l) = \sum_{ij=e^+, e^-, \gamma} \int dz_+ dz_- \Gamma_{i/k}(z_+, \mu^2, m^2) \Gamma_{j/l}(z_-, \mu^2, m^2)$ $imes d\hat{\sigma}_{ij}(z_+p_k, z_-p_l, \mu^2) + \mathcal{O}\left(\left(rac{m^2}{s}
ight)^p
ight)$

important: fast interpolation grids

ePDFs for polarized leptons !?

Laenen et al. 2008.01736

Conclusions & Outlook

- Spectacular experimental Higgs + EW precision program in e⁺e⁻ collisions
- Most measurements allow per-cent down to (sub-) per-mil level precision
- Hard theoretical work needed to match this precision!
- Z / WW threshold: massive 2- and 3-loop 4-point functions needed, leading 4-loop
- Top threshold: N4LO NRQCD maybe not necessary, more differentially: NNLO+NNLL matched possible 6
- Massive 2- & 3-loop diagrams: PDE, sector decomposition, Mellin methods etc.
- Higgs precision program: production processes NNLO, decays @ 3-loop
- """ """ "Exclusive frontier" (I): $2 \rightarrow 4, 6, (8)$ NLO SM corrections, NLO e^{\pm} PDFs
- "Exclusive frontier" (II): Exclusive exponentiation, QED showers & matching
- Tools, tools, tools: community must value and support codes (loops, MC, fits)
- More precise precision goals: maybe Les Houches 2023 !?

J. R. Reuter, DESY

1st ECFA Higgs Factory Workshop, DESY, 5.10.2022

Precision is reconciling Loops and Legs

J. R. Reuter, DESY

Precision is reconciling Loops and Legs

J. R. Reuter, DESY

Getty Villa, Pacific Palisades, Etruscan, 525 BC

