

Status of WHIZARD $3.0.0\alpha$

WHIZARD 3.0.0a

CLICdp session, CLIC Week, CERN, 12.03.20

/ 19

WHIZARD: Introduction / Technical Facts

2 / 19

WHIZARD v2.8.3 (xx.03.2020)

http://whizard.hepforge.org

<whizard@desy.de>

WHIZARD Team: Wolfgang Kilian, Thorsten Ohl, JRR Simon Braß / Pia Bredt / Nils Kreher / Vincent Rothe / Pascal Stienemeier + master students

General WHIZARD reference: EPJ C71 (2011) 1742, arXiv:0708.4241 0'Mega (ME generator): LC-TOOL (2001) 040; arXiv:hep-ph/0102195 VAMP (MC integrator): CPC 120 (1999) 13; arXiv:hep-ph/9806432 CIRCE (beamstrahlung): CPC 101 (1997) 269; arXiv:hep-ph/9607454 Parton shower: JHEP 1204 (2012) 013; arXiv:1112.1039 JHEP 1210 (2012) 022; arXiv:1206.3700 Color flow formalism: NLO capabilities: JHEP 1612 (2016) 075; arXiv: 1609.03390 Parallelization of MEs: CPC 196 (2015) 58; arXiv:1411.3834 **POWHEG** matching: EPS-HEP (2015) 317; arXiv: 1510.02739

- Universal event generator for lepton and hadron colliders (SM and BSM physics)
- Tree ME generator 0'Mega optimized ME generator
- Generator/simulation tool for lepton collider beam spectra: CIRCE1/2
- Scattering processes $(2 \rightarrow 10 \text{ etc.})$ and [auto-] decays, factorized processes

WHIZARD $3.0.0\alpha$

WHIZARD: Timeline

WHIZARD Overview Code Bugs Blueprints Translations Answers 2.8.3 timeline \odot \odot 2.8.x 2.8.0 2.8.1 2.8.2 2.8.3 **3.0.0**β 2019-08-07 2019-09-20 2019-10-23 2020-09-01 3.0.x 3.0.0alpha 3.0.0beta 3.0.0 2020-03-02 2020-05-15 2020-07-31 3.0.0α 2.7.x 2.7.1 2.7.0 2019-01-21 2019-03-27 2.6.x 2.6.4 2.6.0 2.6.1 2.6.2 2.6.3 2017-09-08 2017-11-03 2017-12-13 2018-02-10 2018-08-23 2.5.x 2.5.0 2017-05-06 2.4.x -2.4.0 2.4.1 2016-11-27 2017-03-24 2.2.8 2.3.x -2.3.0 2.3.1 2016-07-21 2016-08-25 2.2.x 2.2.0alpha 2.2.0beta 2.2.0 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2014-05-03 2014-07-06 2014-11-30 2015-02-06 2015-02-27 2015-05-02 2015-08-11 2015-11-22 2013-09-11 2014-02-03 2014-05-18 2.1.x 1.95 2.1.0 2.1.1 2012-09-18 2012-05-15 2.0.x 2.0.0alpha 2.0.0beta 2.0.0rc1 2.0.0rc2 2.0.0rc3 2.0.0 2.0.1 2.0.2 2.0.3 2.0.4 2.0.5 2.0.6 2.0.7 2009-10-31 2009-12-04 2010-02-03 2010-02-05 2010-03-03 2010-04-12 2010-04-25 2010-05-18 2010-10-18 2010-10-26 2011-05-10 2011-12-07 2012-03-19 1.x 1.40 1.42 1.92 1.93 1.24 1.25 1.26 1.27 1.28 1.30 1.41 1.43 1.50 1.51 1.90 1.91 1.94 1.95 1.96 1.97 2003-01-31 2004-04-15 2004-12-13 2005-07-15 2005-09-30 2007-11-23 2008-03-12 2009-04-16 2003-05-22 2003-06-23 2003-08-06 2004-09-20 2005-10-25 2006-02-07 2006-06-15 2008-03-06 2010-02-16 2010-02-25 2010-09-27 2011-05-31

WHIZARD $3.0.0\alpha$

WHIZARD: User support / bug tracker

WHIZARD v3.0.0α (03.03.2020)

https://launchpad.net/whizard

User questions & bug reports channeled through Launchpad site

🚨 Juergen Reuter (j.r.reuter) • 🛛 Log Out

J.R.Reuter

WHIZARD 3.0.0a

MPI-parallelization of phase space integration

Event generation trivially parallelizable

Braß/Kilian/JRR, 1811.09711 [EPJC]

- Major bottleneck: adaptive phase space integration (generation of grids)
- Parallelization of integration: OMP multi-threading for different helicities since long
- NEW (after v2.5.0/2.6.4/2.7.1): MPI parallelization (using OpenMPI or MPICH)
- Distributes workers over multiple cores, grid adaption needs non-trivial communication
- Amdahl's law: $s = \frac{1}{1-p+\frac{p}{N}}$
- Speedups of 10 to 30, saturation at O(100) tasks

WHIZARD 3.0.0a

- Integration times go down from weeks to hours! [can do also parallel event generation]
- Load balancer is being implemented

J.R.Reuter

Event Formats

Event formats: conventions for outputting details of the events

```
sample_format = hepmc
sample_format = lhef {$lhef_version = "3.0"}
sample_format = stdhep, stdhep_up, stdhep_ev4
sample_format = ascii,debug,mokka,lha
sample_format = lcio
simulate (<process>)
```

- External format, ASCII: HepMC [Dobbs/Hansen, 2001]
- External format, binary: LCIO [Gaede, 2003]
- Internal formats, binary: StdHEP [Lebrun, 1990]
- Internal formats, ASCII: LHA, LHEF [Alwall et al., 2006]

Event Formats

Event formats: conventions for outputting details of the events

WHIZARD 3.0.0a

```
sample_format = hepmc
sample_format = lhef {$lhef_version = "3.0"}
sample_format = stdhep, stdhep_up, stdhep_ev4
sample_format = ascii,debug,mokka,lha
sample_format = lcio
simulate (<process>)
```

- External format, ASCII: HepMC [Dobbs/Hansen, 2001]
- External format, binary: LCIO [Gaede, 2003]
- Internal formats, binary: StdHEP [Lebrun, 1990]
- Internal formats, ASCII: LHA, LHEF [Alwall et al., 2006]

CLICdp session, CLIC Week, CERN, 12.03.20

LCIO Format: (ASCII transcription from binary)

```
Event : 1 - run: 0 - timestamp [...]
          _______________________________
 date: [...]
 detector : unknown
 event parameters:
                                                                                          Event header information as
 parameter Event Number [int]: 1,
 parameter ProcessID [int]: 1,
                                                                                       agreed upon with LC Gen Group
 parameter Run ID [int]: 0,
 parameter beamPDG0 [int]: 11,
 parameter beamPDG1 [int]: -11,
 parameter Energy [float]: 500,
 parameter Pol0 [float]: 0,
 parameter Pol1 [float]: 0,
 parameter _weight [float]: 1,
 parameter alphaQCD [float]: 0.1178,
 parameter crossSection [float]: 338.482,
 parameter crossSectionError [float]: 7.2328,
 parameter scale [float]: 500,
 parameter BeamSpectrum [string]: ,
 parameter processName [string]: lcio_5_p,
 collection name : MCParticle
 parameters:
         ----- print out of MCParticle collection ------
  flag: 0x0
  simulator status bits: [sbvtcls] s: created in simulation b: backscatter v: vertex is not endpoint of parent t: decayed in tracker c: decayed in
calorimeter 1: has left detector s: stopped o: overlay
    id ]index| PDG |
                   OG | px, py, pz | energy |gen|[
11| 0.00e+00, 0.00e+00, 2.50e+02| 2.50e+02| 3 |[
                                                     energy |gen|[simstat]| vertex x,y,z |
                                                                                               mass | charge
                                                                                                                     spin
                                                                                                                                colorflow |
                                                                                                                                            [par] - [dau]
[00000004]
                                                                          ]| 0.0, 0.0, 0.0| 5.11e-04|-1.00e+00| 0.0, 0.0, 0.0|
                                                                                                                                            [] - [2,3]
              0 |
                                                                       0
                                                                                                                                 (0, 0)
                                                                          ] 0.0, 0.0, 0.0 5.11e-04 1.00e+00 0.0, 0.0, 0.0
              1
                 -11| 0.00e+00, 0.00e+00, -2.50e+02| 2.50e+02| 3 |[
[00000005]
                                                                       0
                                                                                                                                 (0, 0)
                                                                                                                                            [] - [2,3]
                                                                       0 ] | 0.0, 0.0, 0.0 | 1.06e-01 | -1.00e+00 | 0.0, 0.0, 1.0 |
              2|
                  13| 1.42e+02, 1.99e+02,-5.22e+01| 2.50e+02| 1 |[
[00000006]
                                                                                                                                 (0, 0)
                                                                                                                                            [0,1] - []
                                                                          ] 0.0, 0.0, 0.0 1.06e-01 1.00e+00 0.0, 0.0, -1.0
[00000007]
              31
                 -13|-1.42e+02,-1.99e+02, 5.22e+01| 2.50e+02|
                                                               1
                                                                       0
                                                                                                                                            [0, 1]
                                                                                                                                 (0, 0)
```


Event Formats

Event formats: conventions for outputting details of the events

```
sample_format = hepmc
sample_format = lhef {$lhef_version = "3.0"}
sample_format = stdhep, stdhep_up, stdhep_ev4
sample_format = ascii,debug,mokka,lha
sample_format = lcio
simulate (<process>)
```

- External format, ASCII: HepMC [Dobbs/Hansen, 2001]
- External format, binary: LCIO [Gaede, 2003]
- Internal formats, binary: StdHEP [Lebrun, 1990]
- Internal formats, ASCII: LHA, LHEF [Alwall et al., 2006]

HepMC3 Format: modern implementation

HepMC::Version 3.01.01 HepMC::Asciiv3-START_EVENT_LISTING E 1 3 8 U GEV MM A 0 alphaQCD 0.116258482977402 A 0 alphaQED -1 A 0 event_scale 100 A 3 flow1 1 A 4 flow1 3 A 5 flow1 2 A 6 flow1 1 A 7 flow1 3 A 3 flow2 2 A 4 flow2 1 A 5 flow2 1	HepMC::Version 2.06.09 HepMC::IO_GenEvent-START_EVENT_LISTING E 1 -1 1.00000000000000000000000000000000
A 6 flow2 3	HepMC::IO_GenEvent-END_EVENT_LISTING
A 8 flow2 2 A 0 signal_process_id 1 P 1 0 2212 0.0000000000000000000000000000	
P 4 2 21 0.00000000000000000000000000000000	NEW in WHIZARD v2.8.1
V -3 0 [3,4] P 7 -3 2 -5.0143659198302345e+01 -6.869560414 P 8 -3 -2 5.0143659198302345e+01 6.8695604145	

HepMC::Asciiv3-END_EVENT_LISTING

.R.Reuter

WHIZARD 3.0.0a

- Scanning parameter space of BSM models (or SM templates)
- Major bottleneck: MC samples have to be produced over and over again
- Feature: rescanning of event files with different setup
- Assumption: phase space is identical, sampling can be done in the same way
- works also w/ differently concatenated structure functions (e.g. ISR + beamstr.)
- Open issues: rescanning with resonance matching in showered events

WHIZARD v2.8.2

- Rescan now also works with LCIO
- Alternative weights/ cross sections can be written to LCIO

```
process reweight 8 p1 = e1, E1 => e2, E2
sqrts = 1000
n events = 10000
?unweighted = false
sample_format = weight_stream
simulate (reweight 8 p1) {
  $sample = "reweight 8a"
  iterations = 1:1000
}
?update sqme = true
rescan "reweight_8a" (reweight_8_p1) {
  $sample = "reweight 8c"
              ! should update sqme
  ee = 3 * ee
?update weight = true
rescan "reweight_8a" (reweight_8_p1) {
  $sample = "reweight_8d"
  ee = 3 * ee
                 ! should update sqme and event
weight
```


DESY

J.R.Reuter

Rescanning of Event Files

7 / 19

calorimeter l: has left de

+00, 0.00e+00, 0.00e+00| -00, 0.00e+00, 0.00e+00| 00, 0.00e+00, 0.00e+00|

Event : 1 - run: 0 - timestamp 1569613753000000000 - weight 1	
date: 27.09.2019 19:49:13.00000000 detector : unknown event parameters: parameter Event Number [int]: 1, parameter ProcessID [int]: 1, parameter Run ID [int]: 0, parameter beamPDG0 [int]: 2212, parameter beamPDG1 [int]: 2212, parameter Energy [float]: 8000.	
<pre>parameter Pol0 [float]: 0, parameter Pol1 [float]: 0, parameter _weight [float]: 1, parameter alphaQCD [float]: 0.1178, parameter alternateSqme1 [float]: 135.189, parameter alternateSqme10 [float]: 3.54389e+07, parameter alternateSqme2 [float]: 540 754</pre>	Alternative weights / cross sections entries in the LCIO event header
parameter alternateSqme2 [float]: 340.754, parameter alternateSqme3 [float]: 2163.02, parameter alternateSqme5 [float]: 34608.3, parameter alternateSqme5 [float]: 138433, parameter alternateSqme7 [float]: 553732, parameter alternateSqme8 [float]: 2.21493e+06, parameter alternateSqme9 [float]: 8.85972e+06, parameter alternateWeight1 [float]: 1.12598, parameter alternateWeight2 [float]: 4.50391, parameter alternateWeight3 [float]: 18.0156, parameter alternateWeight3 [float]: 18.0156, parameter alternateWeight4 [float]: 2.862, parameter alternateWeight5 [float]: 2.88.25, parameter alternateWeight6 [float]: 1153, parameter alternateWeight6 [float]: 1153, parameter alternateWeight7 [float]: 4612, parameter alternateWeight8 [float]: 18448, parameter alternateWeight9 [float]: 13792, parameter alternateWeight9 [float]: 2.9802.6, parameter crossSection [float]: 488.791, parameter scale [float]: 488.791, parameter BeamSpectrum [string]: , parameter processName [string]: lcio_10_p,	
collection name : MCParticle parameters:	
flag: 0x0 simulator status bits: [sbvtcls] s: created in simulation b: backscatter v: vertex is not endpoint of	parent t: decayed in tracker c: decayed in calorimeter l: has l
[id]index PDG px, py, pz px_ep, py_ep ,pz_ep energy gen [sin	mstat] vertex x, y , z endpoint x, y , z
[00000004] 0 2212 0.00e+00, 0.00e+00, 4.00e+03 0.00e+00, 0.00e+00, 0.00e+00 4.00e+03 4 [[00000005] 1 2212 0.00e+00, 0.00e+00, 4.00e+03 0.00e+00, 0.00e+00, 0.00e+03 4 [[00000006] 2 21 0.00e+00, 0.00e+00, 7.22e+01 0.00e+00, 0.00e+00 7.22e+01 3 [[00000007] 3 21 0.00e+00, 0.00e+00, 8.27e+02 0.00e+00, 0.00e+00 8.27e+02 3 [[00000008] 4 93 0.00e+00, 0.00e+00, 3.93e+03 0.00e+00, 0.00e+00 3.93e+03 1 [[00000009] 5 93 0.00e+00, 0.00e+00, 3.17e+03 0.00e+00, 0.00e+00 3.17e+03 1 [[00000010] 6 6 1.60e+02, 2.33e+01, 2.67e+02 0.00e+00, 0.00e+00 3.57e+02 1 [[00000011] 7 -6 -1.60e+02, 2.33e+01, -2.67e+02 0	<pre>9] 0.00e+00, 0.00e+00, 0.00e+00 0.00e+00, 0.00e+00, 0.00e 9] 0.00e+00, 0.00e+00, 0.00e+00 0.00e+00, 0.00e+00, 0.00e</pre>

WHIZARD $3.0.0\alpha$

BSM Models in WHIZARD

8 / 19

Hard-coded models:

MODEL TYPE	with CKM matrix	trivial CKM
Yukawa test model		Test
QED with e, μ, τ, γ		QED
QCD with d, u, s, c, b, t, g		QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with Hgg , $H\gamma\gamma$, $H\mu\mu$, He^+e^-	SM_Higgs_CKM	SM_Higgs
SM with bosonic dim-6 operators		SM_dim6
SM with charge $4/3$ top		SM_top
SM with anomalous top couplings		SM_top_anom
SM with anomalous Higgs couplings		SM_rx/NoH_rx/SM_ul
SM extensions for VV scattering		SSC/AltH/SSC_2/SSC_AltT
SM with Z'		Zprime
Two-Higgs Doublet Model	THDM_CKM	THDM
Higgs Singlet Extension		HSExt
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos		MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models		PSSSM
Littlest Higgs		Littlest
Littlest Higgs with ungauged $U(1)$		Littlest_Eta
Littlest Higgs with T parity		Littlest_Tpar
Simplest Little Higgs (anomaly-free)		Simplest
Simplest Little Higgs (universal)		Simplest_univ
SM with graviton		Xdim
UED		UED
"SQED" with gravitino		GravTest
Augmentable SM template		Template

(external) UFO models:

- WHIZARD 2.8.3: Full UFO support
- Mew version demands OCaml ≥4.02.3
- LO externals UFO models
- Spin 0, 1/2, 1, 3/2, 2, 3, 4, 5 supported
- Arbitrary Lorentz structures supported
- 5-, 6-point vertices (and even higher)
- **UFO** customized propagators
- Majorana statistics, incl. 4-fermion (2.8.3)
- \mathbf{M} BSM SLHA input (2.8.2)
- Crazy color structures (as internal particles)

Old FeynRules / SARAH interface is deprecated

kept at the moment for user backwards compatibility

J.R.Reuter

WHIZARD 3.0.0a

Models from UFO Files in WHIZARD

model = SM (ufo)

UFO file is assumed to be in working directory OR

model = SM (ufo ("<my UFO path>"))

UFO file is in user-specified directory

i	WHIZARD 2.5.1
	Reading model file '/Users/reuter/local/share/whizard/models/SM.mdl'
	Preloaded model: SM
	Process library 'default_lib': initialized
	Preloaded library: default_lib
	Reading model file '/Users/reuter/local/share/whizard/models/SM_hadrons.mdl'
	Reading commands from file 'ufo_2.sin'
	Model: Generating model 'SM' from UFO sources
	Model: Searching for UFO sources in working directory
	Model: Found UFO sources for model 'SM'
	Model: Model file 'SM.ufo.mdl' generated
	Reading model file 'SM.ufo.mdl'

Switching to model 'SM' (generated from UFO source)

All the setup works the same as for intrinsic models

Models from UFO Files in WHIZARD

model = SM (ufo)

model = SM (ufo ("<my UFO path>"))

UFO file is assumed to be in working directory OR

UFO file is in user-specified directory

oure function VVVV4_p0123 (g, a2, k2, a3, k3, a4, k4) result (a1) type(vector) :: a1 complex(kind=default), intent(in) :: g
<pre>type(vector), intent(in) :: a2 type(vector), intent(in) :: a3</pre>
type(vector), intent(in) :: a4 type(momentum), intent(in) :: k2, k3, k4 /
! 1 * * Metric(2,4) * Metric(1,3) + -1 * * Metric(3,4) * Metric(1,2)
<pre>complex(kind=default), dimension(0:3) :: a1a complex(kind=default), dimension(0:3) :: a2a complex(kind=default), dimension(0:3) :: a3a</pre>
complex(kind=default), dimension(0:3) :: a4a real(kind=default), dimension(0:3) :: p1, p2, p3, p4
integer :: nul integer :: nu2 integer :: nu3
integer :: nu4 !
a2a(0) = a2%t a2a(1:3) = a2%x a3a(0) = a3%t
a3a(1:3) = a3%x a4a(0) = a4%t
a4a(1:3) = a4%x p2(0) = k2%t p2(1:3) = k2%x
$p_3(0) = k_3 k_1$ $p_3(1:3) = k_3 k_x$
p4(0) = k4%t p4(1:3) = k4%x p1 = p2 = p3 = p4

<pre>pure function FFS4 type(conjspinor) complex(kind=def type(conjspinor) complex(kind=def type(momentum),</pre>	4_p012 (g, psibar2, k2, phi3, k3)) :: psi1 fault), intent(in) :: g), intent(in) :: psibar2 fault), intent(in) :: phi3 intent(in) :: k2, k3	result (psi1)
! 1 * <2 (1-g5)/	/2 1> * + 1 * <2 (1+g5)/2 1> *	
: real(kind=defaul complex(kind=def complex(kind=def integer :: alpha	lt), dimension(0:3) :: p1, p2, p3 fault), dimension(1:4) :: bra01 fault), dimension(1:4) :: bra02 a	
p2(0) = k2%t p2(1:3) = k2%x p3(0) = k3%t p3(1:3) = k3%x p1 = - p2 - p3		
<2 (1-g5)/2 1> bra01(1) = 0 + p bra01(2) = 0 + p bra01(3) = 0 bra01(4) = 0	osibar2%a(1) osibar2%a(2)	
<2 (1+g5)/2 1> bra02(1) = 0 bra02(2) = 0 bra02(3) = 0 + p bra02(4) = 0 + p	> psibar2%a(3) psibar2%a(4)	

Models from UFO Files in WHIZARD

_ _ _ _ _ _ _ _ _ _ _

model = SM (ufo)

model = SM (ufo ("<my UF0 path>"))

UFO file is in user-specified directory

* <2|(1-g5)/2|1> * + 1 * <2|(1+g5)/2|1> *

real(kind=default), dimension(0:3) :: p1, p2, p3 complex(kind=default), dimension(1:4) :: bra01 complex(kind=default), dimension(1:4) :: bra02

complex(kind=default), intent(in) :: g
type(conjspinor), intent(in) :: psibar2
complex(kind=default), intent(in) :: phi3
type(momentum), intent(in) :: k2, k3

type(conjspinor) :: psi1

integer :: alpha

<2|(1-g5)/2|1>

bra01(1) = 0 + psibar2%a(1)bra01(2) = 0 + psibar2%a(2)

 $\mu^+, \mu^- \to H' \to b, \bar{b}$

750

800

 \sqrt{s} / GeV

p2(0) = k2%t p2(1:3) = k2%x p3(0) = k3%t p3(1:3) = k3%x p1 = - p2 - p3

bra01(3) = 0

0.00002

0.000020

0.000015

0.000010

0.000005

0.000000 🗖 700

σ/fb

UFO file is assumed to be in working directory OR

pure function FFS4_p012 (g, psibar2, k2, phi3, k3) result (psi1)

are function VVVV $\overline{4}$ p0123 (g, a2, k2, a3, k3, a4, k4) result (a1)
type(vector) :: al
complex(kind=default), intent(in) :: g
type(vector), intent(in) :: a2
type(vector), intent(in) :: a3
type(vector), intent(in) :: a4
<pre>type(momentum), intent(in) :: k2, k3, k4</pre>
1
! 1 * * Metric(2,4) * Metric(1,3) + -1 * * Metric(3,4) * Metric(1,2)
!
complex(kind=default), dimension(0:3) :: a1a
<pre>complex(kind=default), dimension(0:3) :: a2a</pre>
<pre>complex(kind=default), dimension(0:3) :: a3a</pre>
<pre>complex(kind=default), dimension(0:3) :: a4a</pre>
real(kind=default), dimension(0:3) :: p1, p2, p3, p4
integer :: nul
integer :: nu2
integer :: nu3
integer :: nu4
!
a2a(0) = a2%t
a2a(1:3) = a2%x
a3a(0) = a3%t
a3a(1:3) = a3%x
a4a(0) = a4%t
a4a(1:3) = a4%x
$p2(\theta) = k2\%t$
p2(1:3) = k2%x
p3(0) = k3%t
p3(1:3) = k3%x
p4(0) = k4%t
p4(1:3) = k4%x
$p_1 = -p_2 - p_3 - p_4$

Minimal Mirror Twin Higgs: Lipp / JRR, in preparation

WHIZARD $3.0.0\alpha$

CLICdp session, CLIC Week, CERN, 12.03.20

900

850

 $m_{h'} = 800 \, {\rm GeV}$

-- H' mass: 800 GeV H MMTH f=2 vev H MMTH f=3 vev

NLO Automation in WHIZARD

Working NLO interfaces to:

- GoSam [N. Greiner, G. Heinrich, J. v. Soden-Fraunhofen et al.]
- * OpenLoops [F. Cascioli, J. Lindert, P. Maierhöfer, S. Pozzorini]
- * Recola [A. Denner, I

NLO QCD (massless & massive) fully supported

```
alpha_power = 2
alphas_power = 1
```

```
process eejjj = e1,E1 => j, j, j { nlo_calculation = full }
```

 \star

- FKS subtraction [Frixione/Kunszt/Signer, hep-ph/9512328]
- Resonance-aware treatment [Ježo/Nason, 1509.09071]
- Virtual MEs external
- Real and virtual subtraction terms internal
- NLO decays available for the NLO processes
- Fixed order events for plotting (weighted)
- Automated POWHEG damping and matching
- NLO QCD: final clean-up
- NLO EW first results
- Release WHIZARD 3.0.0α (March 2020)

WHIZARD $3.0.0\alpha$

Validation of NLO QCD for e⁺e⁻ Collisions

||/|9

Process	$\sigma^{\rm LO}[{\rm fb}]$	$MG5_AMC$ $\sigma^{NLO}[fb]$	K	$\sigma^{ m LO}[{ m fb}]$	WHIZARD $\sigma^{\rm NLO}[{\rm fb}]$	K
$e^+e^- \rightarrow jj$	622.3(5)	639.3(1)	1.02733	622.73(4)	639.41(9)	1.02678
$e^+e^- \rightarrow jjj$	340.1(2)	317.3(8)	0.93297	342.4(5)	318.6(7)	0.9305
$e^+e^- \rightarrow jjjjj$	104.7(1)	103.7(3)	0.99045	105.1(4)	103.0(6)	0.98003
$e^+e^- \rightarrow jjjjjj$	22.11(6)	24.65(4)	1.11488	22.80(2)	24.35(15)	1.06798
$e^+e^- \rightarrow jjjjjjj$	N/A	N/A	N/A	3.62(2)	0.0(0)	0.0
$e^+e^- \rightarrow b\bar{b}$	92.37(6)	94.89(1)	1.02728	92.32(1)	94.78(7)	1.02664
$e^+e^- ightarrow b\bar{b}b\bar{b}$	$1.644(3) \cdot 10^{-1}$	$3.60(1) \cdot 10^{-1}$	2.1897	$1.64(2) \cdot 10^{-1}$	$3.67(4) \cdot 10^{-1}$	2.2378
$e^+e^- \rightarrow t\bar{t}$	166.2(2)	174.5(3)	1.04994	166.4(1)	174.53(6)	1.04886
$e^+e^- \rightarrow t\bar{t}j$	48.13(5)	53.36(1)	1.10867	48.3(2)	53.25(6)	1.10248
$e^+e^- \rightarrow t\bar{t}jj$	8.614(9)	10.49(3)	1.21777	8.612(8)	10.46(6)	1.21458
$e^+e^- \rightarrow t\bar{t}jjj$	1.044(2)	1.420(4)	1.3601	1.040(1)	1.414(10)	1.3595
$e^+e^- \rightarrow t\bar{t}t\bar{t}$	$6.45(1)\cdot 10^{-4}$	$11.94(2) \cdot 10^{-4}$	1.85117	$6.463(2) \cdot 10^{-4}$	$11.91(2) \cdot 10^{-4}$	1.8428
$e^+e^- \rightarrow t\bar{t}t\bar{t}j$	$2.719(5) \cdot 10^{-5}$	$5.264(8) \cdot 10^{-5}$	1.93602	$2.722(1) \cdot 10^{-5}$	$5.250(14) \cdot 10^{-5}$	1.92873
$e^+e^- \rightarrow t\bar{t}b\bar{b}$	0.1819(3)	0.292(1)	1.60533	0.186(1)	0.293(2)	1.57527
$e^+e^- \to t\bar{t}H$	2.018(3)	1.909(3)	0.94601	2.022(3)	1.912(3)	0.9456
$e^+e^- \rightarrow t\bar{t}Hj$	$0.2533(3) \cdot 10^{-0}$	$0.2665(6) \cdot 10^{-0}$	1.05212	0.2540(9)	0.2664(5)	1.04889
$e^+e^- \rightarrow t\bar{t}Hjj$	$2.663(4) \cdot 10^{-2}$	$3.141(9) \cdot 10^{-2}$	1.1795	$2.666(4) \cdot 10^{-2}$	$3.144(9) \cdot 10^{-2}$	1.17928
$e^+e^- \to t\bar{t}\gamma$	12.7(2)	13.3(4)	1.04726	12.71(4)	13.78(4)	1.08418
$e^+e^- \to t\bar{t}Z$	4.642(6)	4.95(1)	1.06636	4.64(1)	4.94(1)	1.06467
$e^+e^- \rightarrow t\bar{t}Zj$	0.6059(6)	0.6917(24)	1.14168	0.610(4)	0.6927(14)	1.13565
$e^+e^- \rightarrow t\bar{t}Zjj$	$6.251(28) \cdot 10^{-2}$	$8.181(21) \cdot 10^{-2}$	1.30875	$6.233(8) \cdot 10^{-2}$	$8.201(14) \cdot 10^{-2}$	1.31573
$e^+e^- \rightarrow t\bar{t}W^{\pm}jj$	$2.400(4) \cdot 10^{-4}$	$3.714(8) \cdot 10^{-4}$	1.54747	$2.41(1) \cdot 10^{-4}$	$3.695(9)\cdot 10^{-4}$	1.5332
$e^+e^- \rightarrow t\bar{t}\gamma\gamma$	0.383(5)	0.416(2)	1.08618	0.382(3)	0.420(3)	1.09952
$e^+e^- \to t\bar{t}\gamma Z$	0.2212(3)	0.2364(6)	1.06873	0.220(1)	0.240(2)	1.09094
$e^+e^- \to t\bar{t}\gamma H$	$9.75(1)\cdot 10^{-2}$	$9.42(3) \cdot 10^{-2}$	0.96614	$9.748(6) \cdot 10^{-2}$	$9.58(7)\cdot 10^{-2}$	0.98277
$e^+e^- \rightarrow t\bar{t}ZZ$	$3.788(4) \cdot 10^{-2}$	$4.00(1) \cdot 10^{-2}$	1.05597	$3.756(4) \cdot 10^{-2}$	$4.005(2) \cdot 10^{-2}$	1.0663
$e^+e^- \rightarrow t\bar{t}W^+W^-$	0.1372(3)	0.1540(6)	1.1225	0.1370(4)	0.1538(4)	1.12257
$e^+e^- \rightarrow t\bar{t}HH$	$1.358(1) \cdot 10^{-2}$	$1.206(3) \cdot 10^{-2}$	0.888	$1.367(1) \cdot 10^{-2}$	$1.218(1) \cdot 10^{-2}$	0.8909
$e^+e^- \rightarrow t\bar{t}HZ$	$3.600(6) \cdot 10^{-2}$	$3.58(1) \cdot 10^{-2}$	0.99445	$3.596(1) \cdot 10^{-2}$	$3.581(2) \cdot 10^{-2}$	0.9958

J.R.Reuter

WHIZARD $3.0.0\alpha$

Validation of NLO QCD for pp Collisions

12/19

	Process	$\sigma^{ m LO}[m pb]$	$MG5_AMC$ $\sigma^{NLO}[pb]$	K	$\sigma^{\rm LO}[{\rm pb}]$	WHIZARD $\sigma^{\rm NLO}[\rm pb]$	K	I 3 TeV
	$\begin{array}{c} pp \rightarrow jj \\ pp \rightarrow jjj \end{array}$	$\frac{1.162(1)\cdot 10^{-6}}{8.940(21)\cdot 10^{-4}}$	$\begin{array}{c} 1.580(7)\cdot 10^{-6} \\ 7.791(37)\cdot 10^{-4} \end{array}$	$1.36 \\ 0.87$	$\frac{1.157(2) \cdot 10^{-6}}{8.921(47) \cdot 10^{-4}}$	$\frac{1.604(7) \cdot 10^{-6}}{22.73(1) \cdot 10^{-4}}$	$1.39 \\ 2.55$	
	$ \begin{array}{c} pp \rightarrow Z \\ pp \rightarrow Zj \\ pp \rightarrow Zjj \end{array} $	$\begin{array}{c} 4.248(5)\cdot 10^{-4}\\ 7.209(5)\cdot 10^{-3}\\ 2.348(6)\cdot 10^{-3}\end{array}$	$\begin{array}{c} 5.410(22)\cdot10^{-4}\\ 9.745(32)\cdot10^{-3}\\ 2.684(5)\cdot10^{-3}\end{array}$	$1.27 \\ 1.35 \\ 1.14$	$\begin{array}{r} 4.2536(3)\cdot 10^{-4} \\ 7.207(2)\cdot 10^{-3} \\ 2.352(8)\cdot 10^{-3} \end{array}$	$\begin{array}{c} 5.4067(2)\cdot 10^{-4}\\ 9.720(17)\cdot 10^{-3}\\ 2.735(9)\cdot 10^{-3} \end{array}$	1.27 1.35 1.16	
	$pp \to W^{\pm}$ $pp \to W^{\pm}j$ $pp \to W^{\pm}jj$	$\begin{array}{c} 1.375(2)\cdot 10^{-5}\\ 2.045(1)\cdot 10^{-4}\\ 6.805(15)\cdot 10^{-3}\end{array}$	$\begin{array}{c} 1.773(7)\cdot 10^{-5}\\ 2.839(9)\cdot 10^{-4}\\ 7.780(13)\cdot 10^{-3} \end{array}$	$1.29 \\ 1.39 \\ 1.14$	$\begin{array}{c} 1.3750(5)\cdot 10^{-5}\\ 2.043(1)\cdot 10^{-4}\\ 6.798(7)\cdot 10^{-3}\end{array}$	$\begin{array}{c} 1.7696(9)\cdot 10^{-5}\\ 2.845(6)\cdot 10^{-4}\\ 7.93(3)\cdot 10^{-3}\end{array}$	$1.29 \\ 1.39 \\ 1.17$	
	$\begin{array}{c} pp \rightarrow ZZ \\ pp \rightarrow ZZj \\ pp \rightarrow ZW^{\pm} \\ pp \rightarrow ZW^{\pm}j \\ pp \rightarrow W^{+}W^{-}(4f) \\ pp \rightarrow W^{+}W^{-}j \ (4f) \\ pp \rightarrow W^{+}W^{+}jj \\ & \qquad \qquad$	$\begin{array}{c} 1.097(3)\cdot 10^{-1}\\ 3.662(3)\cdot 10^{-0}\\ 2.777(3)\cdot 10^{-1}\\ 1.605(5)\cdot 10^{-1}\\ 0.7355(5)\cdot 10^{-2}\\ 2.865(3)\cdot 10^{-1}\\ 1.484(3)\cdot 10^{1}\\ 6.752(7)\cdot 10^{-2}\end{array}$	$\begin{array}{c} 1.4190(25)\cdot 10^{-1}\\ 4.830(16)\cdot 10^{-0}\\ 4.485(12)\cdot 10^{-1}\\ 2.100(5)\cdot 10^{-1}\\ 1.028(3)\cdot 10^{-2}\\ 3.730(13)\cdot 10^{-1}\\ 2.251(11)\cdot 10^{1}\\ 0.02(1)\cdot 10^{2}\end{array}$	$1.29 \\ 1.32 \\ 1.62 \\ 1.31 \\ 1.4 \\ 1.3 \\ 1.52 \\ 1.40$	$\begin{array}{c} 1.094(2) \cdot 10^{-1} \\ 3.659(2) \cdot 10^{-0} \\ 2.775(2) \cdot 10^{-1} \\ 1.604(6) \cdot 10^{-1} \\ 0.7349(7) \cdot 10^{-2} \\ 2.868(1) \cdot 10^{-1} \\ 1.483(4) \cdot 10^{1} \\ 0.755(4) - 10^{1} \end{array}$	$\begin{array}{c} 1.4192(32)\cdot 10^{-1}\\ 4.820(11)\cdot 10^{-0}\\ 4.488(4)\cdot 10^{-1}\\ 2.103(4)\cdot 10^{-1}\\ 1.027(1)\cdot 10^{-2}\\ 3.733(8)\cdot 10^{-1}\\ 2.238(6)\cdot 10^{1}\\ 2.97(2)\cdot 10^{1}\\ 100000000000000000000000000000000000$	$1.3 \\ 1.32 \\ 1.62 \\ 1.31 \\ 1.4 \\ 1.3 \\ 1.51 \\ 1.40$	
	$\begin{array}{c} pp \rightarrow W^-W^-jj \\ \hline pp \rightarrow W^+W^-W^{\pm}(4f) \\ pp \rightarrow ZW^+W^-(4f) \\ pp \rightarrow W^+W^-W^{\pm}Z(4f) \\ pp \rightarrow W^{\pm}ZZZ \\ \hline \end{array}$	$\begin{array}{c} 6.752(7) \cdot 10^{2} \\ 1.307(3) \cdot 10^{1} \\ 0.966(7) \cdot 10^{1} \\ 0.639(8) \cdot 10^{3} \\ 0.586(1) \cdot 10^{5} \end{array}$	$9.99(1) \cdot 10^{-2}$ $2.111(4) \cdot 10^{-1}$ $1.679(5) \cdot 10^{-1}$ $1.230(3) \cdot 10^{-3}$ $1.240(4) \cdot 10^{-5}$	$ 1.48 \\ 1.62 \\ 1.74 \\ 1.92 \\ 2.12 \\ $	$\begin{array}{c} 6.755(4) \cdot 10^{1} \\ 1.309(1) \cdot 10^{1} \\ 0.966(2) \cdot 10^{1} \\ 0.642(2) \cdot 10^{3} \\ 0.588(2) \cdot 10^{5} \end{array}$	$9.97(3) \cdot 10^{1}$ $2.117(2) \cdot 10^{1}$ $1.682(2) \cdot 10^{1}$ $1.240(2) \cdot 10^{3}$ $1.229(2) \cdot 10^{5}$	$ 1.48 \\ 1.62 \\ 1.74 \\ 1.93 \\ 2.09 $	
	$pp \to t\bar{t}$ $pp \to t\bar{t}j$ $pp \to t\bar{t}t\bar{t}$ $pp \to t\bar{t}Z$	$4.584(3) \cdot 10^{-2} 3.135(2) \cdot 10^{-2} 4.505(5) \cdot 10^{-3} 5.273(4) \cdot 10^{1} $	$6.746(14) \cdot 10^{-2} 4.095(8) \cdot 10^{-2} 9.076(13) \cdot 10^{-3} 7.625(25) \cdot 10^{1}$	$ 1.47 \\ 1.31 \\ 2.01 \\ 1.45 $	$4.588(2) \cdot 10^{-2} 3.131(3) \cdot 10^{-2} 4.511(2) \cdot 10^{3} 5.281(8) \cdot 10^{1}$	$6.740(9) \cdot 10^{-2} 4.194(9) \cdot 10^{-2} 9.070(9) \cdot 10^{-3} 7.639(9) \cdot 10^{1}$	$ 1.47 \\ 1.34 \\ 2.01 \\ 1.45 $	
		alias ljet	: = u:U:d:D	:s:S:	gl			
b-jet so c-jet so	election election	process ch	narm_selec	= e1,	E1 => c, C	C, ljet, lj	et, l	.jet, ljet
		jet_algori jet_r = 0.	thm = anti 5	kt_al	gorithm			
		cuts = let let cou	t subevt @c t subevt @c int [@selec	luste jets ted]	red = clust = select_c_ >= 4 and co	er [jet] i jet if Pt ount [@cjet	n > 30 s] ==	GeV [@clustered] in = 2
	•							

J.R.Reuter

WHIZARD $3.0.0\alpha$

Photon isolation in WHIZARD

Frixione, hep-ph/9706545; hep-ph/9801442; hep-ph/9809397

- Isolate perturbative and fragmentation contributions to photons
- Partons must be allowed inside isolation cone (IR-safe observables!)
- Otherwise: soft-collinear IR cancellations would be spoiled
- Define isolation cone around each photon: Radius δ (η – Φ space)

.R.Reuter

photon_iso_eps = 1.0
photon_iso_n = 1
photon_iso_r0 = 0.4

R distance (photon-parton): $R_{i\gamma} = \sqrt{\Delta \eta_{i\gamma}^2 + \Delta \phi_{i\gamma}^2}$ Reject event if partons inside δ_0 -cone don't fulfill jet isolation
criterion: $\sum_{i \in \text{partons}} E_i \theta(\delta - R_{i\gamma}) \leq \mathcal{X}(\delta)$ for all $\delta \leq \delta_0$ $\mathcal{X}(\delta) = E_{\gamma} \epsilon_{\gamma} \left(\frac{1 - \cos \delta}{1 - \cos \delta_0}\right)^n$ $\lim_{\delta \to \infty} \mathcal{X}(\delta) = 0$

CLICdp session, CLIC Week, CERN, 12.03.20

13/19

- Add weights of real emission events to weight of Born kinematics using the FKS mapping
- Output weighted events in WHIZARD (e.g. using HepMC), then analysis with Rivet
- Rivet3:interesting new features (e.g. bin smearing), but not yet completely bugfreeExample process: $e^+e^- \rightarrow W^+W^-b\bar{b}$

NLO QCD Results for off-shell $e^+e^- \rightarrow ttH$

15/19

CLICdp session, CLIC Week, CERN, 12.03.20

WHIZARD 3.0.0α

I.R.Reuter

NLO QCD Results for off-shell $e^+e^- \rightarrow ttH$

15/19

CLICdp session, CLIC Week, CERN, 12.03.20

WHIZARD 3.0.0α

I.R.Reuter

Automated POWHEG Matching in WHIZARD

16/19

 $\mathcal{O}(\alpha_s)$

- Soft gluon emissions before hard emission generate large logs
- Consistent matching of NLO matrix element with shower
- POWHEG method: hardest emission first [Nason et al.]
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[\Delta_R^{\text{NLO}}(k_T^{\min}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} d\Phi_{\text{rad}} \right]$$

Uses the modified Sudakov form factor

```
$loop_me_method = "openloops"
?alphas_is_fixed = false
?alphas_from_mz = true
?alphas_from_lambda_qcd = false
```

alpha_power = 2
alphas_power = 0

?combined_nlo_integration = true

```
?powheg_matching = true
powheg_grid_size_xi = 5
```

powheg_grid_size_y = 5
powheg_grid_sampling_points = 1000000
powheg_pt_min = 1
?powheg_use_singular_jacobian = false

scale = 2 * mtop

.R.Reuter

```
jet_algorithm = antikt_algorithm
jet_r = 1
```

WHIZARD 3.0.0a

CLICdp session, CLIC Week, CERN, 12.03.20

 $\mathcal{O}(1)$

 $\mathcal{O}(1)$

DES

POWHEG Matching, example: e⁺e⁻ to dijets

17/19

Reporting the time since the last CLIC workshop talk 01 / 2019

- \boxtimes WHIZARD 2.7.0 \longrightarrow WHIZARD 2.8.2/3, 3.0.0 α
- **Markov Bug fix** debug output moved (performance issue)
- **Markov Bug fix** for most recent LHAPDF version
- **M** Bug fix for a bad design choice in OCaml 4.06.x 4.08.x
- **M** Bug fix prevents re-generating MC integration in case of CIRCE1/2 beam spectra
- **M** Bug fix several for rescanning / reweighting
- **Model** Bug fix for random number sequence and event generation in MPI VAMP2
- **Model** Bug fix for normalization of polarized cross sections with EPA and CIRCE/ISR
- \mathbf{M} Bug fix for EPA parameters: confusion between E_{max} and Q_{max}
- **Model** Bug fix / feature: CIRCE2 now allows for explicit beam particle masses
- Feature: MSSM radiative neutralino decays [CLICdp]
- Feature: binary MC adaption grid files for VAMP2, now default (performance)

WHIZARD 3.0.0 α

- WHIZARD 2.8 well-known event generator for CLIC physics
- Gev 2/ab full SM mass production
- ee physics: beamspectra, LCIO, LC top threshold
- Solution Set State S
- \bigcirc NLO QCD automation: → WHIZARD 3.0.0α released
- First NLO EW cross section numbers produced
- allows to produce NLO fixed-order histograms

WE'RE HAPPY TO ACCOMODATE WELL-POSED USER REQUESTS PLEASE USE: <u>https://launchpad.net/whizard</u>

WHIZARD $3.0.0\alpha$

BACKUP

WHIZARD $3.0.0\alpha$

Top Threshold in WHIZARD

1

--- beamstrahlung Why include LL/NLL in a Monte Carlo event generator? -- QED ISR —ISR + beamstr 0.6Important effects: beamstrahlung; ISR; LO EW terms σ [pb] 0.4 More exclusive observables accessible 0.2 Resummed threshold effects as vertex form factor 0.0 342 344 346 348TOPPIK code [Jezabek/Teubner], included in WHIZARD \sqrt{s} [GeV] WHIZARD v2.2.3 Threshold region: top velocity $v \sim \alpha_s \ll I$ 1000 900 e^{-} 800 γ, Z 700 600 [fb]500 $\sim (\alpha_{\rm s}/{\rm v})^2$ $\sim (\alpha_{\rm s}/{\rm v})^3$ ь 400 \bar{a} $v \sim \alpha_s \ll 1$ 300 matched, no switch-off NLL 200matched, combined, symmetrized 100 model = SM_tt_threshold NLO 0 nrqcd order = 11.20! NLL resummed FF = 1Uncertainties 1.10 1.00 0.00 0.00 mpole fixed = 1Vtb = 1m1S = 172 GeVscale = m1S\$method = "threshold" 0.80 process eett_threshold = E1, e1 => Wp, Wm, b, B { \$restrictions = "3+5~t && 4+6~tbar" nlo calculation = real } 350 360 370 330 340 380 \sqrt{s} [GeV] sqrts = 350 GeVintegrate (eett threshold) Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, 1712.02220

WHIZARD 3.0.0 α

CLICdp session, CLIC Week, CERN, 12.03.20

no structure

0.8

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

22/19

- Amplitudes (except for pure QCD/QED) contain resonances (Z, W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- $\stackrel{\smile}{\Psi}$ Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

(ZZ, ZH histories)

 $\stackrel{\circ}{\Rightarrow}$ WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1 2 3 4	11988 11959 11936 11908	9.6811847E+00 2.8539703E+00 2.4907574E+00 2.7695559E+00	6.42E+00 2.35E-01 6.54E-01 9.67E-01	66.30 8.25 26.25 34.91	72.60* 9.02* 28.68 38.09	0.65 0.69 0.35 0.30		
5 	11874 59665	2.4346151E+00 2.7539078E+00	4.82E-01 1.97E-01	19.80 7.15	21.57* 17.47	0.74 0.74	0.49	5
		C	tandard	EKS				

WHIZARD $3.0.0\alpha$

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

.R.Reuter

(ZZ, ZH histories)

 \checkmark WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$

WHIZARD 3.0.0a

======= It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1 2 3 4	11988 11959 11936 11908	9.6811847E+00 2.8539703E+00 2.4907574E+00 2.7695559E+00	6.42E+00 2.35E-01 6.54E-01 9.67E-01	66.30 8.25 26.25 34.91	72.60* 9.02* 28.68 38.09	0.65 0.69 0.35 0.30		
5 5 =======	11874 59665	2.4346151E+00 2.7539078E+00	4.82E-01 1.97E-01	19.80 7.15	21.57*	0.74	0.49	 5
		S	tandard	FKS				

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1	11988	2.9057032E+00	8.35E-02	2.87	3.15*	7.90		
2	11962	2.8591952E+00	5.20E-02	1.82	1.99*	10.91		
3	11936	2.9277880E+00	4.09E-02	1.40	1.52*	14.48		
4	11902	2.8512337E+00	3.98E-02	1.40	1.52*	13.70		
5	11874	2.8855399E+00	3.87E-02	1.34	1.46*	17.15		
5	59662	2.8842006E+00	2.04E-02	0.71	1.72	17.15	0.53	5
		EVC	ith recen					

FKS with resonance mappings

Keep resonances in ME-PS merging

- Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power, but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$
- ?resonance_history = true
 resonance_on_shell_limit = 4
 resonance_on_shell_turnoff = 1
 resonance_background_factor = 1e-10
 - Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

• LC Generator Group first successful tests on $e^+e^- \rightarrow 6j$; includes tests w/ resonant $H \rightarrow bb$

- Intention: directly communicate between event records of WHIZARD and PYTHIA8
- No intermediate files: direct communication between event records
- Allows for using all the machinery for matching and merging from PYTHIA8

				======	========			=======				
Kunning		SL. WIII2	aru_tila									
Running t	est: whi	zard_lha	_1									
	LHA in	itializa	tion infor	mation								
beam	kind	energ	y pdfgrp	pdfset								
Α	2212	6500.00	0 -1	-1								
В	2212	6500.00	0 -1	-1								
Event w	eighting	strateg	v = -3									
			, ,									
Process	es, with	strateg	y-dependen	t cross	section i	nfo						
number	1 1 00000+00 5 00000-07			pD) - 07	1 0000p+0							
2	2 1.2000e+00 6.0000e-02			- 02	1.0000e+0	0						
3	3 1.4000e+00 7.0000e-0			- 02	1.0000e+0	0						
4 1.6900e+00			8.0000e	- 02	1.0000e+00							
5	1.00	002700	9.00000	- 02	1.00002+0							
	End LH	A initia	lization i	nformati	on							
succ	ess.		_									
Running t	est: Wni INA in	itializa	_2 tinn infor	mation								
		1.101120										
beam	kind	energ	y pdfgrp	pdfset								
A	2212	6500.00	0 -1 0 -1	-1								
в	2212	0300.00	0 -T	-1								
Event w	eighting	strateg	y = -3									
		stratos		+	costion i	nto						
number	es, with Xse	c (nh)	y-dependen xerr (nhì	xmax (pb	n ro n						
1	1.00	00e+00	5.0000e	- 02	1.0000e+0	0						
	End 14											
	ENO LA	a initia	117ation 1	ntormati	on							
	LHA ev	ent info	rmation an	d listin	g							
		1		1 0000	00	1	1 0000	02 (0-10)				
proce	55 =	1	loha em =	1.0000	le-03 a	scale =	1.0000e+	03 (GEV) 0000e-01				
Parti	cipating	Partic1	es						-	_		
no 1	2011	stat	mothers	COLOU	a a	_X	P_y	p_z	e 1 666	m 1 คคค	e eee	5011
2	2011	-9	9 9	0	0 0	.000	0.000	0.000	2.000	2.000	0.000	0.000
3	11	-1	1 θ	0	0 0	.000	0.000	0.000	4.000	4.000	0.000	0.00
4	12	-1	2 0	0	0 0	.000	0.000	0.000	6.000	6.000	0.000	0.000
5	91 92	3	1 0	0	0 0	.000	0.000	0.000	3.000	3.000	0.000	0.00
7	32	1	3 4	0	0 0	.000	9.000	0.000	7.000	7,000	0.000	0.00
8	4	1	3 4	0	0 0	.000	0.000	0.000	8.000	8.000	0.000	0.00
9	5	1	3 4	0	0 0	.000	0.000	0.000	9.000	9.000	0.000	0.000
	End LH	A event	informatio	n and li	sting							
	Eng En	- event	initiat 10		36118							

\$shower_method = "PYTHIA8"
\$hadronization_method = "PYTHIA8"

Allows to use the PYTHIA8 toolbox for matching

WHIZARD $3.0.0\alpha$