Seminar, Wien, 24.05.2016

Confusions in Cascades – Disentangling New Physics in LHC cascades

Jürgen Reuter

DESY Hamburg

JRR/Wiesler, 1212.5559 [hep-ph], EPJC 73 (2013) 2355; Pietsch/JRR/Sakurai/Wiesler, JHEP 1207 (2012) 148; JRR/Wiesler, PRD84 (2011) 015012; Hagiwara/Kilian/Krauss/Ohl/Plehn/Rainwater/JRR/Schumann, PRD73 (2006) 055005

Seminar, Universität Wien, Wien, May 24th, 2016

Standard Model Triumph: 2012: Discovery of a Higgs boson

... and what now?

A St	TLAS SUSY S atus: March 2016	earche	s* - 95	ATLAS Preliminary $\sqrt{s} = 7, 8, 13 \text{ TeV}$				
	Model	e, μ, τ, γ	/ Jets	E_{T}^{miss}	∫£ dt[fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	MSUGRA/CMSSM 導発。一中の 第二、一一の 第二、二 第二、一一の 第二、一 二 二 二 二 二 二 二 二 二 二 二 二 二	$\begin{array}{c} 0{-}3\;e_{,\mu}/1{\cdot}2\;\tau\\ 0\\ mono_{,[0]}\\ 2\;e_{,\mu}\;(off_{,2})\\ 0\\ 1\;e_{,\mu}\\ 2\;e_{,\mu}\\ 2\;e_{,\mu}\\ 2\;e_{,\mu}\\ 2\;\gamma\\ \gamma\\ \gamma\\ 2\;e_{,\mu}\left(Z\right)\\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets / 0-2 jets - 1 b 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 20.3 20.3 20.3 20.3 20	4 4 4 40 390 Get 4 40 Get O Get O 5 50 G	135 T0H mic-010 mic-010 mic-010 mic-010 mic-010 mic-010 mic-010 100 EXECT mic-010	1507.05825 ATL86-CONF-2015-062 To synwar 1508.03280 ATL86-CONF-2015-076 1507.03280 1507.05460 1507.05460 1507.05460 1507.05460 1507.05460 1507.05460 1507.05460 1507.05460
3 nd gen. ĝ med.	$\begin{array}{c} \hat{g}\hat{g}, \hat{g} \rightarrow bb\hat{\chi}_{1}^{0} \\ \hat{g}\hat{g}, \hat{g} \rightarrow b\hat{\chi}_{1}^{0} \\ \hat{g}\hat{g}, \hat{g} \rightarrow b\hat{\chi}_{1}^{0} \end{array}$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	ž ž	1.78 TeV m(k ²)×800 GeV 1.76 TeV m(k ²)≈0 GeV 1.37 TeV m(k ²)×300 GeV	ATLAS-CONF-2015-067 To appear 1407.0500
3r ⁴ gen. squarks direct production	$\begin{array}{l} b_1 b_1, b_1 \rightarrow b \tilde{\chi}_1^0 \\ b_1 b_1, b_1 \rightarrow t \tilde{\chi}_1^0 \\ \tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow b \tilde{\chi}_1^0 \\ \tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow \delta \tilde{\chi}_1^0 \\ \tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow \delta \tilde{\chi}_1^0 \\ \tilde{\chi}_1 \tilde{\chi}_1, \tilde{\chi}_1 \rightarrow \delta \tilde{\chi}_1^0 \\ \tilde{\chi}_1 \tilde{\chi}_2, \tilde{\chi}_2 \rightarrow \tilde{\chi}_1 + \lambda \end{array}$	0 $2 e, \mu$ (SS) $1 \cdot 2 e, \mu$ $0 \cdot 2 e, \mu$ 0 $2 e, \mu$ (Z) $3 e, \mu$ (Z) $1 e, \mu$	2 b 0-3 b 1-2 b 0-2 jets/1-2 mono-jet/c-tz 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	State 560 GeV 1/1 75-170 GeV 202-540 GeV 1/1 75-170 GeV 200-500 GeV 1/1 90-186 GeV 205-715 GeV 1/1 90-245 GeV 205-715 GeV 1/1 90-245 GeV 1/1 150-600 GeV 1/1 230-610 GeV 1/1 320-620 GeV	배양)-11006W 배양)-5006W (10) = 10051-10006W 배양)-1008W (10) = 201071-0506W 배양)-1008W 배양)-1008W 배양)-1006W 배양)-2006W 배양)-06W	ATLAS-CONF-2015-066 1402.09058 1209.2102.1407.0563 60616, ATLAS-CONF-2016-0 1407.0508 1403.5222 1403.5222 1506.08816
EW direct	$ \begin{array}{l} \hat{t}_{1,R} \hat{t}_{1,R}, \hat{t} \rightarrow l \hat{t}_{1}^{0} \\ \hat{x}_{1}^{+} \hat{x}_{1}^{-}, \hat{x}_{1}^{+} \rightarrow l \tau (\ell P) \\ \hat{x}_{1}^{+} \hat{x}_{1}^{-}, \hat{x}_{1}^{+} \rightarrow \tau (\tau P) \\ \hat{x}_{1}^{+} \hat{x}_{2}^{-} \rightarrow \ell_{R} \hat{t}_{1} \hat{t}_{1}^{+} (\ell P), (\ell P), (\ell P), (\ell P), \\ \hat{x}_{1}^{+} \hat{x}_{2}^{-} \rightarrow W \hat{x}_{1}^{+} \hat{x}_{1}^{P} \\ \hat{x}_{1}^{+} \hat{x}_{2}^{-} \rightarrow W \hat{x}_{1}^{+} \hat{x}_{1}^{P}, h \rightarrow b \hat{b} / W W \\ \hat{x}_{2}^{+} \hat{x}_{2}^{+} \hat{x}_{2}^{-} \rightarrow \ell_{R} \ell \\ GGM (wino NLSP) weak proceeding (0.15P) weak proceedin$	2 c,μ 2 c,μ 2 τ 3 c,μ 2-3 c,μ τ7/γγ c,μ,γ 4 c,μ 1 1 c,μ + γ	0 0 0-2 jets 0-2 h 0 -2	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	7 90-325 GeV 4 35 GeV 4 35 GeV 4 4 5 5 GeV 4 5 4 5 GeV 4 5 6 6 5 GeV 4 5 6 6 5 GeV 4 5 6 6 5 6 5 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 5 6 6 6 5 6 6 6 5 6 6 6 6 5 6	المَّانَ المَّانَ المَّالِ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ اللَّهُ مَنْ اللَّهُ ال المَّانَ اللَّهُ اللَّهُ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ مَنْ اللَّهُ م الألَّهُ اللَّهُ اللَّ	1403.5294 1403.5294 1407.0359 1402.7029 1403.5294, 1402.7029 1403.5294, 1402.7029 1403.5294, 1402.7029 1405.5095 1507.05493
Long-lived particles	Direct $k_1^+ k_1^-$ prod., long-lved. Direct $k_1^+ k_1^-$ prod., long-lved. Stable, stopped \tilde{g} R-hadron Motastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{k}_1^0 \rightarrow \tilde{\tau}(\tilde{\epsilon}, \tilde{\mu}) +$ GMSB, $k_1^0 \rightarrow \sigma \tilde{\epsilon}$, long-lved k_1^0 $\tilde{g}_{\tilde{g}}, \tilde{k}_1^0 \rightarrow \sigma \sigma / \rho w / \rho w$ GGM $\tilde{g}_{\tilde{g}}, \tilde{k}_1^0 \rightarrow Z \tilde{G}$	$ \begin{array}{c} \widehat{\mathfrak{r}}_1^+ & \operatorname{Disapp. } \operatorname{tr} \\ \widetilde{\mathfrak{r}}_1^- & \operatorname{dE/dx} \operatorname{tr} \\ 0 \\ \operatorname{dE/dx} \operatorname{tr} \\ \operatorname{r}(e,\mu) & 1\cdot 2 \\ 2 \\ \gamma \\ \operatorname{displ. } ec/e\mu/, \\ \operatorname{displ. } \operatorname{vtx} + \operatorname{je} \end{array} $	i 1 jet 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes Yes Yes	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	41 270 GeV 495 GeV 5 495 GeV 5 495 GeV 5 495 GeV 5 495 GeV 5 400 GeV 1.0 To 5 40 GeV 1.0 To	페(1) - 마(1) - 120 MAU, 가(1) - 12 MAU (1) - 매(1) - 120 MAU, 가(1) - 12 MA (1) - 110 - 120 MAU, 가(1) - 12 MA (1) - 120 CAU (1) JAU (1) - 120 CAU (1) JAU (1) - 120 CAU (1) - 120 MA (1) - 120 CAU (1) - 120 MAU (1) - 120 MA	1310.3675 1506.05332 1310.6584 To syncar 1411.6785 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV \ \rho p \! \rightarrow \! \tilde{r}_{1} + X_{1} \bar{r}_{1} \! \rightarrow \! cep(e\tau)/e\tau/\mu \\ Bilinear \ FPV \ CMSSM \\ \mathcal{K}_{1}^{*}(\tilde{x}_{1}^{*}, \tilde{x}_{1}^{*}) \! \rightarrow \! M_{1}^{*} \mathcal{K}_{1}^{*} \! \rightarrow \! cep_{p}_{p}_{p}_{q}_{q} \\ \mathcal{K}_{1}^{*}(\tilde{x}_{1}^{*}, \tilde{x}_{1}^{*}) \! \rightarrow \! M_{1}^{*} \mathcal{K}_{1}^{*} \! \rightarrow \! cep_{p}_{p}_{q}_{q} \\ \mathcal{R}_{2}^{*} \mathcal{R}_{2}^{*} \! \rightarrow \! ogg_{1} \\ \mathcal{R}_{2}^{*} \mathcal{R}_{2}^{*} \! \rightarrow \! ogg_{1} \\ \mathcal{R}_{2}^{*} \mathcal{R}_{2}^{*} \! \rightarrow \! ogg_{1} \\ \mathcal{R}_{2}^{*} \mathcal{R}_{2}^{*} \! \rightarrow \! off_{1}, \mathcal{R}_{1}^{*} \! \rightarrow \! ogg_{1} \\ \mathcal{R}_{1}^{*} \mathcal{R}_{1}^{*} \! \rightarrow \! off_{1} \end{array} $	τ $e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) p_{e} $4 e, \mu$ δ_{e} $3 e, \mu + \tau$ 0 $2 e, \mu$ (SS) 0 $2 e, \mu$	0-3 b 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	· Yes Yes · · Yes ·	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	7. 4.2 4.2 4.2 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	1,7 TeV J ₁₁ =0.11, J ₁₂₃₁₀₂₀ →0.67 1.45 TeV mil@millstrap <t td=""> mil@millstrap<t td=""> millstrap<t td=""> millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 millprod2mm(T), J₁₂₀m0 0 millprod2mm(T), J₁₂₀m0</t></t></t>	1500.04430 1404.2500 1405.5088 1405.5088 1500.05888 1500.05888 1404.2500 1601.07453 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_1^D$	0	2 c	Yes	20.3	2 510 GeV	m(ℓ_1^4)<200 GeV	1501.01325
*On	ly a selection of the availation of the selection of the	able mass lim	its on new		1	-1	1 Mass scale [TeV]	-

... and what now?

ATLAS Exotics Searches* - 95% CL Exclusion

Status: March 2016

 $\begin{array}{l} \textbf{ATLAS} \quad \text{Preliminary} \\ \hline{\mathcal{L}} dt = (3.2 \cdot 20.3) \text{ fb}^{-1} & \sqrt{s} = 8, 13 \text{ TeV} \end{array}$

	Model	ί,γ	Jets†	ET	∫£ dt[fb	1] Limit	Reference
Extra dimensions	$\begin{array}{l} ADD\;G_{XY}+\underline{\mu}/q\\ ADD\;cnn-resonant\;\ell\ell\\ ADD\;OBH\\ ADD\;OBH\\ ADD\;OBH\\ ADD\;OBH\;mablyn\\ ADD\;BH\;mablyn\\ RSI\;Gor_{Y}-\gamma\gamma\\ BM\;RSI\;Gor_{Y}-\gamma\gamma\\ BM\;RSI\;Gor_{Y}+\mathcal{W} \to op\ell\nu\\ BM\;RSI\;Gor_{Y} \to tt\\ SUED(RPP) \end{array}$	$\begin{array}{c} - & 2 e, \mu \\ 1 e, \mu \\ - & 2 e, \mu \\ 2 \gamma \\ 1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \end{array}$	$ \begin{array}{c} \geq 1 j \\ - \\ 2 j \\ \geq 2 j \\ \geq 3 j \\ - \\ - \\ 1 J \\ 4 b \\ \geq 1 b, \geq 1 J \\ \geq 2 b, \geq 4 \end{array} $	- - - - - - - - - - - - - - - - - - -	3.2 20.3 20.3 3.6 3.2 3.6 20.3 20.3 3.2 3.2 3.2 3.2 20.3 3.2 3.2 20.3 3.2	Apple Control (Control (Contro) (Control (Contro) (Control (C	Preliminary 1407.2410 1311.2008 1512.01550 ATLAS-CONF-2016 00 1512.02588 1406.4123 1594.05511 ATLAS-CONF-2016 01 1595.07618 ATLAS-CONF-2016 01
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \rightarrow \mathcal{U} \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Leptophotic } Z' \rightarrow t\sigma \\ \text{SSM } W' \rightarrow \ell \tau \\ \text{HVT } W' \rightarrow WZ \rightarrow qqqv \ \text{model } l \\ \text{HVT } W' \rightarrow WZ \rightarrow qqqp \ \text{model } l \\ \text{HVT } W' \rightarrow WZ \rightarrow qqqp \ \text{model } l \\ \text{HVT } Z' \rightarrow ZH \rightarrow \tau b \\ \text{RSM } W_{S}^{\prime} \rightarrow to \\ \text{LRSM } W_{S}^{\prime} \rightarrow to \end{array}$	2 e, μ 2 τ - 1 e, μ Α 0 e, μ Α - Β 1 e, μ 0 e, μ 1 e, μ 0 e, μ	- 2 b - 1 J 2 J 1 - 2 b, 1 - 0 1 - 2 b, 1 - 0 2 b, 0 - 1 j 2 1 b, 1 - 1	- Viss Viss - Viss - Viss - Viss - -	3.2 19.5 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 20.3 20.3	Z main 3.45 (w) Z main 2.02 (w) Z main 1.5 (w) W main 1.5 (w)	ATLAS-CONF-2015-07 1522/07177 Pretrinary ATLAS-CONF-2015-08 ATLAS-CONF-2015-08 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07
õ	Cl qqqq Cl qqff Cl sutt	2 e.μ 2 e.μ (SS	2j 	j Yes	3.6 3.2 20.3	A 17.5 TeV (Ψ ₁ = -1 A 23.1 TeV (Ψ ₁ = -1 A 4.3 TeV (K ₁ = 1	1512.01530 ATLAS-CONF-2015-07 1504.04605
MO	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) ZZ _{XX} EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	ma 1.0 TeV g_e^{-0.25}, g_e^{-1}, m_{e}^{*}() < 140 ma 650 GeV g_e^{-0.25}, g_e^{-1}, m_{e}^{*}() < 100	eV Preliminary V Preliminary ATLAS-CONF-2015-08
07	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2μ 1 e.μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	_ j Yes	3.2 3.2 20.3	LO mass 1.07 TeV β = 1 LO mass 1.03 TeV β = 1 LO mass 640 GeV β = 0	Preliminary Preliminary 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\; TT \rightarrow Ht + X \\ VLQ\; YY \rightarrow Wb + X \\ VLQ\; BB \rightarrow Hb + X \\ VLQ\; BB \rightarrow Zb + X \\ VLQ\; BB \rightarrow Zb + X \\ VLQ\; QQ \rightarrow WqWq \\ T_{5/2} \rightarrow Wt $	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 1 e, μ	$\begin{array}{c} \geq 2 b, \geq 3 \\ \geq 1 b, \geq 3 \\ \geq 2 b, \geq 3 \\ \geq 2 b, \geq 3 \\ \geq 2 2 b, \geq 4 \\ \geq 4 j \\ \geq 1 b, \geq 5 \end{array}$	100 100 100 100 100 100 100 100 100 100	20.3 20.3 20.3 20.3 20.3 20.3 20.3	Transe 855 Gayl T m (15) exclusive Ymme 770 GWY Y H (12) Yi oubside Branse 728 GeVI H (12) Yi oubside Branse 728 GeVI Bogs or subside Granse 780 GeVI Bin (12) Yi oubside Granse 690 GeVI Bin (12) Yi oubside	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 1509.05425
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wr$ Excited lepton ℓ^* Excited lepton v^*	1 γ - 1 or 2 e, μ 3 e, μ, τ	1j 2j 1b,1j 1b,20j -	- Vos	3.2 3.6 3.2 20.3 20.3 20.3	41.70// * romo cor/ i + or of - Λ = n(c') * romo 5.2.16V/ * romo cor/ i + or of - Λ = n(c') * romo 2.3.17V/ * romo cor/ i + or of - Λ = n(c) * romo 1.5.17V/ * romo f - Λ = Λ = 1 * romo 3.0.16V/ * romo Λ = 3.076V/ Λ = 3.076V Λ = 3.076V	1512.05910 1512.01530 Preliminary 1510.02664 1411.2921 1411.2921
Other	LSTC a _T → Wy LRSM Majorana v Higgs triptet M ^{**} → Cf Higgs triptet M ^{**} → rr Monotop (non-res prod) Multi-chinged particities Megnetic monopoles	1 e, μ, 1 γ 2 e, μ 2 e, μ (SS 3 e, μ, τ 1 e, μ - -	√ 2j 1b 	Yes Yes 3 TeV	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	а токата Вани и продика и продукти и продук	1407.8150 1506.05020 1 1412.0237 1 1417.5201 1410.5404 1504.04158 1/2 1509.08059
						mass scale [1	.v1

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

+Small-radius (large-radius) jets are denoted by the letter j (J).

... return of the diphotons ??

Electroweak vacuum stability / Hierarchy Problem

Most recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

Electroweak vacuum stability / Hierarchy Problem

Most recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

Electroweak vacuum stability / Hierarchy Problem

Most recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

What generated/stabilized the hierarchy?

Supersymmetry

Spin-Statistics: M_H stabilized to all orders

connects space-time & gauge symmetries

Partner particles shifted by half-integer in spin

Grand Unification: weak interactions to very high scales

R-Parity: Dark Matter

XDim./Compositeness

Hierarchy problem solved by elimination of hierarchy

New gauge interaction / Higher-dim. space-time symmetry

Partner particles shifted by integer in spin

Possible strong interactions at TeV scale

 \mathbb{Z}_2/KK -Parity: Dark Matter

Supersymmetry

Spin-Statistics: M_H stabilized to all orders

connects space-time & gauge symmetries

Partner particles shifted by half-integer in spin

Grand Unification: weak interactions to very high scales

R-Parity: Dark Matter

XDim./Compositeness

Hierarchy problem solved by elimination of hierarchy

New gauge interaction / Higher-dim. space-time symmetry

Partner particles shifted by integer in spin

Possible strong interactions at TeV scale

 \mathbb{Z}_2/KK -Parity: Dark Matter

Decay products of heavy particles:

- ▶ high-p_T Jets
- many hard leptons

Production of colored particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- \blacktriangleright only pairs of new particles $\ \Rightarrow \$ high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in detector ($\not\!\!E_T$)

Different Models/Decay Chains — same signatures

Decay products of heavy particles:

- ▶ high-p_T Jets
- many hard leptons

Production of colored particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- \blacktriangleright only pairs of new particles \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in detector ($\not\!\!E_T$)

Different Models/Decay Chains — same signatures

Decay products of heavy particles:

- ► high-p_T Jets
- many hard leptons

Production of colored particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- \blacktriangleright only pairs of new particles \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in detector ($\not\!\!E_T$)

Mass of new particles: end points of decay spectra

Decay products of heavy particles:

- ▶ high-p_T Jets
- many hard leptons

Production of colored particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- \blacktriangleright only pairs of new particles \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in detector ($\not\!\!E_T$)

Spin of new particles: Spin of new particles: angular correlations, ...

LHC Warm-Up: Sbottom Production Hagiwara/.../JRR/..., PRD 73 (2006) 055005

 $ilde{b}_1$ production with subsequent decay $ilde{b}_1 o ilde{\chi}_1^0 b$

Process $A_1A_2 \rightarrow P^{(*)} \rightarrow F_1F_2$, 3 different steps:

 $\begin{array}{ll} \text{Narrow Width (NWA)} & \sigma(A_1A_2 \to P) \times \text{BR}(P \to F_1F_2) \\ \text{Breit-Wigner} & \sigma(A_1A_2 \to P) \times \frac{M_P^2 \Gamma_P^2}{(s - M_P^2)^2 + \Gamma_P^2 M_P^2} \times \text{BR}(P \to F_1F_2) \\ \text{Full matrix element} & \sigma(A_1A_2 \to F_1F_2) \end{array}$

$$pp \rightarrow b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0$$

Main background: $gg \rightarrow b\bar{b}\nu\bar{\nu}$

Signal jets harder

LHC Warm-Up: Sbottom Production Hagiwara/.../JRR/..., PRD 73 (2006) 055005

 $ilde{b}_1$ production with subsequent decay $ilde{b}_1 o ilde{\chi}_1^0 b$

Process $A_1A_2 \rightarrow P^{(*)} \rightarrow F_1F_2$, 3 different steps:

 $\begin{array}{ll} \text{Narrow Width (NWA)} & \sigma(A_1A_2 \to P) \times \text{BR}(P \to F_1F_2) \\ \text{Breit-Wigner} & \sigma(A_1A_2 \to P) \times \frac{M_P^2\Gamma_P^2}{(s-M_P^2)^2 + \Gamma_P^2M_P^2} \times \text{BR}(P \to F_1F_2) \\ \text{Full matrix element} & \sigma(A_1A_2 \to F_1F_2) \end{array}$

PS: Harder jet more central

Off-shell effects $(b\bar{b}Z^*)$: only for low $p_{T,b} \longrightarrow \text{cut}$ out

Not generally guaranteed

ISR: Bottom Jet Radiation

Hagiwara/.../JRR/..., PRD 73 (2006) 055005

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR as combinatorial background

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 diagrams, 22 color flows, ~ 4000 PS channels

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb} \longrightarrow \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$

Forward discrimination of ISR and decay-b jets difficult:

Only the most forward b jet is softer

ISR: Bottom Jet Radiation

Hagiwara/.../JRR/..., PRD 73 (2006) 055005

 $g \rightarrow b\bar{b}$ -Splitting, b-ISR as combinatorial background

 $pp \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 b \bar{b} b \bar{b}$: 32112 diagrams, 22 color flows, ~ 4000 PS channels

 $\sigma(pp \to b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 1177 \text{ fb} \longrightarrow \sigma(pp \to b\bar{b}b\bar{b}\tilde{\chi}_1^0\tilde{\chi}_1^0) = 130.7 \text{ fb}$

Only small differences in $p_{T,b}$, PDF: maximum at a smaller value

shifted to smaller p_T : light particles balance out the event

Confusions in Cascades - Disentangling New Physics in searches at the LHC

Seminar Wien 24.05 201

WHT7ARD

Kilian/Ohl/JRR: DESY/Freiburg/Siegen/Würzburg, hep-ph/0102195, EPJC 71 (2011) 1742

- All simulations in this talk done with WHIZARD
- Multi-Purpose event generator for collider physics
 - Fast adaptive multi-channel Monte-Carlo integration
 - Very efficient phase space and event generation
 - Optimized/-al matrix elements uses the color flow formalism

Kilian/Ohl/JRR/Speckner, JHEP 1210 (2012) 022

- Recent version: 2.2.8 (22.11.2015) http://whizard.hepforge.org/
- [2.3.0 will come 07/2016]
- Parton shower (k^{\perp} -ordered and analytic) Kilian/JRR/Schmidt/Wiesler, JHEP 1204 (2012) 013
- NLO QCD for lepton and hadron collisions
- 2.2 Features: ME/PS matching, cascades, top threshold matching
- Upcoming: general Lorentz structures, UFO support etc.
- Interface to FeynRules & SARAH

Versatile input language: SINDARIN

Christensen/Duhr/Fuks/JRR/Speckner, EPJC 72 (2012) 1990

I: Off-Shell Effects

Confusions from Off-Shell Effects: Fat Gluinos

- ► SUSY: weakly coupled + discrete parity ⇒ Narrow resonances
- Exception: some Higgses ... and Gluino
- Width-to-mass ratio $\gamma := \Gamma/M \sim$ few to 15-20 % Theoretical upper limit $\gamma \sim 32\%$ (without invisible or exotic decays)
- Example realization: GMSB

 $M_{\tilde{g}} \sim 2 \, {\rm TeV} \qquad \Gamma_{\tilde{g}} \sim 240 \, {\rm GeV}$

- Plan: scan over "fat gluinos" in "full" simulation
- Comparison between SUSY vs. UED
- Generic scan over 5 values: $\gamma \in \{0.5\%, 2.5\%, 5\%, 10\%, 15\%\}$
- Look for impact on mass and spin observables

• Standard Gluino Cascade: $2 \rightarrow 10$ Numerically challenging (PS!!!)

• Standard Gluino Cascade: $2 \rightarrow 10$ Numerically challenging (PS!!!)

Factorization in Narrow-Width-Approximation (NWA)

• Standard Gluino Cascade: $2 \rightarrow 10$ Numerically challenging (PS!!!)

Factorization in Narrow-Width-Approximation (NWA)

• Trade-off accuracy vs. speed

• Standard Gluino Cascade: $2 \rightarrow 10$ Numerically challenging (PS!!!)

Factorization in Narrow-Width-Approximation (NWA)

• Trade-off accuracy vs. speed

- Simulate production and first decay with full matrix elements
- Factorize additional decays with NWA

Simulation Setup

Parton level studies with WHIZARD

- Investigation of ISR, combinatoris, detector effects later Pietsch/JRR/Sakurai/Wiesler, JHEP 1207 (2012) 148
- For each point (UED and SUSY) normalized sets (5k events)

Corresponds roughly to event numbers for 300 fb^{-1}

To study statistics vs. systematics some samples for 25k events

pMSSM19 benchmark scenario

M_1	M_2	M_3	A_t	A_b	A_{τ}	μ	M_A	$m_{\tilde{l}_L}$	$m_{\tilde{\tau}_L}$
150	250	1200	4000	4000	0	1500	1500	1000	1000
$m_{\tilde{l}_R}$	$m_{\tilde{\tau}_R}$	$m_{\tilde{q}_L}$	$m_{\tilde{q}_L^3}$	$m_{\tilde{q}_R^u}$	$m_{\tilde{q}_R^d}$	$m_{\tilde{t}_R}$	$m_{\tilde{b}_R}$	$\tan\beta$	
200	1000	1000	1000	1000	1000	4000	1000	10	

- ... and similar datapoint for UED (for spin determination)
- Setup of (exclusive) decay chains

$$\begin{split} \tilde{g}[1] & \to b \tilde{b}_i \to b \bar{b} \tilde{\chi}_2^0 \to b \bar{b} l^{\pm} \tilde{l}_R^{\mp} \to b \bar{b} l^{\pm} l^{\mp} \tilde{\chi}_1^0 \\ \tilde{g}[2] & \to d \tilde{d}_L \to d \bar{d} \tilde{\chi}_1^0 \end{split}$$

Kilian/Ohl/JBB, EPJC 71 (2011) 1742

Mass determination and "fat" gluinos

- Decay chain: $\tilde{g}[1] \rightarrow b\tilde{b}_i \rightarrow b\bar{b}\tilde{\chi}_2^0 \rightarrow b\bar{b}l^{\pm}\tilde{l}_R^{\mp} \rightarrow b\bar{b}l^{\pm}l^{\mp}\tilde{\chi}_1^0$
- Far b jet not affected, but the near one! black: 0.5%, red: 2.5%, green: 5%, blue: 10%, yellow: 15%

Mass determination and "fat" gluinos

- Decay chain: $\tilde{g}[1] \rightarrow b \tilde{b}_i \rightarrow b \bar{b} \tilde{\chi}_2^0 \rightarrow b \bar{b} l^{\pm} \tilde{l}_R^{\mp} \rightarrow b \bar{b} l^{\pm} l^{\mp} \tilde{\chi}_1^0$
- Far b jet not affected, but the near one! black: 0.5%, red: 2.5%, green: 5%, blue: 10%, yellow: 15%

Mass determination and "fat" gluinos

- Decay chain: $\tilde{g}[1] \rightarrow b \tilde{b}_i \rightarrow b \bar{b} \tilde{\chi}_2^0 \rightarrow b \bar{b} l^{\pm} \tilde{l}_R^{\mp} \rightarrow b \bar{b} l^{\pm} l^{\mp} \tilde{\chi}_1^0$
- Far b jet not affected, but the near one! black: 0.5%, red: 2.5%, green: 5%, blue: 10%, yellow: 15%

Numerical Endpoint Estimation: Edge-to-bump method

- Trying to find edges by fitting lines very human-biased and error-prone
- Idea: do a naive kink fit $\mathcal{O}(1000)$ times
- Edge-to-bump method descent of the second second

Curtin, 2012

Numerical Endpoint Estimation: Edge-to-bump method

- Trying to find edges by fitting lines very human-biased and error-prone
- Idea: do a naive kink fit $\mathcal{O}(1000)$ times
- Edge-to-bump method

Curtin, 2012

Turns edge-localization into a bump search

Numerical Endpoint Estimation: Edge-to-bump method

- Trying to find edges by fitting lines very human-biased and error-prone
- Idea: do a naive kink fit $\mathcal{O}(1000)$ times
- Edge-to-bump method

Curtin, 2012

Turns edge-localization into a bump search

- Analyze resulting distribution of fit values
- Distribution of values measure/estimate for uncertainty

More Examples

• $m_{bb\ell}^{low}$, $m_{bb\ell}^{high}$: two endpoints in $m_{bb\ell}$

black: 0.5%, red: 2.5%, green: 5%, blue: 10%, yellow: 15%

More Examples

• $m_{bb\ell}^{low}$, $m_{bb\ell}^{high}$: two endpoints in $m_{bb\ell}$

black: 0.5%, red: 2.5%, green: 5%, blue: 10%, yellow: 15%

Endpoints severely degraded (at parton level!!)

Spin Determination (I)

• Method I: Shape asymmetry of $m_{b\ell}$

$$A^{\pm}[m_{b\ell}] = \frac{d\sigma/dm_{b\ell^+} - d\sigma/dm_{b\ell^-}}{d\sigma/dm_{b\ell^+} + d\sigma/dm_{b\ell^-}}$$

Spin Determination (I)

• Method I: Shape asymmetry of $m_{b\ell}$

$$A^{\pm}[m_{b\ell}] = \frac{d\sigma/dm_{b\ell^+} - d\sigma/dm_{b\ell^-}}{d\sigma/dm_{b\ell^+} + d\sigma/dm_{b\ell^-}}$$

Spin Determination (I)

• Method I: Shape asymmetry of $m_{b\ell}$

$$A^{\pm}[m_{b\ell}] = \frac{d\sigma/dm_{b\ell^+} - d\sigma/dm_{b\ell^-}}{d\sigma/dm_{b\ell^+} + d\sigma/dm_{b\ell^-}}$$

Spin Determination (I)

• Method I: Shape asymmetry of $m_{b\ell}$

$$A^{\pm}[m_{b\ell}] = \frac{d\sigma/dm_{b\ell^+} - d\sigma/dm_{b\ell^-}}{d\sigma/dm_{b\ell^+} + d\sigma/dm_{b\ell^-}}$$

Shape asymmetry not affected by fat gluino!

Spin Determination (II)

• Method II: Angular correlations and asymmetries

.
$$\boxed{\cos\theta_{jj}^* = \tanh\left(\frac{\Delta\eta_{jj}}{2}\right)}_{\text{Moortgat-Pick/Rolbiecki/Tattersall, 2011}}$$

$$\Delta \phi_{bb} = |\phi(b_1) - \phi(b_2)|$$

Alves/Eboli/Plehn, 2006

Spin Determination (II)

16/31

1.

2.

L Route

• Method II: Angular correlations and asymmetries

 $\boxed{\cos \theta_{jj}^* = \tanh\left(\frac{\Delta \eta_{jj}}{2}\right)}_{\text{Moortgat-Pick/Rolbiecki/Tattersall, 2011}}$

$$A_{ct}^{\pm} = \frac{N(|\cos\theta_{qq}^{*}| < 0.5) - N(|\cos\theta_{qq}^{*}| > 0.5)}{N(|\cos\theta_{qq}^{*}| < 0.5) + N(|\cos\theta_{qq}^{*}| > 0.5)}$$

$$\Delta\phi_{bb} = |\phi(b_1) - \phi(b_2)|$$

Alves/Eboli/Plehn, 2006

$$\boxed{A^{\pm}_{\phi} = \frac{N(\Delta\phi_{bb} < \pi/2) - N(\Delta\phi_{bb} > \pi/2)}{N(\Delta\phi_{bb} < \pi/2) + N(\Delta\phi_{bb} > \pi/2)}}$$

1.

2.

Spin Determination (II)

• Method II: Angular correlations and asymmetries

 $\boxed{\cos\theta_{jj}^{*} = \tanh\left(\frac{\Delta\eta_{jj}}{2}\right)}_{\text{Moortgat-Pick/Rolbiecki/Tattersall, 2011}}$

$$A_{ct}^{\pm} = \frac{N(|\cos\theta_{qq}^{*}| < 0.5) - N(|\cos\theta_{qq}^{*}| > 0.5)}{N(|\cos\theta_{qq}^{*}| < 0.5) + N(|\cos\theta_{qq}^{*}| > 0.5)}$$

$$\Delta\phi_{bb} = |\phi(b_1) - \phi(b_2)|$$

Alves/Eboli/Plehn, 2006

$$\boxed{A^{\pm}_{\phi} = \frac{N(\Delta\phi_{bb} < \pi/2) - N(\Delta\phi_{bb} > \pi/2)}{N(\Delta\phi_{bb} < \pi/2) + N(\Delta\phi_{bb} > \pi/2)}}$$

1.5

0.5

2.5

4 6...

II. Combinatorics

SUSY backgrounds

- Simultaneous production: Gluinos and squarks
- Inclusive decays/multiple jets from diff. origins

SUSY backgrounds

- Simultaneous production: Gluinos and squarks
- Inclusive decays/multiple jets from diff. origins

Genuine combinatorial backgrounds

- ► Large signal jet multiplicities ⇒ Plethora of combinations
- Initial State Radiation (ISR): additional source of jets

SUSY backgrounds

- Simultaneous production: Gluinos and squarks
- Inclusive decays/multiple jets from diff. origins

Genuine combinatorial backgrounds

- ► Large signal jet multiplicities ⇒ Plethora of combinations
- Initial State Radiation (ISR): additional source of jets
- False assignment distort endpoints

SUSY backgrounds

- Simultaneous production: Gluinos and squarks
- Inclusive decays/multiple jets from diff. origins
- Genuine combinatorial backgrounds
 - ► Large signal jet multiplicities ⇒ Plethora of combinations
 - Initial State Radiation (ISR): additional source of jets
- False assignment distort endpoints
- Combinatorics can be reduced
 Choi/Guadagnoli/Park, 2011

Rajamaran/Yu, 2010; Baringer/Kong/McCaskey, 2011;

SUSY backgrounds

- Simultaneous production: Gluinos and squarks
- Inclusive decays/multiple jets from diff. origins
- Genuine combinatorial backgrounds
 - ► Large signal jet multiplicities ⇒ Plethora of combinations
 - Initial State Radiation (ISR): additional source of jets
- False assignment distort endpoints
- Combinatorics can be reduced Rajamaran/Yu, 2010; Ba Choi/Guadagnoli/Park, 2011
 - Rajamaran/Yu, 2010; Baringer/Kong/McCaskey, 2011;
- Some methods require dijet endpoint measurement

SUSY backgrounds

- Simultaneous production: Gluinos and squarks
- Inclusive decays/multiple jets from diff. origins
- Genuine combinatorial backgrounds
 - ► Large signal jet multiplicities ⇒ Plethora of combinations
 - Initial State Radiation (ISR): additional source of jets
- False assignment distort endpoints
- Combinatorics can be reduced
 Rajamaran/Yu, 2010; Baringer/Kong/McCaskey, 2011;
 Choi/Guadagnoli/Park, 2011
- Some methods <u>require</u> dijet endpoint measurement
- Dijet itself suffers a lot from both backgrounds
- Motivation: Study fully inclusive dijet measurement

Pietsch/JRR/Sakurai/Wiesler, JHEP 1207 (2012) 148

Simplified Models and Scenarios

- Sleptons, Higgsinos, third generation decoupled
- ▶ Higgs at 125 GeV \Rightarrow heavy scalars, light gauginos
- Gauginos fix, vary squark masses in three scenarios

$m_{\tilde{g}}$	$m_{\tilde{w}}$	$m_{\tilde{b}}$	Scenario	Α	В	С
1200 GeV	400 GeV	200 GeV	$m_{\widetilde{q}}$	1300 GeV	1900 GeV	10000 GeV

Simplified Models and Scenarios

- Sleptons, Higgsinos, third generation decoupled
- Higgs at 125 GeV \Rightarrow heavy scalars, light gauginos
- Gauginos fix, vary squark masses in three scenarios

$m_{ ilde{g}}$	$m_{ ilde w}$	$m_{\tilde{b}}$	Scenario	Α	В	С
1200 GeV	400 GeV	200 GeV	$m_{ ilde{q}}$	1300 GeV	1900 GeV	10000 GeV

Three-body gluino decay into light gauginos:

wino edge	$m_{jj}^{max}(\tilde{w}) = m_{\tilde{g}} - m_{\tilde{w}}$	= 800 GeV
bino edge	$m_{jj}^{max}(\tilde{b}) = m_{\tilde{g}} - m_{\tilde{b}}$	$= 1000 \; \mathrm{GeV}$

Simplified Models and Scenarios

- Sleptons, Higgsinos, third generation decoupled
- ▶ Higgs at 125 GeV \Rightarrow heavy scalars, light gauginos
- Gauginos fix, vary squark masses in three scenarios

$m_{ ilde{g}}$	$m_{ ilde w}$	$m_{\tilde{b}}$	Scenario	Α	В	С
1200 GeV	400 GeV	200 GeV	$m_{ ilde{q}}$	1300 GeV	1900 GeV	10000 GeV

Three-body gluino decay into light gauginos:

wino edge	$m_{jj}^{max}(\tilde{w}) = m_{\tilde{g}} - m_{\tilde{w}}$	= 800 GeV
bino edge	$m_{jj}^{max}(\tilde{b}) = m_{\tilde{g}} - m_{\tilde{b}}$	$= 1000 \; \mathrm{GeV}$

- Small mass difference
 Squark decay to light gauginos
 - Associated production dominant
 One signal gluino / squark bg
- Moderate mass difference
 - Associated and pair production
 - Squarks decoupled
 - Pair production only

- Squark decay also to gluino
- Two signal gluinos / many jets
- Two signal gluinos
- Lowest combinatorial bg

► Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

- **A:** 108,000
- ► Samples with **B**: 27,000 events (NLO xsec. @ 14 TeV & 300 fb⁻¹)
 - **C:** 16,000

Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

A: 108,000

► Samples with **B**: 27,000 events (NLO xsec. @ 14 TeV & 300 fb⁻¹)

- **C:** 16,000
- DELPHES fast detector simulation (CMS setup)
 Ovyn/Rouby, 2009

Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

A: 108,000

► Samples with **B**: 27,000 events (NLO xsec. @ 14 TeV & 300 fb⁻¹)

- **C:** 16,000
- DELPHES fast detector simulation (CMS setup)

Ovyn/Rouby, 2009

Checked against CMS full simulation

Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

A: 108,000

► Samples with **B:** 27,000 events (NLO xsec. @ 14 TeV & 300 fb⁻¹)

- **C:** 16,000
- DELPHES fast detector simulation (CMS setup)

Ovyn/Rouby, 2009

Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

- A: 108,000
- ► Samples with **B**: 27,000 events (NLO xsec. @ 14 TeV & 300 fb⁻¹)
 - **C:** 16,000
- DELPHES fast detector simulation (CMS setup)

Ovyn/Rouby, 2009

- Jet setup: anti- k_T algorithm Cacciari/Salam, 2008

• anti
$$-k_T, R = 0.5$$

•
$$p_T > 50 \text{ GeV}$$

•
$$|\eta| < 2.5$$

Fully inclusive event samples from WHIZARD/Herwig++

Kilian/Ohl/JRR, 2007; Bär et al., 2008

- **A:** 108,000
- Samples with B: 27,000 events (NLO xsec. @ 14 TeV & 300 fb⁻¹)
 - **C:** 16,000
- DELPHES fast detector simulation (CMS setup)

Ovyn/Rouby, 2009

- Checked/against/CMS/full/simulation
- Jet setup: anti- k_T algorithm Cacciari/Salam, 2008

• anti
$$-k_T, R = 0.5$$

•
$$p_T > 50 \text{ GeV}$$

•
$$|\eta| < 2.5$$

Baseline selection

CMS-SUS-10-005

- $H_T > 800 \, \text{GeV}$
- $E_T^{miss} > 200 \,\mathrm{GeV}$
- $\Delta \phi(j_{1,2}, E_T^{miss}) > 0.5$

• Counting number of visible decay products (parton level)

• Counting number of visible decay products (parton level)

• Counting number of visible decay products (parton level)

ONLY bino edges in 3-4 partons

• Counting number of visible decay products (parton level)

BOTH bino and wino edges

• Counting number of visible decay products (parton level)

BOTH bino and wino edges

• Counting number of visible decay products (parton level)

BOTH bino and wino edges

• Counting number of visible decay products (parton level)

ONLY wino edges in 8-9 partons

Counting number of visible decay products (parton level)

ONLY wino edges in 8-9 partons

Use selection criterion

Parton-Jet Correspondence

This was parton level? What about hadron level?

Parton-Jet Correspondence

This was parton level? What about hadron level?

- ⇒ Substantial correlation of parton and detector level jets
 - Refine selection criteria

Bino: 4-5 jets lepton veto

Wino: \geq 6 jets one lepton

Parton-Jet Correspondence

This was parton level? What about hadron level?

- \Rightarrow Substantial correlation of parton and detector level jets
 - Refine selection criteria

Bino: 4-5 jets lepton veto

- Lepton indicates presence of wino
- ► Fewer jets ⇒ less combinatorics

Wino: \geq 6 jets one lepton

Origin of Jets

Abundances of jet origins in the *i*th hardest jet

Gluino jet very likely in the first 3 bins

Origin of Jets

Abundances of jet origins in the *i*th hardest jet

- Gluino jet very likely in the first 3 bins
- Severe squark contamination for i = 1 in scenario A & B
 - Define new variables
 - min procedure reduces impact on combinatorics

 $\begin{array}{ccc} min_{3j} = & \min_{k=1,2} m_{3,k} \\ min_{123} = & \min_{i,j=1,2,3} m_{i,j} \\ min_{234} = & \min_{i,j=2,3,4} m_{i,j} \end{array}$
Compare to existing methods

- Hemisphere method CMS TDR 2007
 - 1. Hemisphere algorithm to divide event
 - 2. Combine two hardest objects from each side

- Topology method (for exclusive 4 jets + MET) Bai/Cheng, 2011
 - Dijet variables for identification of topology 3+1 or 2+2

$$F_{3}(p1, p2, p3, p4) = m_{k,l}, \text{ for } \epsilon_{ijkl} \neq 0 \text{ and } \max_{r,s=1,\dots,4} \{m_{r,s}\}$$

$$F_{4}(p1, p2, p3, p4) = \min_{i,j=1,\dots,4} \{\max(m_{i,j}, m_{k,l})\}, \quad \epsilon_{ijkl} \neq 0$$

Scenario A

- · Bino selection: slight overshoot of true endpoints
- Wino selection: diffuse endpoints & a visible kink
- min and hemisphere variables give best results

Scenario A

- Bino selection: slight overshoot of true endpoints
- Wino selection: diffuse endpoints & a visible kink
- min and hemisphere variables give best results

Scenario B

- Bino selection: shallow endpoints, only vague kink structure
- Wino selection: gross overestimation, little difference to bino
- min₂₃₄ (wino) and hemi I (bino) work best

Scenario B

- · Bino selection: shallow endpoints, only vague kink structure
- Wino selection: gross overestimation, little difference to bino
- min₂₃₄ (wino) and hemi I (bino) work best

Scenario C

- Bino selection: clear endpoints, slight underestimation
- Wino selection: solid kinks, only few events beyond true endpoint
- all variables promising, good control of backgrounds

Scenario C

- Bino selection: clear endpoints, slight underestimation
- Wino selection: solid kinks, only few events beyond true endpoint
- all variables promising, good control of backgrounds

Numerical Endpoint Estimation

Pietsch/JRR/Sakurai/Wiesler, JHEP 1207 (2012) 148

endot	min_{100}	minord	mine	m ⁽¹⁾	m ⁽²⁾	Fa	FA		
chapt.	<i>men</i> 123	11111234	intraj	enario A	<i>m</i> ₁₂	13	14		
Scendill A									
bino	1106 ± 52	570 ± 14	1125 ± 106	822 ± 21	1012 \pm 104	686 ± 33	1191 ± 132		
wino	908 ± 83	665 ± 34	948 ± 99	932 ± 31	$\textbf{780} \pm \textbf{26}$	794 \pm 33	1031 ± 53		
scenario B									
bino	986 \pm 36	773 ± 147	1028 ± 34	1010 ± 6	794 ± 49	766 ± 25	1046 ± 66		
wino	895 ± 23	$\textbf{748} \pm \textbf{68}$	892 ± 18	958 ± 10	$\textbf{819} \pm \textbf{47}$	911 ± 51	928 ± 37		
scenario C									
bino	812 ± 24	545 ± 8	921 ± 37	816 ± 29	721 ± 90	708 ± 22	894 ± 57		
wino	778 ± 23	577 ± 19	804 ± 6	769 ± 47	764 ± 14	708 ± 38	793 ± 7		
	endpt. bino wino bino wino bino wino	endpt. min_{123} bino 1106 ± 52 wino 908 ± 83 bino 986 ± 36 wino 895 ± 23 bino 812 ± 24 wino 778 ± 23	endpt. min_{123} min_{234} bino 1106 ± 52 570 ± 14 wino 908 ± 83 665 ± 34 bino 986 ± 36 773 ± 147 wino 895 ± 23 748 ± 68 bino 812 ± 24 545 ± 8 wino 778 ± 23 577 ± 19	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

- Accurate estimates in all scenarios possible
- slight underestimation for bino in scenario A
- Very important to choose the correct variable!

III. Combinatorics (fake)

Fake combinatorics: Wrong underlying model assumptions

- Fake combinatorics: Wrong underlying model assumptions
- ▶ Prime Example: Grand Unified SUSY models based on E₆

Kilian/JRR, PLB 642 (2006) 81; Braam/Knochel/JRR, JHEP 1006 (2010) 013

- Fake combinatorics: Wrong underlying model assumptions
- ▶ Prime Example: Grand Unified SUSY models based on E₆

Kilian/JRR, PLB 642 (2006) 81; Braam/Knochel/JRR, JHEP 1006 (2010) 013

Leptoguarking production channels

Lentoquarking mass M (Ge)

 Chiral Exotics with lepton and baryon number: scalar leptoquarks, SUSY partners: leptoquarkinos

- Fake combinatorics: Wrong underlying model assumptions
- Prime Example: Grand Unified SUSY models based on E₆

Kilian/JRR, PLB 642 (2006) 81; Braam/Knochel/JRR, JHEP 1006 (2010) 013

 Chiral Exotics with lepton and baryon number: scalar leptoquarks, SUSY partners: leptoquarkinos

Identical exclusive final states:

Mass Edges for Leptoquarkinos

JRR/Wiesler, PRD84 (2011) 015012

Mass edges clearer due to missing spin correlations

 $m_{ql,high} = \max\{m_{ql^+}, m_{ql^-}\} \qquad m_{ql,low} = \min\{m_{ql^+}, m_{ql^-}\}$

Mass Edges for Leptoquarkinos

- JRR/Wiesler, PRD84 (2011) 015012
- Mass edges clearer due to missing spin correlations

 $m_{ql,high} = \max\{m_{ql^+}, m_{ql^-}\} \qquad m_{ql,low} = \min\{m_{ql^+}, m_{ql^-}\}$

► Combinatorial background: combine softest jet and hardest lepton: m^{*}_{ql} = m(min_E{q₁, q₂}, max_E {l⁺, l⁻})

Discrimination from standard SUSY

JRR/Wiesler, PRD 2011

• Dilepton spectrum: standard SUSY \Rightarrow same cascade, leptoquarkinos \Rightarrow different cascades

Discrimination from standard SUSY

- Dilepton spectrum: standard SUSY ⇒ same cascade, leptoquarkinos ⇒ different cascades
- Cut on kinematic edge in standard dilepton spectra

• S/B estimate, 100 fb $^{-1}$, 2 OSSF, 2 hard jets, $\not\!\!E_T$

$m_{\tilde{D}}$	# N(LQino) & N(SUSY)	$\# N_{cut}$	$S/\sqrt{S+B}$
400	8763	5061	54
600	1355	540	15
800	684	102	4
1000	594	24	1

Summary/Conclusions

- New Physics motivated by Hierarchy Problem/Vacuum Stability
- SUSY cascades as standard candles at LHC
- Combinatorial background and smearing from
 - ISR/FSR
 - Combinatorics through presence of two cascades
 - SUSY backgrounds ("signal backgrounds")
 - Off-shell (and threshold) effects
 - Wrong model assumptions
- Full analysis including all channels/backgrounds with Whizard
- Generally trade-off between precision and speed

Summary/Conclusions

- New Physics motivated by Hierarchy Problem/Vacuum Stability
- SUSY cascades as standard candles at LHC
- Combinatorial background and smearing from
 - ISR/FSR
 - Combinatorics through presence of two cascades
 - SUSY backgrounds ("signal backgrounds")
 - Off-shell (and threshold) effects
 - Wrong model assumptions
- Full analysis including all channels/backgrounds with Whizard
- Generally trade-off between precision and speed
- ► Waiting for a signal ...

Summary/Conclusions

- New Physics motivated by Hierarchy Problem/Vacuum Stability
- SUSY cascades as standard candles at LHC
- Combinatorial background and smearing from
 - ISR/FSR
 - Combinatorics through presence of two cascades
 - SUSY backgrounds ("signal backgrounds")
 - Off-shell (and threshold) effects
 - Wrong model assumptions
- Full analysis including all channels/backgrounds with Whizard
- Generally trade-off between precision and speed
- Waiting for a signal ...
- First time in 50 years with only one high energy machine!
- Will the LHC be the first hadron machine to find the unexpected ?

One Ring to Find them ... One Ring to Rule them Out

One Ring to Find them ... One Ring to Rule them Out

