Beyond the Standard Model in WHIZARD

Jürgen R. Reuter

DESY Hamburg

2nd WHIZARD Forum, Würzburg, March 17, 2015

Standard Model Triumph: 2012: Discovery of a Higgs boson

No evidence beyond SM ... and what now?

*Only a selection of the available mass limits on new states or phenomena shown

(¬) (¬)

Doubts on the Standardmodel

- describes microcosm (too good?)
- 28 free parameters

- Higgs ?, form of Higgs potential ?

Doubts on the Standardmodel

- describes microcosm (too good?)
- 28 free parameters

- Higgs ?, form of Higgs potential ?

Open Questions

- Unification of all forces (?)
- Baryon asymmetry $\Delta N_B \Delta N_{\bar{B}} \sim 10^{-9}$ missing CP violation
- Flavor: three generations (?)
- Tiny neutrino masses: $m_{
 u} \sim rac{v^2}{M}$
- Dark Matter:
 - stable
 - weakly interacting
 - ▶ $m_{DM} \sim 100 \, {\rm GeV}$
- Quantum theory of gravitation
- Cosmic inflation
- Dark Energy

Characteristics and Spectra

<u>Scale Λ </u>: "hidden sector", symmetry breaking

Scale F: new particles

<u>Scale v</u>: $h, W/Z, \ell^{\pm}, \ldots$

Terascale: new particles to stabilize the hierarchy

6/34 J. R. Reuter

Search for new Particles (LHC)

Decay products of heavy particles

- ▶ high-p_T Jets
- (many) hard leptons

Production of colored particles

Weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- only pairs of new particles \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow missing energy $(\not\!\!E_T)$

Different Models/Decay Chains — identical signatures

Search for new Particles (LHC)

Decay products of heavy particles

- ▶ high-p_T Jets
- (many) hard leptons

Production of colored particles

Weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- \blacktriangleright only pairs of new particles \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow missing energy ($\not\!\!E_T$)

Different Models/Decay Chains — identical signatures

Model Discrimination

Mass of new particles: endpoints/edges of decay spectra

- Spin of new particles: angular correlations, (charge) asymmtries ...
- Modellbestimmung: Measurements of coupling constants
- ⇒ Precise prediction for signals and backgrounds
 - Fiducial volumes: consider almost arbitray cuts
 - Exclusive/[inclusive] many-body final states: $2 \rightarrow 4 \text{ to } 2 \rightarrow 10$
 - Quantum corrections: real and virtual corrections

WHIZARD in a Nutshell – Release 2.2

WHIZARD is a universal event generator for elementary processes at colliders:

- ▶ e^+e^- : LEP and TESLA/NLC \Rightarrow ILC, CLIC, FCC-ee . . .
- ▶ pp: Tevatron \Rightarrow LHC, HL/E-LHC, VLHC, FCC, XXX ...

It contains

- 1. O'Mega: Optimized automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
- 2. Phase-space parameterization module (very efficient PS)
- 3. VAMP: Generic adaptive Monte Carlo integration and (unweighted) event generation
- 4. CIRCE1/2: Lepton/[photon] collider beam spectra
- 5. Intrinsic support or external interfaces for: Feynman rules, beam properties, cascade decays, shower, hadronization, analysis, event file formats, etc., etc.
- 6. Free-format steering language SINDARIN

WHIZARD 2 – Installation and Run

- Download WHIZARD from http://www.hepforge.org/ archive/whizard/whizard-2.2.2.tar.gz and unpack it
- WHIZARD intended to be centrally installed on a system, e.g. in /usr/local (or locally on user account)
- Create build directory and configure External programs (LHAPDF, StdHEP, HepMC, LCIO, FastJet) might need flags
- make, make install
- Create SINDARIN steering file (in any working directory)
- Run whizard (in working directory)
- Supported event formats: HepMC, LCIO, StdHEP, LHEF, LHA, div. ASCII formats

WHIZAR	RD self tests:
make	check-am
make	check-TESTS
PASS:	expressions.run
PASS:	beams.run
PASS:	cputime.run
PASS:	state matrices.run
PASS:	interactions.run
PASS	beam structures run
PASS:	models.run
ſ	
PASS:	phs_forests.run
PASS:	rng base.run
PASS:	selectors.run
PASS:	phs wood.run
PASS:	mci vamp.run
PASS	particle specifiers run
PASS:	prclib stacks.run
PASS:	slha interface.run
PASS	subevt expr. run
PASS:	process stacks.run
PASS	cascades, run
PASS:	processes.run
PASS:	decays.run
XFAIL	haa colors run
PASS:	events.run
PASS	eio base run
PASS	rt data run
PASS:	dispatch.run
PASS	process configurations run
PASS:	event weights 1.run
PASS:	integrations.run
PASS	simulations run
PASS:	process libraries.run
PASS:	compilations.run
PASS	prolib interfaces run
PASS:	commands.run
PASS	errors run
PASS	helicity.run
PASS:	gedtest 1.run
PASS:	beam setup 1.run
PASS:	reweight 1.run
PASS:	colors.run
PASS:	lhef 1.run
PASS:	alphas.run
PASS:	smtest 1.run
PASS:	hepmc.run
PASS:	restrictions.run
PASS:	pdf builtin.run
PASS:	stdhep_1.run
PASS:	static 1.run
Testsu	ite summary for WHIZARD 2.2.5
# TOTA	AL: 270
# PASS	s: 265
# SKIE	2: 2
# XFAI	(L: 3
# FAII	L: 0
# XPAS	SS: 0
# ERRO	DR: 0

Implemented Physics Content/Classification

Hard Matrix Elements

- Multiplicities, technical details, performance
- Particles, Lorentz structures and interactions
- Color structures
- Flavor structures
- Higher-order matrix elements (cf. Christian Weiss' talk yesterday)
- Special features: non-standard stuff
- Supported models

Structured beams (cf. Thorsten Ohl's talk on Wednesday)

- Structure functions for lepton and hadron colliders/beam spectra
- Beam radiation/beamstrahlung
- Multiple interactions/underlying event
- "Full" events/hadronization etc.

Analysis setup

Cuts, event formats, data analyses, interfacing....

Structured Beams

Hadron Colliders structured beams

- LHAPDF interface (v. 4/5 and 6)
- Most prominent PDFs directly included (e.g. CT10, MMHT2014 etc.)
- •
- ISR and FSR (two different own implementations, interface to PYTHIA6) (cf. Talk Bijan Chokoufé)
- Matching matrix elements/showers (cf. Talk Bijan Chokoufé)
- Underlying event/multiple interactions [not validated]

Lepton Colliders structured beams

- ISR (implemented: Skrzypek/Jadach, Kuraev/Fadin, incl. *p*_T distributions)
- arbitrarily polarized beams (density matrices)
- Beamstrahlung (CIRCE1 module)
- Correlated beam spectra / [photon collider spectra] (CIRCE2 module)
- external beam spectra can be read in (files/generating code)
- FSR/exclusive ISR (QED shower) not (yet) implemented

Hadronic events/hadronic decays

through PYTHIA6 interface (or HERWIG/Sherpa/PYTHIA8 externally)

Hard matrix elements: particle types

Possible particle types

- Spin 0 particles
- Spin 1/2 fermions (Majorana and Dirac) Fermi statistics for both fermion-number conserving and violating cases
- Spin 1 particles
 - massive and massless
 - Unitarity and Feynman gauge
 - arbitrary R_ξ gauges
- Spin 3/2 particles (Majorana only, gravitinos)
- Spin 2 particles (massless and massive, gravitons)
- Dynamic particles vs. pure insertions
- Unphysical particles for Ward- and Slavnov-Taylor identities

JRR. 2001

Gravitinos in WHIZARD

J R Reute

13/34

```
*** Checking polarization vectorspinors: ***
p.ueps ( 2) = 0: passed at
                           86%
p.ueps (1) = 0: passed at 86%
. . . . .
*** Checking the irreducibility condition: ***
g.ueps (2): passed at 95%
. . . . .
q.ueps (-2): passed at 95%
g.veps (2): passed at 95%
. . . . .
g.veps (-2): passed at 95%
*** Testing vectorspinor normalization ***
ueps(2).ueps(2) = -2m: passed at 100%
ueps( 1).ueps( 1) = -2m: passed at 100%
. . . . .
*** Majorana properties of gravitino vertices: ***
f sgr + gr sf = 0: passed at 84%
slr_grf + slr_fgr = 0: passed at 88%
. . . . .
v2lr fgr + v2lr grf = 0: passed at 77% [expected 0.000E+00, got 0.633E-12]
*** Testing the gravitino propagator: ***
Transversality:
p.pr.test: passed at 66% [expected 0.000E+00, got 0.437E-10]
p.pr.ueps (2): passed at 86%
. . . . .
p.pr.veps (-2): passed at 79% [expected 0.000E+00, got 0.342E-12]
Irreducibility:
g.pr.test: passed at 78% [expected 0.000E+00, got 0.471E-12]
g.pr.ueps ( 2): passed at 92%
```

Gravitons in WHIZARD

*** Checking polarisation tensors: *** e2(2).e2(2)=1: passed at 100% e2(2).e2(-2)=0: passed at 100% e2(0).e2(2)=0: passed at 100% e2(0).e2(1)=0: passed at 94% 96% |p.e2(2)| = 0: passed at |e2(2).p|=0: passed at 96% |p.e2(-2)| =0: passed at 96% |e2(-2).p|=0: passed at 96% |p.e2(1)| =0: passed at 888 |e2(1).p|=0: passed at 88% |p.e2(0)| =0: passed at 84% le2(0).p|=0: passed at 84% |p.e2(-1)| =0: passed at 88% |e2(-1).p|=0: passed at 88% *** Checking the graviton propagator: p.pr.e(-2): passed at 90% p.pr.e(-1): passed at 828 p.pr.e(0): passed at 82% p.pr.e(1): passed at 82% p.pr.e(2): passed at 90% p.pr.ttest: passed at 74% [expected 0.000E+00, got 0.210E-11]

Ohl, 2000

14/34

Hard matrix elements: Lorentz structures

Hard-coded set of Lorentz structures

- $\begin{array}{l} \bullet \quad \mbox{Scalar couplings to vectors:} \\ gV^{\mu}\phi_1 i\overleftrightarrow{\partial_{\mu}}\phi_2, \quad \phi V^2, \quad \phi^2 V^2, \quad \frac{1}{2}\phi F_{1,\mu\nu}F_2^{\mu\nu}, \quad \frac{1}{2}\phi F_{1,\mu\nu}\tilde{F}_2^{\mu\nu}, \quad \phi(i\partial_{\mu}V_1^{\nu})(i\partial_{\nu}V_2^{\mu}) \end{array} \end{array}$
- ► Pure vector couplings: $F_{\mu\nu}F^{\mu\nu}$, $V_1^{\mu}((i\partial_{\nu}V_2^{\rho})i\overleftrightarrow{\partial_{\mu}}(i\partial_{\rho}V_3^{\nu}))$, $gF_1^{\mu\nu}F_{2,\nu\rho}F_{3,\mu}$, $g/2 \cdot \epsilon^{\mu\nu\lambda\tau}F_{1,\mu\nu}F_{2,\tau\rho}F_{3,\lambda}$
- Fermionic couplings to scalars:

 $\begin{array}{ll} g_{S}\bar{\psi}_{1}S\psi_{2}, & g_{P}\bar{\psi}_{1}P\gamma_{5}\psi_{2}, & \bar{\psi}_{1}\phi(g_{S}+g_{P}\gamma_{5})\psi_{2}, & g_{L}\bar{\psi}_{1}\phi(1-\gamma_{5})\psi_{2}, \\ g_{R}\bar{\psi}_{1}\phi(1+\gamma_{5})\psi_{2}, & g_{L}\bar{\psi}_{1}\phi(1-\gamma_{5})\psi_{2}+g_{R}\bar{\psi}_{1}\phi(1+\gamma_{5})\psi_{2} \end{array}$

Fermionic couplings to vectors:

 $\begin{array}{ll} g_{V}\bar{\psi}_{1}\not\!\!\!/\psi_{2}, & g_{A}\bar{\psi}_{1}\gamma_{5}\not\!\!/\psi_{2}, & \bar{\psi}_{1}\not\!\!/(g_{V}-g_{A}\gamma_{5})\psi_{2}, & g_{L}\bar{\psi}_{1}\not\!\!/(1-\gamma_{5})\psi_{2}, \\ g_{R}\bar{\psi}_{1}\not\!\!/(1+\gamma_{5})\psi_{2}, & g_{L}\bar{\psi}_{1}\not\!\!/(1-\gamma_{5})\psi_{2}+g_{R}\bar{\psi}_{1}\not\!\!/(1+\gamma_{5})\psi_{2} \end{array}$

- Fermionic couplings in SUSY Ward identities (not listed here)
- Fermionic couplings to tensors: $g_T T_{\mu\nu} \bar{\psi}_1 [\gamma^{\mu}, \gamma^{\nu}]_- \psi_2$
- Tensor couplings to vectors:

 $\begin{array}{l} T^{\mu\nu}(V_{1,\mu}V_{2,\nu}+V_{1,\nu}V_{2,\mu}), \quad T^{\alpha\beta}(V_1^{\mu}\mathsf{i}\overleftrightarrow{\partial}_{\alpha}\mathsf{i}\overleftrightarrow{\partial}_{\beta}V_{2,\mu}, \\ T^{\alpha\beta}(V_1^{\mu}\mathsf{i}\overleftrightarrow{\partial}_{\beta}(\mathsf{i}\partial_{\mu}V_{2,\alpha})+V_1^{\mu}\mathsf{i}\overleftrightarrow{\partial}_{\alpha}(\mathsf{i}\partial_{\mu}V_{2,\beta})), \quad T^{\alpha\beta}((\mathsf{i}\partial^{\mu}V_1^{\nu})\mathsf{i}\overleftrightarrow{\partial}_{\alpha}\mathsf{i}\overleftrightarrow{\partial}_{\beta}(\mathsf{i}\partial_{\nu}V_{2,\mu})) \end{array}$

• Gravitino couplings: $\bar{\psi}\gamma^{\mu}S\psi_{\mu}, \quad \bar{\psi}\gamma^{\mu}k_{S}S\psi_{\mu}, \quad \bar{\psi}\gamma^{\mu}\gamma^{5}Pk_{P}\psi_{\mu}, \quad \bar{\psi}\gamma^{5}\gamma^{\mu}[k_{V},V]\psi_{\mu} \text{ etc.}$

growing number of dim. 6/dim. 8 operators: HEFT, aTGC, aQGC, anom. top couplings, ...

- Fermionic couplings in SUSY Ward identities (not listed here)
- Fermionic couplings to tensors: $g_T T_{\mu\nu} \bar{\psi}_1 [\gamma^{\mu}, \gamma^{\nu}]_- \psi_2$
- Tensor couplings to vectors:

 $\begin{array}{l} T^{\mu\nu}(V_{1,\mu}V_{2,\nu}+V_{1,\nu}V_{2,\mu}), \quad T^{\alpha\beta}(V_1^{\mu}\mathsf{i}\overleftrightarrow{\partial}_{\alpha}\mathsf{i}\overleftrightarrow{\partial}_{\beta}V_{2,\mu}, \\ T^{\alpha\beta}(V_1^{\mu}\mathsf{i}\overleftrightarrow{\partial}_{\beta}(\mathsf{i}\partial_{\mu}V_{2,\alpha})+V_1^{\mu}\mathsf{i}\overleftrightarrow{\partial}_{\alpha}(\mathsf{i}\partial_{\mu}V_{2,\beta})), \quad T^{\alpha\beta}((\mathsf{i}\partial^{\mu}V_1^{\nu})\mathsf{i}\overleftrightarrow{\partial}_{\alpha}\mathsf{i}\overleftrightarrow{\partial}_{\beta}(\mathsf{i}\partial_{\nu}V_{2,\mu})) \end{array}$

• Gravitino couplings: $\bar{\psi}\gamma^{\mu}S\psi_{\mu}, \quad \bar{\psi}\gamma^{\mu}k_{S}S\psi_{\mu}, \quad \bar{\psi}\gamma^{\mu}\gamma^{5}Pk_{P}\psi_{\mu}, \quad \bar{\psi}\gamma^{5}\gamma^{\mu}[k_{V},V]\psi_{\mu} \text{ etc.}$

growing number of dim. 6/dim. 8 operators: HEFT, aTGC, aQGC, anom. top couplings, ...

 Completely general Lorentz structures: foreseen for next major release, incl. UFO interface, v2.3.0

Hard matrix elements: Color structures

Possible Color structures

- ► In principle all SU(N) gauge theories supported, but specialize to N = 3
- Color flow formalism Stelzer/Willenbrock, 2003; Kilian/Ohl/JRR/Specki, 2011
- ► Fundamental representations: 3, 3
- Adjoint representation: 8
- Covers all interactions e.g. in SUSY and extra dimensions
- ▶ in preparation: generalized color structures with representations 6, $\overline{6}$, 10, $\overline{10}$ as well as $\epsilon_{ijk}\phi_i\phi_j\phi_k$ couplings

Phase Space Setup

Heuristic algorithm tries to classify phase-space structure based on a few fundamental rules

WHIZARD phase space channels

March 15, 2007

Process: cc10 ($e^-e^+ \rightarrow \mu^-\bar{\nu}_{\mu}u\bar{d}$) Color code: resonance, t-channel, radiation, infrared, collinear, external/off-shell

WHIZARD phase space channels

March 16, 2007

Process: qqttdec (u $\bar{u} \rightarrow b\bar{b}W^+W^-$) Color code: resonance, t-channel, radiation, infrared, collinear, external/off-shell

WHIZARD – Overview over Physics Models

MODEL TYPE	with CKM matrix	trivial CKM	
QED with e, μ, τ, γ	-	QED	
QCD with d, u, s, c, b, t, g	-	QCD	
Standard Model	SM_CKM	SM	
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac	
SM with anomalous top coupl.	SMtop_CKM	SMtop	
SM for e^+e^- top threshold	_	SM_tt_threshold	
SM with anom. Higgs coupl.	_	SM_rx / NoH	
SM ext. for VV scattering	—	SSC / SSC2/ AltH	
SM with Z'	—	Zprime	
2HDM	2HDM_CKM	2HDM	
MSSM	MSSM_CKM	MSSM	
MSSM with gravitinos	-	MSSM_Grav	
NMSSM	NMSSM_CKM	NMSSM	
extended SUSY models	-	PS/E/SSM	
Littlest Higgs	—	Littlest	
Littlest Higgs with ungauged $U(1)$	-	Littlest_Eta	
Littlest Higgs with T parity	—	Littlest_Tpar	
Simplest Little Higgs (anomaly-free/univ.)	-	Simplest[_univ]	
3-site model	-	Threeshl	
UED	—	UED	
SM with gravitino and photino	-	GravTest	
Augmentable SM template	-	Template	

new models easily: FeynRules interface Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Claude Duhr's talk

Interface to SARAH in the SUSY Toolbox Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

Lukas Mitzka' talk

WHIZARD – Overview over Physics Models

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge coupl.	SM_ac_CKM	SM_ac
SM with anomalous top coupl.	SMtop_CKM	SMtop
SM for e^+e^- top threshold	_	SM_tt_threshold
SM with anom. Higgs coupl.	_	SM_rx / NoH
SM ext. for VV scattering	_	SSC / SSC2/ AltH
SM with Z'	—	Zprime
2HDM	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos	-	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	-	PS/E/SSM
Littlest Higgs	—	Littlest
Littlest Higgs with ungauged $U(1)$	-	Littlest_Eta
Littlest Higgs with T parity	-	Littlest_Tpar
Simplest Little Higgs (anomaly-free/univ.)	—	Simplest[_univ]
3-site model	—	Threeshl
UED	-	UED
SM with gravitino and photino	—	GravTest
Augmentable SM template	-	Template

cf. Marco Sekulla's talk

new models easily: FeynRules interface Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

Claude Duhr's talk

Interface to SARAH in the SUSY Toolbox Staub, 0909.2863; Ohl/Porod/Speckner/Staub, 1109.5147

Lukas Mitzka' talk

The Phantom Menace – Checking new models

- E.g. MSSM
- 5318 couplings (with Goldstone/4-point)
- negative neutralino matrices: explicit factor of i
- Fully implemented, fully tested and fully functional
- Model MSSM
- Recommended usage: SUSY Les Houches Accord (SLHA)

```
read slha ("spsxx")
?slha_read_decays = true/false Ward-/Slavnov-Taylor identities
```

What about tests? Have we checked?

- Unitarity Checks $2 \rightarrow 2, 2 \rightarrow 3$
 - for gauge symmetries and SUSY

Comparison of Automated Tools for Perturbative Interactions in SuperSymmetry

cf.http://projects.hepforge.org/whizard/susy_comparison.html

$\tau^+ \tau^- o X$							
Process	cess status Madgraph/Helas			Whiza	rd/O'Mega	Sherpa/A'Megic	
		0.5 TeV	2 TeV	0.5 TeV	2 TeV	0.5 TeV	2 TeV
$\tilde{\tau}_1 \tilde{\tau}_1^*$		257.57(7)	79.63(4)	257.32(1)	79.636(4)	257.30(1)	79.638(4)
$\tilde{\tau}_2 \tilde{\tau}_2^*$	•	46.55(1)	66.86(2)	46.368(2)	66.862(3)	46.372(2)	66.862(3)
$\tilde{\tau}_1 \tilde{\tau}_2^*$	•	95.50(3)	19.00(1)	94.637(3)	19.0015(8)	94.645(5)	19.000(1)
$\tilde{\nu}_{\tau} \tilde{\nu}_{\tau}^{*}$		502.26(7)	272.01(8)	502.27(2)	272.01(1)	502.30(3)	272.01(1)
$\tilde{\chi}_1^0 \tilde{\chi}_1^0$	•	249.94(2)	26.431(1)	249.954(9)	26.431(1)	249.96(1)	26.431(1)
$\tilde{\chi}_1^0 \tilde{\chi}_2^0$	•	69.967(3)	9.8940(3)	69.969(2)	9.8940(4)	69.968(3)	9.8937(5)
$\tilde{\chi}_1^0 \tilde{\chi}_3^0$	•	17.0387(3)	0.7913(1)	17.0394(1)	0.79136(2)	17.040(1)	0.79137(5)
$\tilde{\chi}_{1}^{0} \tilde{\chi}_{4}^{0}$	•	7.01378(4)	1.50743(3)	7.01414(6)	1.5075(5)	7.0141(4)	1.50740(8)
$\tilde{\chi}_2^0 \tilde{\chi}_2^0$	•	82.351(7)	18.887(1)	82.353(3)	18.8879(9)	82.357(4)	18.8896(1)
$\tilde{\chi}_2^0 \tilde{\chi}_3^0$	•	-	1.7588(1)	_	1.75884(5)	—	1.7588(1)
$\tilde{\chi}_2^0 \tilde{\chi}_4^0$	•	-	2.96384(7)	—	2.9640(1)	—	2.9639(1)
$\tilde{\chi}_3^0 \tilde{\chi}_3^0$	•	-	0.046995(4)	_	0.0469966(9)	_	0.046999(2)
$\tilde{\chi}_3^0 \tilde{\chi}_4^0$	•	-	8.5852(4)	—	8.55857(3)	—	8.5856(4)
$\tilde{\chi}_{4}^{0} \tilde{\chi}_{4}^{0}$	•	-	0.26438(2)	_	0.264389(5)	—	0.26437(1)
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	•	185.09(3)	45.15(1)	185.093(6)	45.147(2)	185.10(1)	45.151(2)
$\tilde{\chi}_2^+ \tilde{\chi}_2^-$	•	-	26.515(1)	_	26.5162(6)	—	26.515(1)
$\tilde{\chi}_1^+ \tilde{\chi}_2^-$	•	-	4.2127(4)	_	4.21267(9)	-	4.2125(2)
$h^{0}h^{0}$	•	0.3533827(3)	0.0001242(2)	0.35339(2)	0.00012422(3)	0.35340(2)	0.000124218(6)
$h^{0}H^{0}$	•	-	0.005167(4)	—	0.0051669(3)	—	0.0051671(3)
$H^{0}H^{0}$	•	-	0.07931(3)	-	0.079301(6)	—	0.079311(4)
$A^{0}A^{0}$	•	-	0.07975(3)	_	0.079758(6)	—	0.079744(4)
Zh^0	•	59.591(3)	3.1803(8)	59.589(3)	3.1802(1)	59.602(3)	3.1829(2)
ZH^0	•	2.8316(3)	4.671(5)	2.83169(9)	4.6706(3)	2.8318(1)	4.6706(2)
ZA^0		2.9915(4)	4.682(5)	2.99162(9)	4.6821(3)	2.9917(2)	4.6817(2)
A^0h^0	•	-	0.005143(4)		0.0051434(3)	-	0.0051440(3)
$A^0 H^0$	•		1.4880(2)		1.48793(9)	-	1.48802(8)
$H^{+}H^{-}$		-	5.2344(6)	-	5.2344(2)	—	5.2345(3)

Comparison for the NMSSM

Braam, Fuks, JRR, 2010

rocess	HO-FR	CH-FR	WO-ST	Comparison	Process	MG-FR	CH-FR	WO-ST	Comparison
au+,tau->tau+,tau-	7.52098×10 ²	7.5179×10^{3}	7.59268×10^{2}	8 = 0.989717 N		7 11557	7 0000	7 11126. 10-1	6 0 004500 B
au+,tau->e+,e-	4.49207×10 ⁻³	4.4892×10^{-3} 9.2635 $\times 10^{-4}$	4.48806×10 ⁻³	6 - 0.0893631 %	W-,2>D,C~	7.11337×10	1.0303 X 10	7.11430×10	0 = 0.234337 4
au*, cau->vn, vn~	9.7555×10-4	9.7635×10^{-4}	9.76068×10-4	8 - 0.0819325 %	W-,Z>Z,W-	3.01819×10^{2}	3.0264×10^{2}	3.0193×10^{2}	δ = 0.271739 %
au+,tau->vt,vt-	5.35941×10^{1} 7.12912×10^{-3}	5.3592×10^{1} 7.1259 × 10 ⁻³	5.36816×10^{1} 7.12673×10^{-3}	8 = 0.167014 % 8 = 0.0451506 %	W 7N8.W-	7 4661 × 10 ¹	7 4604 × 10 ¹	7 43748 × 10 ¹	δ = 0.384101 S
au+, tau->t, t~	7.11532×10-3	7.1158×10^{-3}	7.10877×10^{-3}	6 = 0.0988431 %					
au+,tau->b,b-	3.61069×10-3	3.6139×10-3	3.6143×10-3	8 = 0.0997308 %	W-,Z>S14-,SV1~	2.36706×10-	2.369×10-	2.37235×10-	0 = 0.223033 %
au+,tau->W+,W-	1.90467×10^{-1} 1.02967×10^{-2}	1.9152×10^{-1} 1.0315×10^{-2}	1.91951×10^{-1} 1.03164×10^{-2}	$\delta = 0.776383$ % $\delta = 0.191235$ %	W-,Z>s15-,sv2~	2.40865×10^{-3}	2.4109×10^{-3}	2.41163×10^{-3}	δ = 0.123994 %
au., tau->z, a	4.2117×10-2	4.2129×10^{-2}	4.21696×10-2	8 = 0.124926 %	W758118V3-	1.16665 x 10 ⁻³	1,1695 x 10 ⁻³	1.17192×10^{-3}	δ = 0.45102 %
au+, tau->s15-, s15+	1.17192×10 ⁻³	1.172×10-3	1.17143×10-3	d = 0.0487576 %		4 0005 40-1	4 0007 40-1	4 00000 40-3	
au+,tau->614-,614+ au+,tau->613-,613+	1.17209×10^{-3} 1.05015×10^{-3}	1.1721×10^{-3} 1.0503×10^{-3}	1.17107×10^{-3} 1.04997×10^{-3}	$\delta = 0.0878297$ % $\delta = 0.031815$ %	W-,2>816-,8V3~	1.2085×10	1.2067×10	1.20652×10	0 = 0.164307 %
au+,tau->sll-,sll+	1.41851×10 ⁻²	1.4178×10 ⁻²	1.41878×10 ⁻²	8 - 0.0609563 %	W-,Z>sd5,su3~	3.51869×10 ⁻³	3.5133×10^{-3}	3.51169×10^{-3}	δ = 0.199274 %
au+, tau->016-,011+	1.5723×10 ⁻²	1.5715×10-2	1.56948×10-2	6 - 0.179773 %	W 7>8d4.8u2~	3.51372×10^{-3}	3.5133×10^{-3}	3.51307×10^{-3}	$\delta = 0.0186828$
tau+,tau->ev3,ev3~	7.66119×10^{-4} 4.03000×10^{-4}	7.6632×10^{-4} 4.0377 × 10 ⁻⁴	7.66407×10^{-4} 4.03538×10^{-4}	8 = 0.0376056 % 8 = 0.0557691 %					
au+,tau->sv1,sv1-	4.83818×10 ⁻⁴	4.8377×10 ⁻⁴	4.84209×10 ⁻⁴	6 - 0.0906177 %	w-,2>sd1,su1~	1.1408/×10 -	1.144/×10-	1.14423×10 -	0 = 0.143034 %
au+, tau->su2, su2~	1.63913×10^{-3}	1.6397×10^{-3}	1.63781×10^{-3}	8 = 0.115289 %	W-,Z>sd6,su6~	2.3412×10 ⁻²	2.3479×10^{-2}	2.34716×10 ⁻²	δ = 0.285674 %
cau+, cau->su4, su4- cau+, cau->su3, su3-	1.63962×10 ⁻³	1.0791×10^{-3} 1.6397×10^{-3}	1.07862×10^{-3} 1.64002×10^{-3}	8 = 0.0441113 % 8 = 0.0249076 %	WZ>sd1.su6~	1.79614×10^{-2}	1.7953×10 ⁻²	1.79362×10^{-2}	$\delta = 0.140162$
au+, tau->oul, oul~	1.20397×10 ⁻³	1.2063×10 ⁻³	1.20707×10 ⁻³	6 - 0.0912099 %	M. Burdd and	1.0707010-2	1 070210-2	1 0770310-2	6 0 144001 B
au+,tau->sui,su6-	2.78463×10^{-4}	2.7848×10^{-4}	2.70524×10^{-4}	8 = 0.0210196 %	W-,2>500,501~	1.2/5/0×10	1.2/03/10	1.27755710	0 = 0.199221 4
au+, tau->sd5, sd5-	1.10735×10-3	1.1077×10-3	1.10896×10^{-3}	6 = 0.144715 %	W-,Z>n1,x1-	5.58187×10-3	5.5834×10^{-3}	5.5787×10-3	$\delta = 0.0842243$
au+, tau->sd6, sd6~	4.50337×10^{-4} 2.69738 × 10 ⁻⁴	4.5034×10^{-4} 2.697 × 10 ⁻⁴	4.49875×10^{-4} 2.69575 × 10 ⁻⁴	8 = 0.103213 % 8 = 0.0603979 %	W-,Z>n2,x1-	2.58653×10^{-2}	2.5885×10 ⁻²	2.59104×10^{-2}	δ = 0.174 %
au+,tau->sdl,sdl-	3.73641×10 ⁻⁶	3.7367×104	3.74042×10^{-6}	8 = 0.107316 %	M. 7	1 97516 10-1	1 97/2010-1	1 07014 - 10-1	8 - 0 267020 9
au+, tau->sd1,sd6~	2.69745×10^{-4} 2.76715×10^{-4}	2.697×10^{-4} 2.7676 × 10 ⁻⁴	2.7705×10-4	8 = 0.121224 %	W-, 5)113, XI-	1.0/510×10	1.0/45/10	1.0/014 / 10	0 = 0.207323 4
tau+,tau->n1,n1 tau+,tau->n1,n2	4.46003×10 ⁻⁴ 6.30416×10 ⁻⁴	4.4579×10^{-4} 6.3061×10^{-4}	4.45895×10^{-4} 6.3052×10^{-4}	8 = 0.0478212 % 8 = 0.0307715 %	W-,Z>n4,X1-	5.29225×10**	5.2915×10**	5.28743×10**	δ = 0.091285 %
au+,tau->n1,n3	1.21883×10 ⁻³	1.2189×10^{-3} 8.6252 × 10^{-5}	1.21746×10^{-3}	6 - 0.117815 %	W-,Z>n5,x1-	8.68647×10 ⁻²	8.6797×10 ⁻²	8.68217×10^{-2}	$\delta = 0.0779207$
au., tau->n1, n5	3.89644×10-5	3.8926×10^{-5}	3.89094×10^{-5}	8 = 0.141298 %	WZ>n1.x2-	4.25162×10^{-3}	4.2539×10^{-3}	4.25377×10^{-3}	$\delta = 0.0535405$
tau+,tau->n2,n2	9.62043×10" 9.2264×10"	9.6198×10^{-9} 9.2259×10^{-4}	9.63712×10^{-6} 9.21935×10^{-6}	8 = 0.179837 % 8 = 0.076501 %	" / 0/11/12		4.2000 x 10		
au+, tau->n2, n4	6.51046×10^{-5} 71424×10^{-5}	6.4974×10^{-5} 3.7123 × 10^{-5}	6.49436×10^{-5} 3.70949 $\times 10^{-5}$	8 = 0.247567 %	w-,2>n2,x2-	1.861/2×10-	1.8623×10-	1.8600/x10-	0 = 0.179804 4
au+,tau->n3,n3	3.11845×10 ⁻³	3.1182×10^{-3}	3.11982×10^{-3}	8 = 0.052071 %	W-,Z>n3,x2-	5.08905×10^{-2}	5.0974×10^{-2}	5.10002×10^{-2}	δ = 0.215293 %
au+, cau->n3, n5	6.13979×10^{-5}	6.1358×10^{-5}	6.13801×10 ⁻⁵	6 = 0.0649458 %	WZ>n4.x2-	3.87418×10^{-2}	3.8743×10 ⁻²	3.87516 × 10 ⁻²	$\delta = 0.0253781$
tau:,tau->nd,nd	1.58733×10^{-6} 1.76086×10^{-3}	1.5862×10^{-6} 1.7621×10^{-3}	1.58717×10^{-6} 1.76277×10^{-3}	8 = 0.0712317 % 8 = 0.100000 %	M Real and	0.00577	0.0000.10-2	2.202010.2	£ 0.107110 B
au+,tau->n5,n5	1.30224×10 ⁻⁶	1.3027×10-6	1.30388×10.6	6 - 0.125935 %	w-,2>mJ,X2-	2.303//×10	2.3033×10	2.3036×10	0 = 0.10/112 %
au*, tau->x2*, x2-	4.58133×10 ⁻³	4.5956×10^{-3}	4.59502×10^{-3}	8 = 0.310892 %	W-,Z>h01,H-	3.06927×10 ⁻⁶	3.069×10^{-6}	3.07074×10^{-6}	$\delta = 0.0566669$
tau+,tau->x1+,x2- tau+,tau->h01,h01	2.63941×10^{-6} 4.92753×10^{-9}	2.6422×10^{-4} 4.9314×10^{-9}	2.64165×10^{-6} 4.92995×10^{-9}	8 = 0.105543 % 8 = 0.0784249 %	W-,Z>h02,H-	1.20593×10^{-4}	1.2061×10^{-4}	1.20462×10^{-4}	δ = 0.122403 %
au+,tau->h01,h02	2.16262×10^{-7} 7.80572 × 10 ⁻⁸	$2,1626 \times 10^{-7}$ $2,805 \times 10^{-8}$	2.16185×10^{-7} 7.80465 × 10 ⁻⁸	6 = 0.035671 %	W- 7.602 H-	2 1414 - 10-3	2 1202 - 10-3	2 12020 - 10-3	8 - 0 102016 S
au+,tau->h02,h02	5.11735×10	5.1179×10^{-8}	5.12057×10	8 = 0.0629171 %	W-,27005,R-	2.1414 / 10	2.1352 \ 10	2.13525 / 10	0 = 0.102510 4
au+,tau->h02,h03	9.84532×10" 2.25701×10"	9.8445×10" 2.2581×10"	9.82302×10^{-1} 2.25684×10^{-0}	0 = 0.226698 % 0 = 0.0359166 %	W-,Z>A01,H-	2.71579×10-*	2.7161×10*	2.71278×10-*	δ = 0.122268 %
au., tau->A01, A01	2.38658×10 ⁻¹⁰ 1.07849×10 ⁻⁷	2.3803×10^{-10} 1.0787 × 10 ⁻⁷	2.39651×10^{-10} 1.07962 × 10 ⁻⁷	0 = 0.678646 %	W-,Z>A02,H-	1.28349×10 ⁻³	1.2827×10^{-3}	1.28247×10^{-3}	$\delta = 0.0795463$
au+,tau->A02,A02	1.48778×10 ⁻⁸	1.4889×10"	1.48668×10 ⁻⁸	0 - 0.149544 %	WZ>Wh01	7 94029 × 10 ¹	7 9468 × 10 ¹	7 93492 × 10 ¹	δ = 0.149577 S
lau+,tau->E,h01 Lau+,tau->E,h02	4.85736×10^{-5} 1.04814 × 10 ⁻⁵	4.8605×10^{-4} 1.0476 × 10 ⁻⁵	4.89451×10^{-6} 1.04791×10^{-5}	$\delta = 0.762018$ % $\delta = 0.0519548$ %	N 75W 500	1 70201	1 7027	1 7007	S 0.003170 5
tau+, tau->2, h03	3.67139×10^{-3} 9.0489×10^{-7}	3.679×10^{-5} 9.0461×10^{-7}	3.67189×10^{-5} 9.03717×10^{-7}	8 = 0.207100 % 8 = 0.12971 %	w-,2>w-,102	1.70391	1.7057	1.7007	0 = 0.293170 4
au+,tau->E,A02	3.63906×10 ⁻⁵	3,6663×10 ⁻⁵	3.66845×10 ⁻⁵	6 - 0.804499 %	W-,Z>W-,h03	3.98499×10-3	3.9924×10-5	4.00474×10-3	Ø = 0.494346 %
au+, tau->A01, h02	6.01345×10	6.0131×10-8	6.0137×10-8	8 - 0.00999268 *	W-,Z>W-,A01	6.99895×10 ⁻⁸	6.985×10 ⁻⁸	7.00424×10^{-8}	δ = 0.275123 %
au+,tau->A01,h03	2.81488×10^{-9} 1.08173×10^{-7}	2.8159×10^{-6} 1.0817 × 10 ⁻⁷	2.82663×10^{-6} 1.08261×10^{-7}	$\delta = 0.416406$ % $\delta = 0.0842393$ %	N- 75H- 302	1 36107 × 10 ⁻⁵	1.361 × 10-5	1 36221 v 10 ⁻⁵	A - 0 0886822
au+, tau->A02, h02	2.24843×10^{-6} 2.93826 × 10^{-4}	2.249×10^{-6} 2.9386 × 10^{-4}	2.24911×10^{-6} 2.93557 $\times 10^{-6}$	0 = 0.030096 %	n-/0/n-/RU2	1.3010/ X 10	1.301 × 10	1.30221710	0 - 0.0000022
tau+,tau->H+,H-	$7.32275 imes 10^{-4}$	7.3228×10^{-4}	7.3236×10^{-6}	6 = 0.0115347 %	W-,Z>Z,H-	1.40065×10-3	1.4004×10-2	1.39963×10-3	0 = 0.0730172

$\textbf{Resonances in } VV \textbf{ scattering} \quad \rightarrow \textbf{Marco Sekulla's talk} \\$

Model-independent description for LHC, respect weak isospin ($\rho \approx 0$):

	J = 0	J = 1	J = 2
I = 0	σ^0 (Higgs singlet?)	$\omega^0 (\gamma'/Z'?)$	a^0 (Graviton ?)
I = 1	π^{\pm} , π^{0} (2HDM ?)	$ ho^{\pm}, ho^{0} \; (W'/Z' \; ?)$	t^{\pm}, t^0
I = 2	$\phi^{\pm\pm},\phi^{\pm},\phi^{0}$ (Higgs triplet ?)	—	$f^{\pm\pm}, f^{\pm}, f^0$

K-Matrix unitarization

 $\mathcal{A}_K(s) = \mathcal{A}(s)/(1 - i\mathcal{A}(s))$

- Low-energy theorem (LET): s/v²
- K-matrix ampl.: $|\mathcal{A}(s)|^2 \xrightarrow{s \to \infty} 1$
- Poles ±iv: M₀, Γ large

Alboteanu/Kilian/JRR, 0806.4145 Kilian/Ohl/JRR/Sekulla, 1408.6207

- Unitarization in each spin-isospin eigen-channel
- breaks "vertex crossing invariance"
- Explicit "time arrow" in WHIZARD

model = MSSM

Example: LHC SUSY cascade decays, Input File

```
process dec_su_q = su1 => u, neu2
process dec neu sl2 = neu2 => SE12, e1
process susyproc = u,U => SU1, su1
process fullproc = u, U => SU1, u, e1, SE12
compile
?slha_read_decays = true
read slha("sps1ap decays.slha")
integrate (dec_su_q, dec_neu_sl2) { iterations = 1:1000 }
\textcolor{blue}{sqrts} = 14000
\textcolor{blue}{beams} = p, p => lhapdf
integrate (susyproc) { iterations = 5:10000, 2:10000 }
integrate (fullproc)
n events = 10000
unstable sul (dec su g) { <polarization option> }
simulate (fullproc) {
 $sample = "casc_dec full"
analvsis =
  record inv_mass1_full (eval M / 1 GeV [combine[u,e1]])
```

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Full process:

 $p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$

Factorized process w/ full spin correlations:

unstable su1 (dec_su_q)

$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ classical spin correlations:

```
unstable su1 (dec_su_q) { ?diagonal_decay = true }
```


$$p + p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$$

Factorized process w/ no spin correlations:

```
unstable su1 (dec_su_q) { ?isotropic_decay = true }
```


New/Upcoming Features in 2.2/2.3

- New features in production version 2.2
 - Complete Reweighting of Event Samples (incl. LHEF 2013) ✓
 - Process containers: inclusive production samples (e.g. SUSY) √ process inclusive = e1, E1 => (Z, h) + (Z, H) + (A, H)
 - Automatic generation of decays, depending on the model \checkmark
 - Simplified models for electroweak vector bosons (w/ light Higgs) √
 - Decay chains with different options for spin correlations:

```
unstable "W+" (Wud)
unstable "W+" (Wud) { ?diagonal_decay = true }
unstable "W+" (Wud) { ?isotropic_decay = true }
```

• Projection on polarized intermediate states:

```
unstable "W+" (Wud) { decay_helicity = -1 }
```

New/Upcoming Features in 2.2/2.3

- New features in production version 2.2
 - Complete Reweighting of Event Samples (incl. LHEF 2013) ✓
 - Process containers: inclusive production samples (e.g. SUSY) √ process inclusive = e1, E1 => (Z, h) + (Z, H) + (A, H)
 - Automatic generation of decays, depending on the model \checkmark
 - Simplified models for electroweak vector bosons (w/ light Higgs) √
 - Decay chains with different options for spin correlations:

```
unstable "W+" (Wud)
unstable "W+" (Wud) { ?diagonal_decay = true }
unstable "W+" (Wud) { ?isotropic_decay = true }
```

• Projection on polarized intermediate states: unstable "W+" (Wud) { decay_helicity = -1 }

Features in preparation: 2.3 – 2.4

- BSM: general Lorentz structures in matrix-element generator (O'Mega)
- New syntax/features decays and chains (steering unstable particles):
 process higgsstr = e1, E1 => (Z => e2, E2), (H => b, bbar)

Summary and Outlook

- WHIZARD 2 for LC & LHC physics and beyond
- A lot of focus lately on NLO and QCD
- Covers the whole SM, and most possible paths beyond (BSM)
- We try to be prepared for discoveries...
- Immense internal technical improvements
- Continuous improvement
 - WHIZARD 2.2 ⇒ release series
 - WHIZARD 2.3-2.4 ⇒ General Lorentz structures
 - WHIZARD 3 \Rightarrow NLO (QCD)

Where do we go? ... the standard way ...?

Where do we go? ... the way beyond ...?

We'll be there ...

We'll be there ...

אמנענד שאצעש אינארא

BSM in WHIZARD

BACKUP SLIDES:

O'Mega: Optimal matrix elements

Ohl/JRR, 2001

Replace forest of tree diagrams by

Directed Acyclical Graph (DAG) of the algebraic expression (including color).

Ohl/JRR, 2001

O'Mega: Optimal matrix elements

Replace forest of tree diagrams by

Directed Acyclical Graph (DAG) of the algebraic expression (including color).

• Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

Ohl/JRR, 2001

O'Mega: Optimal matrix elements

Replace forest of tree diagrams by

Directed Acyclical Graph (DAG) of the algebraic expression (including color).

• Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

Unification of model setup: only one binary (2.3.0)

Ohl/JRR, 2001

O'Mega: Optimal matrix elements

Replace forest of tree diagrams by

Directed Acyclical Graph (DAG) of the algebraic expression (including color).

• Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- Unification of model setup: only one binary (2.3.0)
- Specification of order of strong or EW coupling (2.3.x/2.4)

O'Mega: Optimal matrix elements

Replace forest of tree diagrams by

Directed Acyclical Graph (DAG) of the algebraic expression (including color).

• Example: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$

- Unification of model setup: only one binary (2.3.0)
- Specification of order of strong or EW coupling (2.3.x/2.4)
- Teaser: new algorithm for generating loop diagrams (3.0 ?)

Ohl/JRR, 2001

WHIZARD histograms

New completely general cut syntax in WHIZARD 2.0.0 (analysis.dat)

```
process default
cut all E of visible (any) > 10
cut all M of visible (any), visible (any) > 10
cut all Q of incoming particle (any), visible (any) < -10
histogram max_val(PT of jet) within 50 400 nbin 35
```

First MSSM multijet combinatorics studies (2005):

• Beamstrahlung/ISR effects in e + e - (BSM) physics:

First MSSM multijet combinatorics studies (2005):

• Beamstrahlung/ISR effects in e + e - (BSM) physics:

