Seminar Helsinki, 17.02.2015

(Electroweak) Vector Boson Scattering at the LHC after the Higgs discovery

Jürgen R. Reuter

DESY, Hamburg

Alboteanu/Kilian/JRR, JHEP 0811 (2008) 010;

Beyer/Kilian/Krstonošić/Mönig/JRR/Schmitt/Schröder, **EPJC 48** (2006), 353; JRR/Kilian/Sekulla, 1307.8170; Kilian/JRR/Ohl/Sekulla, 1408.6207 (**PRD**) + in prep.

Seminar, University of Helsinki, Feb. 17th, 2015

Standard Model Triumph: 2012: Discovery of a Higgs boson

No evidence beyond SM ... and what now?

*Only a selection of the available mass limits on new states or phenomena shown

Doubts on the Standardmodel

- describes microcosm (too good?)
- 28 free parameters

- Higgs ?, form of Higgs potential ?

Extensions of the SM

Lagrangian of the EW SM (no fermions/QCD here):

$$\mathcal{L}_{EW} = -\frac{1}{2} \text{tr} \left[W_{\mu\nu} W^{\mu\nu} \right] - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \left[(D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) + \mu^2 \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^2 \right]$$

with building blocks:

$$D_{\mu} = \partial_{\mu} + \frac{i}{2}g\tau^{I}W_{\mu}^{I} + \frac{i}{2}g'B_{\mu}$$
$$W_{\mu\nu} = \frac{i}{2}g\tau^{I}(\partial_{\mu}W_{\nu}^{I} - \partial_{\nu}W_{\mu}^{I} + g\epsilon_{IJK}W_{\mu}^{J}W_{\nu}^{K})$$
$$B_{\mu\nu} = \frac{i}{2}g'(\partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu})$$

Any EFT has higher-dimensional operators:

Weinberg, 1979

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \left[\frac{a_i}{\Lambda} \mathcal{O}_i^{(5)} + \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{e_i}{\Lambda^4} \mathcal{O}_i^{(8)} \cdots \right]$$

• without more fundamental theory \Rightarrow no clue on the scale (neither on the coefficients)

Electroweak vacuum stability

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

Electroweak vacuum stability

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

- Could the Higgs field ever have fallen in the correct vacuum? Hertzberg, arXiv:1210.3624
- Importance of higher terms in Higgs potential (gravity etc.) ?

Electroweak vacuum stability

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

- Could the Higgs field ever have fallen in the correct vacuum? Hertzberg, arXiv:1210.3624
- Importance of higher terms in Higgs potential (gravity etc.) ?

Motivation

- Light (SM-like) Higgs boson found (clear from EWPO): Mediator of EW Symmetry Breaking [EWSB] boson found
- Mechanism of EWSB still poorly understood:
 - single Higgs field vs. Higgs sector
 - Higgs potential: stable vs. metastable vs. unstable !?
 - Higgs self-coupling vs. Higgs field scattering (longitudinal Ws)
- Dynamics of EW interactions:

 Multiboson Interactions (MBI)
 - Anomalous Triple Gauge Couplings: dibosons
 - Anomalous Quartic Gauge Couplings: tribosons, VV scattering

Motivation

- Light (SM-like) Higgs boson found (clear from EWPO): Mediator of EW Symmetry Breaking [EWSB] boson found
- Mechanism of EWSB still poorly understood:
 - single Higgs field vs. Higgs sector
 - Higgs potential: stable vs. metastable vs. unstable !?
 - Higgs self-coupling vs. Higgs field scattering (longitudinal Ws)
- Dynamics of EW interactions:

 Multiboson Interactions (MBI)
 - Anomalous Triple Gauge Couplings: dibosons
 - Anomalous Quartic Gauge Couplings: tribosons, VV scattering
- Higgs suppression makes VBS a prime candidate for BSM searches
- Hot topic: SM@LHC, LHCEWWG, Snowmass 13, MBI Workshops
- F. Gianotti, CLIC-Workshop 2014, CERN

Exploration of E-frontier \rightarrow look for heavy objects, including high-mass V_LV_L scattering: \Box requires as much integrated luminosity as possible (cross-section goes like 1/s)

Motivation

- Light (SM-like) Higgs boson found (clear from EWPO): Mediator of EW Symmetry Breaking [EWSB] boson found
- Mechanism of EWSB still poorly understood:
 - single Higgs field vs. Higgs sector
 - Higgs potential: stable vs. metastable vs. unstable !?
 - Higgs self-coupling vs. Higgs field scattering (longitudinal Ws)
- Dynamics of EW interactions:

 Multiboson Interactions (MBI)
 - Anomalous Triple Gauge Couplings: dibosons
 - Anomalous Quartic Gauge Couplings: tribosons, VV scattering
- Higgs suppression makes VBS a prime candidate for BSM searches
- Hot topic: SM@LHC, LHCEWWG, Snowmass 13, MBI Workshops
- F. Gianotti, CLIC-Workshop 2014, CERN

Exploration of E-frontier \rightarrow look for heavy objects, including high-mass V_LV_L scattering: \Box requires as much integrated luminosity as possible (cross-section goes like 1/s)

• Not really new: Elementary Particle Physics And Future Facilities. Proceedings, 1982 DPF Summer Study, Snowmass, USA, June 28 - July 16, 1982

The Challenge of LHC

Partonic subprocesses: *qq*, *qg*, *gg* No fixed partonic energy

$$R = \sigma \mathcal{L} \qquad \mathcal{L} = 10^{34} \,\mathrm{cm}^{-1} \mathrm{s}^{-1}$$

High rates for $t, W/Z, H, \Rightarrow$ large SM backgrounds

The Challenge of LHC

Partonic subprocesses: *qq*, *qg*, *gg* No fixed partonic energy

$$R = \sigma \mathcal{L} \qquad \mathcal{L} = 10^{34} \,\mathrm{cm}^{-1} \mathrm{s}^{-1}$$

High rates for $t, W/Z, H, \Rightarrow$ large SM backgrounds

The importance of Vector Boson Scattering

• W^+W^+ scattering first seen in nature

 $pp \to jj(ZZ/WW) \to jj\ell^-\ell^+\nu_\ell\bar{\nu}_\ell$

 $\sigma\approx 40\,{\rm fb}$

Background:

- $t\bar{t} \rightarrow WbWb, \sigma \approx 52 \, \text{pb}$
- Single t, misrec. jet: $\sigma \approx 4.8 \, \text{pb}$
- QCD: σ ≈ 0.21 pb
 - ATLAS, PRL 113 (2014) 141803

Tagging and Cuts:

- ▶ $\ell\ell jj$ -Tag, $\eta_{tag}^{min} < \eta_{\ell} < \eta_{tag}^{max}$, b-Veto
- ► $|\Delta \eta_{jj}| > 4.4$, $M_{jj} > 1080 \, \text{GeV}$
- Minijet-Veto: $p_{T,j} < 30 \,\text{GeV}$
- $E_j > 600, 400 \,\text{GeV}, \quad p_{T,j}^1 > 60, 24 \,\text{GeV}$

Improves S/\sqrt{B} from 3.3 to 29.7

Model-Independent Way – Effective Field Theories

How to obtain higher-dimensional operators from first principles?

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \left[\frac{a_i}{\Lambda} \mathcal{O}_i^{(5)} + \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{e_i}{\Lambda^4} \mathcal{O}_i^{(8)} \cdots \right]$$

Low-energy effective theory \Rightarrow integrating out heavy degrees of freedom (DOF), set up Power Counting

Toy model: Two interacting scalar fields φ, Φ

Effective EW Dim. 6 Operators

Hagiwara/Hikasa/Peccei/Zeppenfeld, 1987; Hagiwara/Ishihara/Szalapski/Zeppenfeld, 1993

$$\mathcal{O}_{\Phi W} = -\frac{1}{\Lambda^2} \frac{1}{2} (\Phi^{\dagger} \Phi - v^2/2) \operatorname{tr} [W_{\mu\nu} W^{\mu\nu} \\ \mathcal{O}_B = \frac{1}{\Lambda^2} \frac{i}{2} (D_{\mu} \Phi)^{\dagger} B^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{\Phi B} = -\frac{1}{\Lambda^2} \frac{1}{4} (\Phi^{\dagger} \Phi - v^2/2) B_{\mu\nu} B^{\mu\nu}$$

Effective Dim. 8 Operators

Hagiwara/Ishihara/Szalapski/Zeppenfeld, 1993

$$\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

- operators linked through e.o.m.
- SM: 59 independent operators (1 fermion gen.) Buchmüller/Wyler, 1986; Grzadkowski/Iskrzynski/Misiak/Rosiek, 2010
- Renormalization mixes operators
- Beware of power counting

Classification of Operators (I): Dim 6

(always v^2 subtracted)

• Dimension-6 operators (CP-conserving)

 $\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$ $\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$ $\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$

$$\mathcal{O}_{\partial\Phi} = \partial_{\mu} \left(\Phi^{\dagger} \Phi \right) \partial^{\mu} \left(\Phi^{\dagger} \Phi \right)$$
$$\mathcal{O}_{\Phi W} = \left(\Phi^{\dagger} \Phi \right) \operatorname{Tr}[W^{\mu\nu} W_{\mu\nu}]$$
$$\mathcal{O}_{\Phi B} = \left(\Phi^{\dagger} \Phi \right) B^{\mu\nu} B_{\mu\nu}$$

Dimension-6 operators (CP-violating)

$\mathcal{O}_{\widetilde{W}W}$	=	$\Phi^{\dagger}\widetilde{W}_{\mu\nu}W^{\mu\nu}\Phi$	$\mathcal{O}_{\widetilde{W}WW}$	=	$\mathrm{Tr}[\widetilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$
$\mathcal{O}_{\widetilde{B}B}$	=	$\Phi^{\dagger}\widetilde{B}_{\mu\nu}B^{\mu\nu}\Phi$	$\mathcal{O}_{\widetilde{W}}$	=	$(D_{\mu}\Phi)^{\dagger}\widetilde{W}^{\mu\nu}(D_{\nu}\Phi)$

	ZWW	AWW	HWW	HZZ	HZA	HAA	WWWW	ZZWW	ZAWW	AAWW
\mathcal{O}_{WWW}	\checkmark	\checkmark					\checkmark	√	\checkmark	\checkmark
\mathcal{O}_W	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
\mathcal{O}_B	\checkmark	\checkmark		\checkmark	\checkmark					
$\mathcal{O}_{\Phi d}$			\checkmark	\checkmark						
$\mathcal{O}_{\Phi W}$			\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{\Phi B}$				\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{\tilde{W}WW}$	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{\tilde{W}}$	\checkmark	✓	\checkmark	\checkmark	\checkmark					
$\mathcal{O}_{\tilde{W}W}$			\checkmark	\checkmark	\checkmark	\checkmark				
$\mathcal{O}_{\tilde{B}B}$				\checkmark	\checkmark	\checkmark				

Classification of Operators (II): Dim 8 (always v² subtracted)

• Dimension-8 operators (only $D_{\mu}\Phi$)

$$\mathcal{O}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] ,$$

$$\mathcal{O}_{S,1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right] ,$$

Dimension-8 operators (only field strength/mixed)

Classification	of O	perators	(III)	
----------------	------	----------	-------	--

	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{O}_{S,0/1}$	 ✓ 	 ✓ 	\checkmark						
$\mathcal{O}_{M,0/1/6/7}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$O_{M,2/3/4/5}$		✓	\checkmark	\checkmark	\checkmark	\checkmark	 ✓ 		
$\mathcal{O}_{T,0/1/2}$	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$O_{T,5/6/7}$		✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	\checkmark
$\mathcal{O}_{T,8/9}$			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark

- Dim. 8 operators generate aQGCs, but not aTGCs
- generate neutral quartics
- Redundancy of the operators:
 - Equations of motion: $D_{\mu}W^{\mu\nu} = \Phi^{\dagger}(D^{\nu}\Phi) (D^{\nu}\Phi)^{\dagger}\Phi + \dots$
 - Gauge symmetry structure: $[D_{\mu}, D_{\nu}] \Phi \propto W_{\mu\nu} \Phi$
 - Integration by parts (up to total derivatives)
 - Leads to relations like:

$$\mathcal{O}_B = \mathcal{O}_{\tilde{W}} + \frac{1}{2}\mathcal{O}_{WW} - \frac{1}{2}\mathcal{O}_{BB}$$

$$\mathcal{O}_{BW} = -2\mathcal{O}_W - \mathcal{O}_{WW}$$

$$\mathcal{O}_{\partial W} = -4\mathcal{O}_{WWW} + \text{gauge-fermion operators}$$

Unique way of operator assignment?

- Usage of different measurements: Wγ, WZ production: WWγ vs. WWZ
- VVV and VBS to access the highest possible energies

Unique way of operator assignment?

- Usage of different measurements: Wγ, WZ production: WWγ vs. WWZ
- VVV and VBS to access the highest possible energies
- Answer: NO UNIQUE WAY!
- ▶ But: at e^+e^- machines, gauge-fermion operators can be rotated away

Unique way of operator assignment?

- Usage of different measurements: Wγ, WZ production: WWγ vs. WWZ
- VVV and VBS to access the highest possible energies
- Answer: NO UNIQUE WAY!
- ▶ But: at *e*⁺*e*⁻ machines, gauge-fermion operators can be rotated away
- At LHC this is not possible! Buchalla et al., 1302.6481
- There is no common operator basis for V + jets, VV, VVV and VBS at LHC
- Incoherent sum of channels at LHC prevent eliminating operators!
- Similar to *B* physics: observables process [decay] specific

V

EFT coefficients vs. anomalous couplings

Switch operator bases (vertex-dep.): Snowmass EW White Paper, 1310.6708

ZZZZ-Vertex:

C

$$\alpha_4 + \alpha_5 \quad = \quad \left(\frac{f_{S,0}}{\Lambda^4} + \frac{f_{S,1}}{\Lambda^4}\right) \frac{v^4}{16}$$

Full agreement among generators: VBF@NLO, WHIZARD, Madgraph

Results: (1 σ Sensitivity to α s)

Coupl.	ILC (1 ab^{-1})	LHC (100fb^{-1})
α_4	0.0088	0.00160
$lpha_5$	0.0071	0.00098

Limits for Λ [TeV]:

Spin	I = 0	I = 1	I=2
0	1.39	1.55	1.95
1	1.74	2.67	_
2	3.00	3.01	5.84

Simplified Models for VBS (and VVV): Resonances

- Resonances in all accessible spin/isospin channels
- Couplings to the Higgs and gauge sectors are unrelated and arbitrary
- Still include anomalous couplings
- Unitarization (later)

New physics in electroweak sector:

- ► Narrow resonances ⇒ particles (weakly interacting model)
- ► Wide resonances ⇒ continuum (strongly interacting model)

 $SU(2)_c \ {\rm custodial} \ {\rm symmetry}$ (weak isospin, broken by hypercharge

 $g' \neq 0$ and fermion masses)

	J = 0	J = 1	J = 2		
I = 0	σ^0 (Higgs ?)	$\omega^0 \; (\gamma'/Z' \; ?)$	f^0 (Graviton ?)		
I = 1	π^{\pm},π^{0} (2HDM ?)	$\rho^{\pm}, \rho^0 \; (W'/Z' \; ?)$	a^{\pm},a^{0}		
I=2	$\phi^{\pm\pm},\phi^{\pm},\phi^{0}$ (Higgs triplet ?)	_	$t^{\pm\pm},t^{\pm},t^0$		
I 0: reconcast in $W^{\pm}W^{-}$ and ZZ coattoring					

- I = 0: resonant in W^+W^- and ZZ scattering
- ► I = 1: resonant in W⁺Z and W⁻Z scattering
- I = 2: resonant in W^+W^+ and W^-W^- scattering

 α_4

Resonances, Example: Scalar [Not counting ϕ with M = 126 GeV.]

Scalar Resonance (Mass M_{σ})

- Coupling to Higgs sector (Higgs/longitudinal W/Z): $g_L^{\sigma}(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) \sigma$
- Coupling to gauge sector (transversal W/Z): $g_T^{\sigma} tr \left[\mathbf{W}^{\mu\nu} \mathbf{W}_{\mu\nu} \right] \sigma$
- Possible Origin: 2HDM isosinglet (renormalizable) [LHM, SUSY, Twin Higgs]

$$g_L^\sigma = O\left(\frac{1}{M_\sigma}\right) \quad \text{[tree]}, \qquad g_T^\sigma = O\left(\frac{1}{4\pi M_\sigma}\right) \quad \text{[loop]}$$

Possible Origin: new strong interactions [Composite Higgs]

$$g_L^{\sigma} = O\left(\frac{1}{M_{\sigma}}\right)$$
 [tree], $g_T^{\sigma} = O\left(\frac{1}{M_{\sigma}}\right)$ [tree]

► \Rightarrow anomalous quartic couplings (aQGCs) $\Delta \alpha_{4/5}$

Resonance	σ	ϕ	ρ	f	a
$\Gamma[g^2 M^2/(64\pi v^2)]$	6	1	$\frac{4}{3}(\frac{v^2}{M^2})$	$\frac{1}{5}$	$\frac{1}{30}$
$\Delta \alpha_4 [(16\pi\Gamma/M)(v^4/M^4)]$	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{5}{2}$	$-\frac{5}{8}$
$\Delta \alpha_5[(16\pi\Gamma/M)(v^4/M^4)]$	$\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{3}{4}$	$-\frac{5}{8}$	$\frac{35}{8}$

<u>.</u>

Unitarity of Amplitudes

UV-incomplete theories could violate unitarity

Cross section:
$$\sigma = \int d\Omega \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2$$

Optical Theorem (Unitarity of the S(cattering) Matrix): $\sigma_{tot} = \text{Im} \left[\mathcal{M}_{ii}(t=0) \right] / s$ $t = -s(1 - \cos \theta)/2$

Partial wave amplitudes:

 $\mathcal{M}(s,t,u) = 32\pi \sum_{\ell} (2\ell+1) \mathcal{A}_{\ell}(s) P_{\ell}(\cos \theta)$ ("Power spectrum")

Assuming only elastic scattering:

$$\sigma_{\rm tot} = \sum_{\ell} \frac{32\pi (2\ell+1)}{s} |\mathcal{A}_{\ell}|^2 \stackrel{!}{=} \sum_{\ell} \frac{32\pi (2\ell+1)}{s} {\rm Im}\left[\mathcal{A}_{\ell}\right] \quad \Rightarrow \quad \left|\mathcal{A}_{\ell}\right|^2 = {\rm Im}\left[\mathcal{A}_{\ell}\right]$$

Argand circle $|\mathcal{A}(s) - \frac{i}{2}| = \frac{1}{2}$ Resonance: $\mathcal{A}(s) = \frac{-M\Gamma_{el}}{s - M^2 + iM\Gamma_{tot}}$ Counterclockwise circle, radius $\frac{x_{el}}{2}$ Pole at $s = M^2 - iM\Gamma_{tot}$

Unitarity in the EW sector: SM

Project out isospin eigenamplitudes

Lee/Quigg/Thacker, 1973

$$\mathcal{A}_{\ell}(s) = \frac{1}{32\pi} \int_{-s}^{0} \frac{dt}{s} \mathcal{A}(s, t, u) P_{\ell}(1 + 2t/s) \qquad \cos \theta = 1 + 2t/s$$

Remember Legendre polynomials: $P_0(s) = 1$ $P_1(s) = \cos \theta$ $P_2(s) = (3\cos^2 \theta - 1)/2$

SM longitudinal isospin eigenamplitudes $(A_{I,spin=J})$:

$$\mathcal{A}_{I=0} = 2\frac{s}{v^2} P_0(s) \qquad \mathcal{A}_{I=1} = \frac{t-u}{v^2} = \frac{s}{v^2} P_1(s) \qquad \mathcal{A}_{I=2} = -\frac{s}{v^2} P_0(s)$$
$$\boxed{\mathcal{A}_{0,0} = \frac{s}{16\pi v^2}} \qquad \boxed{\mathcal{A}_{1,1} = \frac{s}{96\pi v^2}} \qquad \boxed{\mathcal{A}_{2,0} = -\frac{s}{32\pi v^2}}$$

exceeds unitarity bound $|A_{IJ}| \lesssim \frac{1}{2}$ at:

$$I = 0: \qquad E \sim \sqrt{8\pi}v = 1.2 \,\mathrm{TeV}$$

$$I = 1: \qquad E \sim \sqrt{48\pi}v = 3.5 \,\mathrm{TeV}$$

$$I = 2:$$
 $E \sim \sqrt{16\pi}v = 1.7 \,\mathrm{TeV}$

Higgs exchange: $\begin{array}{c} & & \\ & & \\ & & \\ \mathcal{A}(s,t,u) = -\frac{M_{H}^{2}}{v^{2}} \frac{s}{s-M_{H}^{2}} \\ \end{array}$ Unitarity: $M_{H} \lesssim \sqrt{8\pi}v \sim 1.2 \text{ TeV}$

Unitarization S matrices

Kilian/JRR/Ohl/Sekulla, 1408.6207

- Unitarization prescription not unique
- Padé (reordering pert. series) introduces artificial poles
- Form factors parameterize close-by new physics (add. parameters)
- ► minimal version (K or T matrix) ⇒ just saturation no new parameters, does not rely on pert. expansion, stable against small perturbations
 - Cayley transform of S matrix: $S = \frac{1+iK/2}{1-iK/2}$ Heitler, 1941; Schwinger, 1948
 - "K" matrix: translates to transition operator:

$$T = \frac{K}{1 - iK/2}$$

Corresponds to stereographic projection:

- Coulomb singularities Bloch/Nordsieck, 1937; Yennie/Frautschi/Suura, 1961
- Additional known features (resonances) should be implemented before unitarization

Cut-Off Method (a.k.a. "Event Clipping")

Cut-Off function

 $\Theta\left(\Lambda_C^2-s\right)$

- Naive prevention of Unitarity violation
- No continuous transition at Λ_C
- Ignore any interesting physics above Unitary bound
- Artifical construction

Cut-Off energy Λ_C

 Λ_C equates unitarity bounds (often 0th partial wave)

Form Factor

Form Factor

$$\frac{1}{\left(1+\frac{s}{\Lambda_{FF}^2}\right)^n}$$

Parameters

- *n* Chosen to prevent breaking of Unitarity
- Λ_{FF} Calculate highest possible value that satisfy real Unitarity bound (0th partial wave)

- Use Form Factor to suppress breaking of unitarity
- Can be generally used for arbitrary anomalous operator
- Needs "Fine Tuning"

K-Matrix

K-Matrix Unitarisation

$$\begin{split} \mathcal{A}_{K}(s) &= \frac{1}{\operatorname{Re}(\frac{1}{\mathcal{A}(s)}) - \mathrm{i}} \\ &= \frac{\mathcal{A}(s)}{1 - \mathrm{i}\mathcal{A}(s)} \quad \text{if } \mathcal{A}(s) \in \mathbb{R} \end{split}$$

- Projection of elastic amplitudes onto Argand-Circle
- At high energies the amplitude saturizes
- Is usable for complex amplitudes
- Doesn't depend on additional parameters

Unitary Description of EW interactions

- Five possible cases:
 - Amplitude perturbative, close to zero, small imag. part (SM)
 - Amplitude rises, gets imag. part, strongly interacting regime (presence of at least one dim. 8 operator)
 - Amplitude approaches maximum absolute value asymptotically
 - Turn over: new resonance
 - New inelastic channels open: eff. form factor, extra channels observable in multi-vector boson processes

Unitary Description of EW interactions

- Five possible cases:
 - Amplitude perturbative, close to zero, small imag. part (SM)
 - Amplitude rises, gets imag. part, strongly interacting regime (presence of at least one dim. 8 operator)
 - Amplitude approaches maximum absolute value asymptotically
 - Turn over: new resonance
 - New inelastic channels open: eff. form factor, extra channels observable in multi-vector boson processes

- Complete description necessary (only) beyond threshold

 α_4 AQGC contribution to $WW \rightarrow ZZ$

 $\mathcal{A}(s,t,u) = 4\alpha_4 \frac{t^2 + u^2}{\sqrt{2}}$

Unitarity Bound for α_4 AQGC

Bounds for α_4

$$\begin{split} \ell &= 0: \sqrt{s} \leq \left(\frac{6\pi}{\alpha_4}\right)^{\frac{1}{4}} v \approx \frac{0.5 \text{ TeV}}{\sqrt[4]{\alpha_4}} \\ \ell &= 2: \sqrt{s} \leq \left(\frac{60\pi}{\alpha_4}\right)^{\frac{1}{4}} v \approx \frac{0.9 \text{ TeV}}{\sqrt[4]{\alpha_4}} \end{split}$$

• Bound depends on coupling α_4

First (unitarized) LHC limits:

use strongest bound

ATLAS, PRL 113 (2014) 141803

The Multi-Purpose Generator WHIZARD WHIZARD universal event generator for colliders: e^+e^- , pp, $p\overline{p}$, $\gamma\gamma$, ep etc.

- 1. O'Mega: Optimized automatic matrix elements for arbitrary elementary processes, supports SM and many BSM extensions
- 2. Phase-space parameterization module (very efficient PS)
- 3. VAMP: Generic adaptive Monte Carlo integration and (unweighted) event generation
- 4. CIRCE1/2: Lepton/[photon] collider beam spectra
- 5. Collective support for: Feynman rules, beams cascade decays, shower, hadronization, analysis, event file formats, etc.
- 6. Free-format steering language SINDARIN

WHIZARD 2.2.4 release: Febr. 06, 2015

The WHIZARD team: F. Bach, B. Chokoufé, W. Kilian, T. Ohl, JRR, M. Sekulla, F. Staub, C. Weiss, DESY summer students

 Web address:
 http://projects.hepforge.org/whizard

 Standard Reference:
 Kilian/Oh/JRR, EPJ C71 (2011) 1742, arXiv:0708.4233

Diboson invariant masses Kilian/JRR/Ohl/Sekulla, 1408.6207

Diboson invariant masses Kilian/JRR/Ohl/Sekulla, 1408.6207

 p_T and angular distributions Kilian/JRR/Ohl/Sekulla, 1408.6207

$$pp \to e^+ \mu^+ \nu_e \nu_\mu j j, \sqrt{s} = 14 \text{ TeV}, \mathcal{L} = 1000 \text{ fb}^{-1}$$

Simulations with WHIZARD -

Not possible to use automated tool due to *s*-channel prescription

 $F_{HD} = 30 \text{ TeV}^{-2}$

General cuts: $M_{jj} > 500 \text{ GeV}; \Delta \eta_{jj} > 2.4; p_T^j > 20 \text{ GeV}; |\eta_j| < 4.5, p_T^\ell > 20 \text{ GeV}$

 p_T and angular distributions Kilian/JRR/Ohl/Sekulla, 1408.6207

$$pp
ightarrow e^+ \mu^+
u_e
u_\mu jj, \sqrt{s} = 14$$
 TeV, $\mathcal{L} = 1000\, \mathrm{fb}^{-1}$

Simulations with WHIZARD -

Not possible to use automated tool due to s-channel prescription

 $F_{S,0} = 480 \text{ TeV}^{-4}$

General cuts: $M_{jj} > 500 \text{ GeV}; \Delta \eta_{jj} > 2.4; p_T^j > 20 \text{ GeV}; |\eta_j| < 4.5, p_T^\ell > 20 \text{ GeV}$

 p_T and angular distributions Kilian/JRR/Ohl/Sekulla, 1408.6207

$$pp
ightarrow e^+ \mu^+
u_e
u_\mu jj, \sqrt{s} = 14$$
 TeV, $\mathcal{L} = 1000\, \mathrm{fb}^{-1}$

Simulations with WHIZARD -

Not possible to use automated tool due to s-channel prescription

 $F_{S,1} = 480 \text{ TeV}^{-4}$

General cuts: $M_{jj} > 500 \text{ GeV}; \Delta \eta_{jj} > 2.4; p_T^j > 20 \text{ GeV}; |\eta_j| < 4.5, p_T^\ell > 20 \text{ GeV}$

And Triple Vector Boson Production?

Yes, the same Feynman graphs (in the SM), but... Tribosons:

- one external $W/Z/\gamma$ is always far off-shell
- Unitarization formalism not available
- different (anom.) couplings contribute (particularly for resonances)

 $\sigma(e^+e^- \to VVV) \propto \frac{1}{s} \quad \mbox{Limits usefulness to subprocess energies} \quad \mbox{in the lower range where cross section} \quad \mbox{of fusion process still small}$

 $\sigma_{\rm VBS}(e^+e^- \to \nu \bar{\nu} W^+ W^-) \propto \log(s)$

$$e^+e^- \rightarrow ZZZ$$

 $\rightarrow WWZ$ ZH WW Present in spectrum $\downarrow ZZ$

 $ightarrow WW\gamma$ Complementary (and present at lower energies)

⇒ Important physics independent w.r.t. VBS. Don't just combine results!

Unitarization Prescriptions

- K-matrix unitarization prescription Heitler, 1941; Schwinger, 1949; Gupta, 1950
 - Hermitian *K*-matrix interpreted as incompletely calculated approximation to true amplitude
 - \Rightarrow Unitary *S*, *T* as a non-perturbativ completion of this approximation
 - Insert pert. expansion into expansion:

$$a = \frac{a_K}{1 - ia_K} \Rightarrow a^{(n)} = \frac{a_0^{(1)} + \operatorname{Re}a_0^{(2)} + \dots}{1 - i(a_0^{(1)} + \operatorname{Re}a_0^{(2)} + \dots)}$$

- Prescription does a partial resummation of perturbative series
- Example Dyson resummation: $a_K^{(0)}(s) = \frac{\lambda}{s-m^2} \longrightarrow a^{(0)}(s) = \frac{\lambda}{s-m^2-i\lambda}$

Drawbacks of (original) K-matrix:

- Needs to construct self-adjoint K-matrix as intermediate step
- Problem if *S*-matrix is not diagonal, or ... there are non-perturbative contributions

T-matrix unitarization

- a₀ complex approximation to eigenvalue of true T matrix
- use again pseudo-stereographic projection (intersection of Argand circle with line a₀ i)

• Results in:
$$a = \frac{\text{Re}a_0}{1-ia_0^*} \Rightarrow a^{(n)} = \frac{a_0^{(1)} + \text{Re}a_0^{(2)} + \dots}{1-i(a_0^{(1)} + \text{Re}a_0^{(2)} - i\text{Im}a_0^{(2)} + \dots}$$

Alternative Unitarization Methods Kilian/JRR/Ohl/Sekulla, 1408.6207

► Comparison of *T*-matrix and (original) *K*-matrix:

- *T*-matrix does not rely on perturbation theory
- Special treatment for non-normal *T* matrices (eigenvalues having imaginary parts larger than *i*; Riesz-Dunford operator calculus)
- 1. T matrix description leads to point on the Argand circle
- 2. For real $a \Rightarrow$ (original) *K*-matrix case
- 3. a_0 on Argand circle \Rightarrow left invariant

Thales circle construction:

- Defined via $\left|a \frac{a_K}{2}\right| = \frac{a_K}{2} \Rightarrow a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_0}\right) \mathrm{i}}$
- avoids non-normal matrices, but not single-valued around a = 0

Alternative Unitarization Methods Kilian/JRR/Ohl/Sekulla, 1408.6207

► Comparison of *T*-matrix and (original) *K*-matrix:

- T-matrix does not rely on perturbation theory
- Special treatment for non-normal *T* matrices (eigenvalues having imaginary parts larger than *i*; Riesz-Dunford operator calculus)
- 1. T matrix description leads to point on the Argand circle
- 2. For real $a \Rightarrow$ (original) *K*-matrix case
- 3. a_0 on Argand circle \Rightarrow left invariant

Thales circle construction:

- Defined via $\left|a \frac{a_K}{2}\right| = \frac{a_K}{2} \Rightarrow a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_0}\right) \mathrm{i}}$
- avoids non-normal matrices, but not single-valued around a = 0

Alternative Unitarization Methods Kilian/JRR/Ohl/Sekulla, 1408.6207

► Comparison of *T*-matrix and (original) *K*-matrix:

- *T*-matrix does not rely on perturbation theory
- Special treatment for non-normal *T* matrices (eigenvalues having imaginary parts larger than *i*; Riesz-Dunford operator calculus)
- 1. T matrix description leads to point on the Argand circle
- 2. For real $a \Rightarrow$ (original) *K*-matrix case
- 3. a_0 on Argand circle \Rightarrow left invariant

Thales circle construction:

- Defined via $\left|a \frac{a_K}{2}\right| = \frac{a_K}{2} \Rightarrow a = \frac{1}{\operatorname{Re}\left(\frac{1}{a_0}\right) \mathrm{i}}$
- avoids non-normal matrices, but not single-valued around a = 0

Summary/Conclusions/Outlook

- Access to (deviations from) EW sector via:
 - via diboson/triboson production and vector boson scattering
- Photon-induced processes: better sensitivity, but higher constraints!
- ► Task: Unify LHC and LEP/ILC/CLIC descriptions (model-independent limit setting (α₄, ^{f_{S,0}/Λ⁴_{APP})}
- Simplified Models: minimally unitarized operators
- Unitarization scheme: no additional structure to the theory (model dependence minimized)
- Sensitivity rises with number of new intermediate states:
 - LHC14 sensitivity limited in pure EW sector: $\sim 1 X \text{ TeV}$ (???)
 - ILC1000 : 1.5 6 TeV
 - (Tensor) Resonances very interesting Kilian/JRR/Sekulla, in preparation
 - ▶ Multi-TeV e^+e^- [+ pol. ?] probably best machine for VBS (100 TeV pp ??)
- Most simulations need to be updated (include light Higgs)
- Crucial: Discrimination between longitudinal and transversal modes!

Advertisement: MBI 2015 @ DESY

2.-4. Sept. 2015, DESY, Hamburg

One Ring to Find them ... One Ring to Rule them Out

One Ring to Find them ... One Ring to Rule them Out

Electroweak Chiral Lagrangian

Originally for heavy Higgses or Higgsless models

$$\mathcal{L}_{\chi} \ni \beta_{1} \mathcal{L}_{0}' + \sum_{i} \alpha_{i} \mathcal{L}_{i} + \frac{1}{v} \sum_{i} \alpha_{i}^{(5)} \mathcal{L}^{(5)} + \frac{1}{v^{2}} \sum_{i} \alpha_{i}^{(6)} \mathcal{L}^{(6)} + \dots \qquad \alpha_{i}^{(n)} = \frac{v^{n-4}}{\Lambda^{n-4}} C_{i}^{n}$$

$$\begin{aligned} \mathcal{L}_{0}^{\prime} &= \frac{v^{2}}{4} \operatorname{tr}\left[\mathbf{T}\mathbf{V}_{\mu}\right] \operatorname{tr}\left[\mathbf{T}\mathbf{V}^{\mu}\right] \\ \mathcal{L}_{1} &= \operatorname{tr}\left[\mathbf{B}_{\mu\nu}\mathbf{W}^{\mu\nu}\right] \\ \mathcal{L}_{2} &= \operatorname{itr}\left[\mathbf{B}_{\mu\nu}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}]\right] \\ \mathcal{L}_{3} &= \operatorname{itr}\left[\mathbf{W}_{\mu\nu}[\mathbf{V}^{\mu},\mathbf{V}^{\nu}]\right] \\ \mathcal{L}_{4} &= \operatorname{tr}\left[\mathbf{V}_{\mu}\mathbf{V}_{\nu}\right] \operatorname{tr}\left[\mathbf{V}^{\mu}\mathbf{V}^{\nu}\right] \\ \mathcal{L}_{5} &= \operatorname{tr}\left[\mathbf{V}_{\mu}\mathbf{V}^{\mu}\right] \operatorname{tr}\left[\mathbf{V}_{\nu}\mathbf{V}^{\nu}\right] \end{aligned}$$

$$\begin{split} \mathcal{L}_6 &= \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}^{\nu} \right] \\ \mathcal{L}_7 &= \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}_{\nu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}^{\nu} \right] \\ \mathcal{L}_8 &= \frac{1}{4} \operatorname{tr} \left[\mathbf{T} \mathbf{W}_{\mu\nu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{W}^{\mu\nu} \right] \\ \mathcal{L}_9 &= \frac{1}{2} \operatorname{tr} \left[\mathbf{T} \mathbf{W}_{\mu\nu} \right] \operatorname{tr} \left[\mathbf{T} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \right] \\ \mathcal{L}_{10} &= \frac{1}{2} \left(\operatorname{tr} \left[\mathbf{T} \mathbf{V}_{\mu} \right] \operatorname{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \right)^2 \end{split}$$

BACKUP SLIDES

Electroweak Chiral Lagrangian

Originally for heavy Higgses or Higgsless models

Indirect info on new physics in $\beta_1, \alpha_i, \ldots$ (Flavor physics only in *M*) Electroweak precision observables (LEP I/II, SLC):

> $\Delta S = -16\pi\alpha_1 \qquad \alpha_1 = 0.0026 \pm 0.0020$ $\Delta T = 2\beta_1/\alpha_{\text{QED}} \qquad \beta_1 = -0.00062 \pm 0.00043$ $\Delta U = -16\pi\alpha_8 \qquad \alpha_8 = -0.0044 \pm 0.0026$

Isospin decomposition
 ► Lowest order chiral Lagrangian (incl. anomalous couplings)

$$\mathcal{L} = -\frac{v^2}{4} \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] + \frac{\alpha_4}{4} \operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}_{\nu} \right] \operatorname{tr} \left[\mathbf{V}^{\mu} \mathbf{V}^{\nu} \right] + \frac{\alpha_5}{4} \left(\operatorname{tr} \left[\mathbf{V}_{\mu} \mathbf{V}^{\mu} \right] \right)^2$$

Leads to the following amplitudes: $s = (p_1 + p_2)^2$ $t = (p_1 - p_3)^2$ $u = (p_1 - p_4)^2$

$$\begin{array}{c} \hline \mathcal{A}(s,t,u) =: \\ \hline \mathcal{A}(w^+w^- \to zz) = & \frac{s}{v^2} & +8\alpha_5 \frac{s^2}{v^4} + 4\alpha_4 \frac{t^2 + u^2}{v^4} \\ \\ \mathcal{A}(w^+z \to w^+z) = & \frac{t}{v^2} & +8\alpha_5 \frac{t^2}{v^4} + 4\alpha_4 \frac{s^2 + u^2}{v^4} \\ \\ \mathcal{A}(w^+w^- \to w^+w^-) = -\frac{u}{v^2} & +(4\alpha_4 + 2\alpha_5) \frac{s^2 + t^2}{v^4} + 8\alpha_4 \frac{u^2}{v^4} \\ \\ \mathcal{A}(w^+w^+ \to w^+w^+) = -\frac{s}{v^2} & +8\alpha_4 \frac{s^2}{v^4} + 4(\alpha_4 + 2\alpha_5) \frac{t^2 + u^2}{v^4} \\ \\ \mathcal{A}(zz \to zz) = & 8(\alpha_4 + \alpha_5) \frac{s^2 + t^2 + u^2}{v^4} \end{array}$$

(Clebsch-Gordan) Decomposition into isospin eigenamplitudes

$$\begin{aligned} \mathcal{A}(I=0) &= \ 3\mathcal{A}(s,t,u) + \mathcal{A}(t,s,u) + \mathcal{A}(u,s,t) \\ \mathcal{A}(I=1) &= \ \mathcal{A}(t,s,u) - \mathcal{A}(u,s,t) \\ \mathcal{A}(I=2) &= \ \mathcal{A}(t,s,u) + \mathcal{A}(u,s,t) \end{aligned}$$

"Comparison" Form Factor vs. K-Matrix

- Which Unitarisation scheme provides the best description?
- → All of them: Unitarisation schemes are an arbitrary way to guarantee Unitarity

Form Factor

- Suppression of amplitude to get below Unitarity bound
- MC Generate less events than possible

K-Matrix

- Saturation of amplitude to achieve Unitarity
- MC Generate maximal possible number of events

Anomalous triple and quartic gauge couplings

$$\mathcal{L}_{TGC} = ie \left[g_1^{\gamma} A_{\mu} \left(W_{\nu}^{-} W^{+\mu\nu} - W_{\nu}^{+} W^{-\mu\nu} \right) + \kappa^{\gamma} W_{\mu}^{-} W_{\nu}^{+} A^{\mu\nu} + \frac{\lambda^{\gamma}}{M_W^2} W_{\mu}^{-\nu} W_{\nu\rho}^{+} A^{\rho\mu} \right] \\ + ie \frac{c_w}{s_w} \left[g_1^Z Z_{\mu} \left(W_{\nu}^{-} W^{+\mu\nu} - W_{\nu}^{+} W^{-\mu\nu} \right) + \kappa^Z W_{\mu}^{-} W_{\nu}^{+} Z^{\mu\nu} + \frac{\lambda^Z}{M_W^2} W_{\mu}^{-\nu} W_{\nu\rho}^{+} Z^{\rho\mu} \right]$$

$$\begin{aligned} & \text{SM values: } g_{1}^{\gamma,Z} = \kappa^{\gamma,Z} = 1, \lambda^{\gamma,Z} = 0 \text{ and } \delta_{Z} = \frac{\beta_{1} + g'^{2} \alpha_{1}}{c_{w}^{2} - s_{w}^{2}} \quad g_{1/2}^{VV'} = 1, h^{ZZ} = 0 \\ & \Delta g_{1}^{\gamma} = 0 & \Delta \kappa^{\gamma} = g^{2}(\alpha_{2} - \alpha_{1}) + g^{2}\alpha_{3} + g^{2}(\alpha_{9} - \alpha_{8}) \\ & \Delta g_{1}^{Z} = \delta_{Z} + \frac{g^{2}}{c_{w}^{2}}\alpha_{3} & \Delta \kappa^{Z} = \delta_{Z} - g'^{2}(\alpha_{2} - \alpha_{1}) + g^{2}\alpha_{3} + g^{2}(\alpha_{9} - \alpha_{8}) \\ & \Delta g_{1}^{\gamma\gamma} = \Delta g_{2}^{\gamma\gamma} = 0 & \Delta g_{2}^{ZZ} = 2\Delta g_{1}^{\gamma Z} - \frac{g^{2}}{c_{w}^{4}}(\alpha_{5} + \alpha_{7}) \\ & \Delta g_{1}^{\gamma Z} = \Delta g_{2}^{\gamma Z} = \delta_{Z} + \frac{g^{2}}{c_{w}^{2}}\alpha_{3} & \Delta g_{1}^{WW} = 2c_{w}^{2}\Delta g_{1}^{\gamma Z} + 2g^{2}(\alpha_{9} - \alpha_{8}) + g^{2}\alpha_{4} \\ & \Delta g_{1}^{ZZ} = 2\Delta g_{1}^{\gamma Z} + \frac{g^{2}}{c_{w}^{4}}(\alpha_{4} + \alpha_{6}) & \Delta g_{2}^{WW} = 2c_{w}^{2}\Delta g_{1}^{\gamma Z} + 2g^{2}(\alpha_{9} - \alpha_{8}) - g^{2}(\alpha_{4} + 2\alpha_{5}) \end{aligned}$$

$$h^{ZZ} = g^2 \left[\alpha_4 + \alpha_5 + 2 \left(\alpha_6 + \alpha_7 + \alpha_{10} \right) \right]$$

Anomalous triple and quartic gauge couplings

$$\begin{aligned} \mathcal{L}_{QGC} &= e^2 \left[g_1^{\gamma\gamma} A^{\mu} A^{\nu} W_{\mu}^{-} W_{\nu}^{+} - g_2^{\gamma\gamma} A^{\mu} A_{\mu} W^{-\nu} W_{\nu}^{+} \right] \\ &+ e^2 \frac{c_w}{s_w} \left[g_1^{\gamma Z} A^{\mu} Z^{\nu} \left(W_{\mu}^{-} W_{\nu}^{+} + W_{\mu}^{+} W_{\nu}^{-} \right) - 2 g_2^{\gamma Z} A^{\mu} Z_{\mu} W^{-\nu} W_{\nu}^{+} \right] \\ &+ e^2 \frac{c_w^2}{s_w^2} \left[g_1^{ZZ} Z^{\mu} Z^{\nu} W_{\mu}^{-} W_{\nu}^{+} - g_2^{ZZ} Z^{\mu} Z_{\mu} W^{-\nu} W_{\nu}^{+} \right] \\ &+ \frac{e^2}{2 s_w^2} \left[g_1^{WW} W^{-\mu} W^{+\nu} W_{\mu}^{-} W_{\nu}^{+} - g_2^{WW} \left(W^{-\mu} W_{\mu}^{+} \right)^2 \right] + \frac{e^2}{4 s_w^2 c_w^4} h^{ZZ} (Z^{\mu} Z_{\mu})^2 \end{aligned}$$

SM values:
$$g_1^{\gamma,Z} = \kappa^{\gamma,Z} = 1, \lambda^{\gamma,Z} = 0$$
 and $\delta_Z = \frac{\beta_1 + {g'}^2 \alpha_1}{c_w^2 - s_w^2} \quad g_{1/2}^{VV'} = 1, h^{ZZ} = 0$

$$\Delta g_1^{\gamma} = 0 \qquad \qquad \Delta \kappa^{\gamma} = g^2(\alpha_2 - \alpha_1) + g^2\alpha_3 + g^2(\alpha_9 - \alpha_8)$$

$$\Delta g_1^Z = \delta_Z + \frac{g^2}{c_w^2}\alpha_3 \qquad \qquad \Delta \kappa^Z = \delta_Z - g'^2(\alpha_2 - \alpha_1) + g^2\alpha_3 + g^2(\alpha_9 - \alpha_8)$$

$$\begin{split} \Delta g_1^{\gamma\gamma} &= \Delta g_2^{\gamma\gamma} = 0 & \Delta g_2^{ZZ} = 2\Delta g_1^{\gamma Z} - \frac{g^2}{c_w^4} (\alpha_5 + \alpha_7) \\ \Delta g_1^{\gamma Z} &= \Delta g_2^{\gamma Z} = \delta_Z + \frac{g^2}{c_w^2} \alpha_3 & \Delta g_1^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2 (\alpha_9 - \alpha_8) + g^2 \alpha_4 \\ \Delta g_1^{ZZ} &= 2\Delta g_1^{\gamma Z} + \frac{g^2}{c_w^4} (\alpha_4 + \alpha_6) & \Delta g_2^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2 (\alpha_9 - \alpha_8) - g^2 (\alpha_4 + 2\alpha_5) \\ h^{ZZ} &= g^2 [\alpha_4 + \alpha_5 + 2 (\alpha_6 + \alpha_7 + \alpha_{10})] \end{split}$$

SM Lagrangian

$$\begin{split} \mathcal{L}_{\min} &= -\frac{1}{2} \mathrm{tr} \left[\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} \right] - \frac{1}{2} \mathrm{tr} \left[\mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} \right] & W^{\pm}, Z \\ &+ \left(\partial_{\mu} \phi \right)^{\dagger} \partial^{\mu} \phi - V(\phi) & h \\ &+ \frac{v^2}{4} \mathrm{tr} \left[(\mathbf{D}_{\mu} \Sigma)^{\dagger} (\mathbf{D}^{\mu} \Sigma) \right] & w^{\pm}, z \\ &- \frac{g_h v}{2} \mathrm{tr} \left[\mathbf{V}^{\mu} \mathbf{V}_{\mu} \right] h \end{split}$$

Vector Bosons

$$\begin{split} \mathbf{W}_{\mu\nu} &= \partial_{\mu}\mathbf{W}_{\nu} - \partial_{\nu}\mathbf{W}_{\mu} + \mathrm{i}g\left[\mathbf{W}_{\mu}, \mathbf{W}_{\nu}\right] \\ \mathbf{B}_{\mu\nu} &= \partial_{\mu}\mathbf{B}_{\nu} - \partial_{\nu}\mathbf{B}_{\mu} \\ \mathbf{W}_{\mu} &= W_{\mu}^{a}\frac{\tau^{a}}{2} \qquad \mathbf{B}_{\mu} = B_{\mu}\frac{\tau^{3}}{2} \\ \mathbf{D}_{\mu} &= \partial_{\mu} + \mathrm{i}g\mathbf{W}_{\mu} - \mathrm{i}g'\mathbf{B}_{\mu} \end{split}$$

Higgs Sector

$$\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h \end{pmatrix}$$
$$\Sigma = \exp\left[-\frac{\mathrm{i}}{v}w^{a}\tau^{a}\right]$$
$$V_{\mu} = \Sigma\left(\mathbf{D}_{\mu}\Sigma\right)$$

Unitary Gauge

 Goldstone bosons are absorbed by vector bosons as longitudinal degrees of freedom

$$\mathbf{w}^a \equiv 0 \to \Sigma \equiv 1$$

$$\mathbf{D}_\mu = \partial_\mu - \mathbf{V}_\mu = \partial_\mu + \frac{\mathrm{i}g}{2} \left(\sqrt{2} (W^+ \tau^+ + W^- \tau^-) + \frac{1}{c_w} Z \tau^3 \right)$$

$$\mathcal{L}_{\min} = -\frac{1}{2} \operatorname{tr} \left[\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu} \right] - \frac{1}{2} \operatorname{tr} \left[\mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} \right] \\ + \underbrace{\left(\partial_{\mu} \phi \right)^{\dagger} \partial^{\mu} \phi - \frac{v^{2}}{4} \operatorname{tr} \left[\mathbf{V}^{\mu} \mathbf{V}_{\mu} \right] - \frac{g_{h} v}{2} \operatorname{tr} \left[\mathbf{V}^{\mu} \mathbf{V}_{\mu} \right] \mathbf{h}}_{\substack{\widehat{a}_{h} = 1}} - V(\phi)$$

Coincides with known SM parametrisation

Vector Resonances

$$\begin{split} \mathcal{L}_{\rho} &= -\frac{1}{8} \mathrm{tr} \left[\rho_{\mu\nu} \rho^{\mu\nu} \right] + \frac{M_{\rho}^{2}}{4} \mathrm{tr} \left[\rho_{\mu} \rho^{\mu} \right] + \frac{\Delta M_{\rho}^{2}}{8} \left(\mathrm{tr} \left[\mathbf{T} \rho_{\mu} \right] \right)^{2} + \mathrm{i} \frac{\mu_{\rho}}{2} g \mathrm{tr} \left[\rho_{\mu} \mathbf{W}^{\mu\nu} \rho_{\nu} \right] \\ &+ \mathrm{i} \frac{\mu_{\rho}'}{2} g' \mathrm{tr} \left[\rho_{\mu} \mathbf{B}^{\mu\nu} \rho_{\nu} \right] + \mathrm{i} \frac{g_{\rho} v^{2}}{2} \mathrm{tr} \left[\rho_{\mu} \mathbf{V}^{\mu} \right] + \mathrm{i} \frac{h_{\rho} v^{2}}{2} \mathrm{tr} \left[\rho_{\mu} \mathbf{T} \right] \mathrm{tr} \left[\mathbf{T} \mathbf{V}^{\mu} \right] \\ &+ \frac{g' v^{2} k_{\rho}}{2 M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu} \left[\mathbf{B}^{\nu\mu}, \mathbf{V}_{\nu} \right] \right] + \frac{g v^{2} k_{\rho}'}{4 M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu} \left[\mathbf{T}, \mathbf{V}_{\nu} \right] \right] \mathrm{tr} \left[\mathbf{T} \mathbf{W}^{\nu\mu} \right] \\ &+ \frac{g v^{2} k_{\rho}'}{4 M_{\rho}^{2}} \mathrm{tr} \left[\mathbf{T} \rho_{\mu} \right] \mathrm{tr} \left[\left[\mathbf{T}, \mathbf{V}_{\nu} \right] \mathbf{W}^{\nu\mu} \right] + \mathrm{i} \frac{\ell_{\rho}}{M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu\nu} \mathbf{W}^{\nu} \rho \mathbf{W}^{\rho\mu} \right] \\ &+ \mathrm{i} \frac{\ell_{\rho}'}{M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu\nu} \mathbf{B}^{\nu} \rho \mathbf{W}^{\rho\mu} \right] + \mathrm{i} \frac{\ell_{\rho}''}{M_{\rho}^{2}} \mathrm{tr} \left[\rho_{\mu\nu} \mathbf{T} \right] \mathrm{tr} \left[\mathbf{T} \mathbf{W}^{\nu\rho} \mathbf{W}^{\rho\mu} \right] \end{split}$$

all
$$\alpha_i \sim 1/M_{
ho}^4$$
, except for $\beta_1 \sim \Delta \rho \sim T \sim h_{
ho}^2/M_{
ho}^2$

4-fermion contact interaction $j_{\mu}j^{\mu} \sim 1/M_{\rho}^2$ (eff. *T* and *U* parameter)

vector coupling $j_{\mu}V^{\mu} \sim 1/M_{\rho}^2$ (eff. *S* parameter) Mismatch: measured fermionic vs. bosonic coupling *g*

Nyffeler/Schenk, 2000; Kilian/JR, 2003

Effects on Triple Gauge Couplings

- $\mathcal{O}(1/M^2)$: Renormalization of ZWW coupling
- $\mathcal{O}(1/M^4)$: shifts in Δg_1^Z , $\Delta \kappa^{\gamma}$, $\Delta \kappa^Z$, λ^{γ} , λ^Z

Effects on Quartic Gauge Couplings

▶ $\mathcal{O}(1/M^4)$, orthogonal (in α_4 - α_5 space) to scalar case

Implementation of Unitarization

Explicit "time arrow" in WHIZARD

 trace back pairs of momenta at quartic vertices to external legs

- guarantee for only s-channel insertions $a \downarrow \alpha_5$

Resonance	σ	ϕ	ρ	f	a	σ_ α4
$\Gamma[g^2 M^2/(64\pi v^2)]$	6	1	$\frac{4}{3}\left(\frac{v^2}{M^2}\right)$	$\frac{1}{5}$	$\frac{1}{30}$	A' f
$\Delta \alpha_4 [(16\pi\Gamma/M)(v^4/M^4)]$	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{5}{2}$	$-\frac{5}{8}$	· • • •
$\Delta \alpha_5 [(16\pi\Gamma/M)(v^4/M^4)]$	$\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{3}{4}$	$-\frac{5}{8}$	$\frac{35}{8}$	ρ

Vector Boson Scattering at e^+e^- machines

Signal

Irreducible bkgd.

(Partially) reducible bkgd.

Seminar, Helsinki, 17.02.2015

Vector Boson Scattering

Beyer et al.,hep-ph/0604048

1 TeV, 1 ab^{-1} , full 6f final states, 80 % e_R^- , 60 % e_L^+ polarization, binned likelihood

Contributing channels: $WW \rightarrow WW, WW \rightarrow ZZ, WZ \rightarrow WZ, ZZ \rightarrow ZZ$

Process	Subprocess	σ [fb]
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \rightarrow WW$	23.19
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	$WW \rightarrow ZZ$	7.624
$e^+e^- \rightarrow \nu \bar{\nu} q \bar{q} q \bar{q}$	$V \rightarrow VVV$	9.344
$e^+e^- \rightarrow \nu e q \bar{q} q \bar{q}$	$WZ \rightarrow WZ$	132.3
$e^+e^- \rightarrow e^+e^-q\bar{q}q\bar{q}$	$ZZ \rightarrow ZZ$	2.09
$e^+e^- \rightarrow e^+e^-q\bar{q}q\bar{q}$	$ZZ \rightarrow W^+W^-$	414.
$e^+e^- \rightarrow b\bar{b}X$	$e^+e^- \rightarrow t\bar{t}$	331.768
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221
$e^+e^- \rightarrow e\nu q\bar{q}$	$e^+e^- \rightarrow e\nu W$	279.588
$e^+e^- \rightarrow e^+e^-q\bar{q}$	$e^+e^- \rightarrow e^+e^-Z$	134.935
$e^+e^- \rightarrow X$	$e^+e^- \rightarrow q\bar{q}$	1637.405

 $SU(2)_c$ conserved case, all channels

coupling	$\sigma -$	$\sigma +$		
$16\pi^2 \alpha_4$	-1.41	1.38		
$16\pi^2 \alpha_5$	-1.16	1.09		

$SU(2)_c$ broken case, all channels

coupling	$\sigma -$	$\sigma +$
$16\pi^2 \alpha_4$	-2.72	2.37
$16\pi^2 \alpha_5$	-2.46	2.35
$16\pi^2 \alpha_6$	-3.93	5.53
$16\pi^2 \alpha_7$	-3.22	3.31
$16\pi^{2}\alpha_{10}$	-5.55	4.55

Interpretation as limits on resonances

Beyer et

al.,hep-ph/0604048

Consider the width to mass ratio, $f_{\sigma} = \Gamma_{\sigma}/M_{\sigma}$

SU(2) conserving scalar singlet

SU(2) broken vector triplet

needs input from TGC covariance matrix

f = 1.0 (full), 0.8 (dash), 0.6 (dot-dash), 0.3 (dot)

upper/lower limit from λ_Z , grey area: magnetic moments

	Spin	I = 0	I = 1	I=2	Spin	I = 0	I = 1	I=2
Final	0	1.55	_	1.95	0	1.39	1.55	1.95
result:	1	-	2.49	_	1	1.74	2.67	-
	2	3.29	—	4.30	2	3.00	3.01	5.84

Vector Boson Scattering: Observables

Boos/Kilian/He/Mühlleitner/Pukhov/Zerwas, hep-ph/9708310

Vector Boson Scattering: Observables

Study of WW scattering @ 1.6 TeV

Boos/Kilian/He/Mühlleitner/Pukhov/Zerwas, hep-ph/9708310

Vector Boson Scattering: Observables

Boos/Kilian/He/Mühlleitner/Pukhov/Zerwas, hep-ph/9708310

ILC Results: Triboson production

 $e^+e^- \rightarrow WWZ/ZZZ$, dep. on $(\alpha_4 + \alpha_6)$, $(\alpha_5 + \alpha_7)$, $\alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})$ Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Killian/Ohl/JR 1 TeV, 1 ab^{-1} , full 6-fermion final states, SIMDET fast simulation Observables: M_{WW}^2 , M_{WZ}^2 , $\triangleleft(e^-, Z)$ A) unpol., B) 80% e_R^- , C) 80% e_R^- , 60% e_L^+

		WWZ	ZZZ	best	
$16\pi^2 \times$	no pol.	e^- pol.	both pol.	no pol.	
$\Delta \alpha_4^+$	9.79	4.21	1.90	3.94	1.78
$\Delta \alpha_4^-$	-4.40	-3.34	-1.71	-3.53	-1.48
$\Delta \alpha_5^+$	3.05	2.69	1.17	3.94	1.14
$\Delta \alpha_5^{-}$	-7.10	-6.40	-2.19	-3.53	-1.64

32 % hadronic decays Durham jet algorithm Bkgd. $t\bar{t} \rightarrow 6$ jets Veto against $E_{\rm mis}^2 + p_{\perp,\rm mis}^2$ No angular correlations yet

ILC Results: Triboson production

 $e^+e^- \rightarrow WWZ/ZZZ$, dep. on $(\alpha_4 + \alpha_6)$, $(\alpha_5 + \alpha_7)$, $\alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})$ Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Killan/Ohl/JR 1 TeV, 1 ab^{-1} , full 6-fermion final states, SIMDET fast simulation Observables: M^2_{WW} , M^2_{WZ} , $\triangleleft(e^-, Z)$ A) unpol., B) 80% e^-_R , C) 80% e^-_R , 60% e^+_L

		WWZ	ZZZ	best	
$16\pi^2 \times$	no pol.	e^- pol.	both pol.	no pol.	
$\Delta \alpha_4^+$	9.79	4.21	1.90	3.94	1.78
$\Delta \alpha_4^-$	-4.40	-3.34	-1.71	-3.53	-1.48
$\Delta \alpha_5^+$	3.05	2.69	1.17	3.94	1.14
$\Delta \alpha_5^{-}$	-7.10	-6.40	-2.19	-3.53	-1.64

32 % hadronic decays Durham jet algorithm Bkgd. $t\bar{t} \rightarrow 6$ jets Veto against $E_{\rm mis}^2 + p_{\perp,\rm mis}^2$ No angular correlations yet
The Effective *W* approximation

• $M_{\mathcal{V}}, \hat{t}_i$ small corrections, \mathcal{V} nearly onshell:

$$\sigma(q_1 q_2 \to q_1' q_2' \mathcal{V}_1' \mathcal{V}_2') \approx \sum_{\lambda_1, \lambda_2} \int dx_1 \, dx_2 \, F_{q_1 \to q_1' \mathcal{V}_1}^{\lambda_1}(x_1) \, F_{q_2 \to q_2' \mathcal{V}_2}^{\lambda_2}(x_2) \, \sigma_{\mathcal{V}_1 \mathcal{V}_2 \to \mathcal{V}_1' \mathcal{V}_2'}^{\lambda_1 \lambda_2}(x_1 x_2 s)$$

In addition to Weizsäcker-Williams: longitudinal polarisation

$$\begin{split} F_{q \rightarrow q' \mathcal{V}}^{+}(x) &= \frac{(V-A)^2 + (V+A)^2(1-x)^2}{16\pi^2 x} \left[\ln \left(\frac{p_{\perp,\max}^2 + (1-x)m_{\mathcal{V}}^2}{(1-x)m_{\mathcal{V}}^2} \right) - \frac{p_{\perp,\max}^2}{p_{\perp,\max}^2 + (1-x)m_{\mathcal{V}}^2} \right] \\ F_{q \rightarrow q' \mathcal{V}}^{-}(x) &= \frac{(V+A)^2 + (V-A)^2(1-x)^2}{16\pi^2 x} \left[\ln \left(\frac{p_{\perp,\max}^2 + (1-x)m_{\mathcal{V}}^2}{(1-x)m_{\mathcal{V}}^2} \right) - \frac{p_{\perp,\max}^2}{p_{\perp,\max}^2 + (1-x)m_{\mathcal{V}}^2} \right] \\ F_{q \rightarrow q' \mathcal{V}}^0(x) &= \frac{V^2 + A^2}{8\pi^2} \frac{2(1-x)}{x} \frac{p_{\perp,\max}^2}{p_{\perp,\max}^2 + (1-x)m_{\mathcal{V}}^2} \\ \\ \text{Dominant contribution from small } \mathcal{V} \text{ virtualities} \\ \\ \text{Transverse momentum cutoff } p_{\perp,\max} \leq (1-x)\sqrt{s}/2; \\ & \models \text{ longitudinal pol.: finite for } p_{\perp,\max} \rightarrow \infty \\ & \models \text{ Transversal pol.: logarithmic singularity} \end{split}$$

• EWA structure functions: W (left) and Z (right)

- Emission from $u, \sqrt{s} = 2 \text{ TeV}$ emission
 - preferred at high energy: transversal
- Problem: Irreducible background to weak-boson scattering

- Double ISR/FSR *t*-channel like diagrams
- Coulomb-singularity (peak): cut on $p_{T,V} \gtrsim 30 \text{ GeV}$

- Effective W approx. vs. WHIZARD full matrix elements
- Shapes/normalization of distributions heavily affected
- EWA: Sideband subtraction completely screwed up!

Discrimination of Longitudinal Modes

- Most important for separating/measuring scattering of longitudinal modes
- No known (working) method up to now!

Different Selection Criteria:

- General selection criteria
 - exactly 2 leptons within detector acceptance,
 - ▶ 2 tag jets with $2 < |\eta_j| < 5$ and opposite directions, but no *b*-tag
 - $M_{j_1l_2}, M_{j_2l_1} > 200 \text{ GeV}$
 - ▶ M_{jj} > 400 GeV
 - $\Delta R_{jl} > 0.4$
 - $p_T^{l_1}, p_T^{l_2} > 40 \text{ GeV}$
 - $|\eta_{l_1}|, |\eta_{l_2}| < 1.5$ $\Delta \phi_{ll} > 2.5$
 - *M*_{ll} > 200 GeV
- Proposal of new variable

Doroba/Kalinowski/Kuczmarski/Pokorski/Rosiek/Szleper/Tkaczyk, 1201.2768

$$R_{p_T} = (p_T^{\ l_1} \cdot p_T^{\ l_2}) \ / \ (p_T^{\ j_1} \cdot p_T^{\ j_2})$$

• Proposal of new variable

Doroba/Kalinowski/Kuczmarski/Pokorski/Rosiek/Szleper/Tkaczyk, 1201.2768

$$R_{p_T} = (p_T^{\ l_1} \cdot p_T^{\ l_2}) / (p_T^{\ j_1} \cdot p_T^{\ j_2})$$

• Works well for $W^{\pm}W^{\pm}$, not feasible for W^+W^-

• Might allow to relax jet vetoes: gain for high pile-up!

Matrix Element Method (MEM)

Kondo, 1988; Dalitz/Goldstein, 1992; CDF; DØ; Freitas/Gainer, arXiv:1212.3598

- Construct a likelihood from the squared matrix elements
- Marginalize over invisible particles
- Case study for $pp \rightarrow jjW^+W^+$

Freitas/Gainor, 2012

► Up to now only compared to dilepton mass: m_{ℓℓ}

Important possibility for gain of sensitivity