Status of Little Higgs Models in 2015

Jürgen R. Reuter

DESY

JRR/Tonini/de Vries, **JHEP 1402** (2014) 053; arXiv:1307.5010; JRR/Tonini, **JHEP 1302** (2013) 077; Kilian/JRR/Rainwater **PRD 74** (2006), 095003; **PRD 71** (2005), 015008; Kilian/JRR **PRD 70** (2004), 015004

Seminar, LAPTh, Annecy-le-Vieux, 26.03.2015

Standard Model Triumph: > 2012: Discovery of a Higgs boson

No evidence beyond SM ... and what now?

(

Doubts on the Standardmodel

- describes microcosm (too good?)
- 28 free parameters

- Higgs ?, form of Higgs potential ?

$$\delta M_H^2 \boldsymbol{\propto} \Lambda^2 \sim M_{\rm Planck}^2 = (10^{19})^2 \, {\rm GeV}^2$$

Electroweak vacuum stability

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

Electroweak vacuum stability

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

- Could the Higgs field ever have fallen in the correct vacuum? Hertzberg, arXiv:1210.3624
- Importance of higher terms in Higgs potential (gravity etc.) ?

Electroweak vacuum stability

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

- Could the Higgs field ever have fallen in the correct vacuum? Hertzberg, arXiv:1210.3624
- Importance of higher terms in Higgs potential (gravity etc.) ?

Higgs as Pseudo-Goldstone boson

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

Old idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as (Pseudo)-Goldstone boson of a spontaneously broken global symmetry

Analogous: QCD <u>Scale Λ </u>: chiral symmetry breaking, quarks, $SU(3)_c$ Scale v: pions, kaons, ...

Higgs as Pseudo-Goldstone boson

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

Old idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as (Pseudo)-Goldstone boson of a spontaneously broken global symmetry

<u>Scale </u> Λ : global symmetry breaking, new particles, new (gauge) IA Scale <u>v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Without Fine-Tuning: experimentally excluded

Collective symmetry breaking and 3-scale models

Collective symmetry breaking: Arkani-Hamed/Cohen/Georgi/Nelson/..., 2001

2 different global symmetries; one of them unbroken \Rightarrow Higgs exact Goldstone boson

Coleman-Weinberg: boson masses by radiative corrections, but: m_H only at 2-loop level

<u>Scale Λ </u>: global SB, new IA <u>Scale *F*</u>: Pseudo-Goldstone bosons, new vectors/fermions <u>Scale *v*</u>: Higgs, W/Z, ℓ^{\pm} , ...

Characteristics and Spectra

<u>Scale Λ </u>: "hidden sector", symmetry breaking

Scale F: new particles

<u>Scale v</u>: $h, W/Z, \ell^{\pm}, \ldots$

Terascale: new particles to stabilize the hierarchy

Generic properties of Little-Higgs models

- Extended global symmetry (extended scalar sector)
- Specific functional form of the potential
- Extended gauge symmetry: $\gamma' \equiv A_H, Z' \equiv Z_H, W'^{\pm} \equiv W_H$
- New heavy fermions: T, but also U, C, \ldots

(e.g. Littlest Higgs)

Simple Group Models

(e.g. Simplest Little Higgs)

discrete T(TeV) parity: pair production, cascades, DM

DAC.

Generic properties of Little-Higgs models

- Extended global symmetry (extended scalar sector)
- Specific functional form of the potential
- Extended gauge symmetry: $\gamma' \equiv A_H, Z' \equiv Z_H, W'^{\pm} \equiv W_H$
- New heavy fermions: T, but also U, C, \ldots

(e.g. Littlest Higgs)

Quiver [Moose] Models

(e.g. Minimal Moose Model)

discrete T(TeV) parity: pair production, cascades, DM

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h^*\\0 & \eta & \\h^T & \eta \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2 \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h^*\\0 & \eta & \\h^T & \eta \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

but:
$$\begin{array}{c} \Phi_1^{\dagger} \\ \Phi_1 \end{array} / \begin{array}{c} \Phi_2^{\dagger} \\ \Phi_2 \end{array} = \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) |\Phi_1^{\dagger}\Phi_2|^2 \Rightarrow \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) f^2(h^{\dagger}h)$$

Indirect constraints: Higgs/EW precision

How to constrain a generic model in HEP?

- direct searches of resonances
- electroweak precision tests
- flavour constraints
- nowadays: Higgs sector

Higgs sector is the key to understand EW-scale physics (and beyond?)

Statistical analysis

We considered the three most popular Little Higgs models:

- Simplest Little Higgs (SLH) [Schmaltz]
- ► Littlest Higgs (L²H) [Arkani-Hamed et al.]
- Littlest Higgs with T-parity (LHT) [Low et al.]

and realized a χ^2 analysis on their parameter spaces, taking into account the whole set of 7+8 TeV Higgs searches by *ATLAS* and *CMS*, and by fitting 21 different *EW* Precision Observables:

$$\chi^2 = \sum_{i} \frac{\left(\mathcal{O}_i - \mathcal{O}_i^{\mathsf{exp}}\right)^2}{\sigma_i^2}$$

where O_i depends on the free parameters of the model considered.

Data used: Higgs sector

the Higgs results are expressed in terms of a signal strength modifier

$$\mu_{i} = \frac{\sum_{p} \epsilon^{p}{}_{i} \sigma_{p}}{\sum_{p} \epsilon^{p}{}_{i} \sigma_{p}^{SM}} \cdot \frac{BR(h \to X_{i}X_{i})}{BR(h \to X_{i}X_{i})_{SM}}$$

we included in our χ^2 analysis the best-fit values of μ_i reported by the Collaborations for all the different 7+8 TeV channels *i*:

Data used: EWPD

every extension of *SM* has to satisfy at least the precision constraints of the electroweak sector:

Iow-energy observables

e.g. *v*-scattering, parity violation observables

Z-pole observables

e.g. m_Z , Γ_Z , Z-pole asymmetries...

LH Smoking guns

Where do the LH corrections to the SM quantities come from?

- new decay channels of the Higgs, e.g. $h \rightarrow A_H A_H$ in LHT
- modified Higgs couplings with SM fermions and vector bosons

e.g.
$$2 \frac{m_W^2}{v} y_W h W^+ W^-, \quad y_W = \begin{cases} 1 & SM \\ 1 + \mathcal{O}\left(v^2/f^2\right) & LH \end{cases}$$

interaction terms of Higgs with new fermions/vector bosons

e.g.
$$\frac{m_T}{v} y_T h \bar{T} T$$
 $m_T \sim f, y_T \sim \mathcal{O} \left(v^2 / f^2 \right)$

modified neutral- and charged-currents

e.g.
$$\frac{g}{c_W} \sum_f \bar{f} \gamma^{\mu} \Big((g_L^{SM} + \delta g_L) P_L + (g_R^{SM} + \delta g_R) P_R \Big) f Z_{\mu}$$

SLH results

 free parameters: f SSB scale, t_β ratio of vevs of scalar fields φ_{1,2}

JRR/Tonini, JHEP 1302 (2013) 077: JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- $f_{\rm min}^{99\%} = 2.88$ TeV, translates into lower bounds on new states' masses, e.g.
 - $m_{W'} \gtrsim 1.35 \text{ TeV}$ $m_T \gtrsim 2.81 \text{ TeV}$
- min. required fine tuning: $\sim 1\%,$ defined as

$$\Delta = \frac{|\delta \mu^2|}{\mu_{\rm obs}^2}$$

- results mainly driven by EWPD
- includes data from Moriond 2013

L²H results

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- free parameters: f SSB scale, c mixing angle in gauge sector
- f^{99%}_{min} = 3.20 TeV, translates into lower bounds on new states' masses, e.g.

 $m_{W'} \gtrsim 2.13 \text{ TeV}$ $m_T \gtrsim 4.50 \text{ TeV}$

• min. required fine tuning: $\sim 0.1\%$, defined as

$$\Delta = \frac{|\delta \mu^2|}{\mu_{\rm obs}^2}$$

- results mainly driven by EWPD
- includes data from Moriond 2013
- Exclusion gets weaker by Higgs data (d.o.f.)!

L²H results

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- free parameters: f SSB scale, c mixing angle in gauge sector
- f^{99%}_{min} = 3.20 TeV, translates into lower bounds on new states' masses, e.g.

 $m_{W'} \gtrsim 2.13 \text{ TeV}$ $m_T \gtrsim 4.50 \text{ TeV}$

• min. required fine tuning: $\sim 0.1\%$, defined as

$$\Delta = \frac{|\delta \mu^2|}{\mu_{\rm obs}^2}$$

- results mainly driven by EWPD
- includes data from Moriond 2013
- Exclusion gets weaker by Higgs data (d.o.f.)!

LHT: Littlest Higgs with T parity

Goldstone boson matrix:

$$\Sigma = e^{2 i \Pi/f} \qquad \Pi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & H & \sqrt{2}\Phi \\ H^{\dagger} & 0 & H^{t} \\ \sqrt{2}\Phi^{\dagger} & H^{*} & 0 \end{pmatrix} \qquad \Phi \propto \begin{pmatrix} \sqrt{2}\phi^{++} & \phi^{+} \\ \phi^{+} & \phi^{0} + i \phi^{P} \end{pmatrix}$$

Discrete T parity:

$$T: \quad \Pi \to -\Omega \,\Pi \,\Omega \qquad \Omega = \mathsf{diag}(1, 1, -1, 1, 1)$$

• Yukawa couplings $k,R\equiv\lambda_1/\lambda_2$

$$\begin{split} \mathcal{L}_{k} &= -kf\left(\bar{\Psi}_{2}\xi\Psi_{c} + \bar{\Psi}_{1}\langle\Sigma\rangle\Omega\xi^{\dagger}\Omega\Psi_{c}\right) - m_{q}\,\bar{u}_{c}^{\prime}\,u_{c} - m_{q}\,\bar{d}_{c}^{\prime}\,d_{c} - m_{\chi}\,\bar{\chi}_{c}^{\prime}\,\chi_{c} + \text{h.c.}\\ \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\Sigma_{ky}^{\prime}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\Sigma_{ky}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\Sigma_{ky}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\Sigma_{ky}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky}\right]t_{R}^{\prime} - \left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}, \nabla_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}\right]t_{R}^{\prime} + \frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}$$

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on *F* MUCH relaxed, $F \sim 0.5 1$ TeV but: Pair production!, typical cascade decays
- ▶ Lightest *T*-odd particle (LTP) \Rightarrow Candidate for Cold Dark Matter

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on *F* MUCH relaxed, $F \sim 0.5 1$ TeV but: Pair production!, typical cascade decays
- ▶ Lightest *T*-odd particle (LTP) \Rightarrow Candidate for Cold Dark Matter

```
Littlest Higgs: A' LTP

W', Z' \sim 650 GeV, \Phi \sim 1 TeV

T, T' \sim 0.7-1 TeV

Annihilation: A'A' \rightarrow h \rightarrow WW, ZZ, hh

Hubisz/Meade, 2005
```

0/10/50/70/100

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on *F* MUCH relaxed, $F \sim 0.5 1$ TeV but: Pair production!, typical cascade decays
- ▶ Lightest *T*-odd particle (LTP) \Rightarrow Candidate for Cold Dark Matter

```
Littlest Higgs: A' LTP

W', Z' \sim 650 \text{ GeV}, \Phi \sim 1 \text{ TeV}

T, T' \sim 0.7\text{-}1 \text{ TeV}

Annihilation: A'A' \rightarrow h \rightarrow WW, ZZ, hh
```

Wang/Yang/Zhu, 2013

Relic density/SI cross section

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on *F* MUCH relaxed, $F \sim 0.5 1$ TeV but: Pair production!, typical cascade decays
- Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

```
Littlest Higgs: A' LTP

W', Z' \sim 650 \text{ GeV}, \Phi \sim 1 \text{ TeV}

T, T' \sim 0.7-1 \text{ TeV}

Annihilation: A'A' \rightarrow h \rightarrow WW, ZZ, hh

Wang/Yang/Zhu, 2013

Relic density/SI cross section
```

- T parity Simplest LH: Pseudo-Axion η LTP
 Z' remains odd: good or bad (?) Martin, 2006
- T parity might be anomalous (???)

Hill/Hill, 2007

LHT results

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- free parameters: f SSB scale, R ratio of Yukawa couplings in top sector
- ► $f_{\min}^{99\%} = 405.9$ GeV, translates into lower bounds on new states' masses, e.g.

 $m_{W'} \gtrsim 269.6 \text{ GeV}$ $m_T \gtrsim 553.6 \text{ GeV}$

• min. required fine tuning: $\sim 10\%$, defined as

$$\Delta = \frac{|\delta\mu^2|}{\mu_{\rm obs}^2}$$

results mainly driven by EWPD (see next slide)

$$\mathsf{EWPT} \Rightarrow$$

$$f\gtrsim 405~{\rm GeV}$$

- the shape of result driven by EW constraints (much smaller uncertainties)
- Higgs data only: for $v/f \gtrsim 0.6$ decay $h \rightarrow A_H A_H$ open and dominant
- Higgs data only: subdominant dependence on R w.r.t. f is a consequence of the Collective Symmetry Breaking mechanism

EWPT and Higgs data \Rightarrow

$$f \gtrsim 694 \text{ GeV}$$

Direct searches: Drell-Yan mainly

Reach in the gauge boson sector: depends on mixing angle

Direct Searches: Focus on LHT

Defining two benchmark scenarios: 1. heavy quarks

Direct Searches: Focus on LHT

Defining two benchmark scenarios: 2. heavy top/vectors

LHT Mass Spectrum (R=1.0, k=0.4)

Direct Searches: Focus on LHT

• Defining two benchmark scenarios: 1. k = 1.5, 2. k = 0.4

Branching Ratios

Decay patterns:

Particle	Decay	$BR_{k=1.0}$	$BR_{k=0.4}$	Particle	Decay	$BR_{k=1.0}$	$BR_{k=0.4}$
l_H^{\pm}	$ \begin{array}{c} W_H^\pm \ \nu \\ Z_H \ l^\pm \\ A_H \ l^\pm \end{array} $	62% 31% 6%	0% 0% 100%	d_H	$W_H^- u Z_H d A_H d$	62% 30% 6%	0% 0% 100%
ν_H^{\pm}	$ \begin{array}{c} W_{H}^{\pm} \ l^{\mp} \\ Z_{H} \ \nu \\ A_{H} \ \nu \end{array} $	61% 30% 9%	0% 0% 100%	u_H	$W_H^+ d \\ Z_H u \\ A_H u$	58% 30% 9%	0% 0% 100%
T_H^+	$W^+ b Z t$	46% 22%	45% 22%	T_{H}^{-}	$\begin{array}{c} A_H t \\ Z_H t \end{array}$	100% 0%	100% 0%
	H t $T_H^- A_H$	21% 11%	21% 11%	$\Phi^{0/P}$	$A_H H$	100%	100%
A _H	stable			Φ^{\pm}	$A_H W^{\pm}$	100%	100%
Z_H	$A_H H$	100%	2%	$\Phi^{\pm\pm}$	$A_H (W^{\pm})^2$	100%	96%
	$d_H d u_H u u_H u l_H^\pm l^\mp u_H u$	0% 0% 0%	41% 30% 14% 14%	W_H^{\pm}	$egin{array}{lll} A_H W^\pm \ u_H d \ d_H u \ l_H^\pm u \ u_H d \ d_H u \ l_H^\pm u \ u_H l^\pm \end{array}$	100% 0% 0% 0%	2% 44% 27% 16.5% 16.5%

Cross Sections (I)

Heavy Quarks

IRI

24/32

Channels and signatures: Parameters

final state			madaa	noromo	final state			modes	params
leptons	# jets	E_T	linoues	params	leptons	# jets	E_T		
0	1	1	$q_H A_H$	f, k	· l±	2	1	$W_{H}^{\pm}W_{H}^{\mp}$ $W^{\pm}Z$	f, k
0	2	1	дндн	f, k	-			₩ _Н 2н 4н4н	f, k
0	3	1	$q_H W_H^{\pm}$	f, k	l±	3	1	$q_H W_H^{\pm}$	f, k
0	4		$ \begin{vmatrix} q_H q_H \\ W_H^{\pm} W_H^{\mp} \\ W_H^{\pm} Z_H \end{vmatrix} = \begin{cases} f, k \\ f, k \\ f, k \end{cases} $				$T^{+}q$	f, k, R	
		1		$egin{array}{c} f,k \ f,k \end{array}$	l^{\pm}	4	1	$q_{H}q_{H}$ $T^{-}T^{-}$	$egin{array}{c} f,k\ f,k,R \end{array}$
			$Z_H Z_H$	f, k	- l+l-	0	1	$W^{\pm}_{\mu}W^{\mp}_{\mu}$	f, k
0	4	X	T^+q	f, k, R	1+1-	1	1	$a_{\nu}W^{\pm}$	l f k
0	5	1	$q_H W_H^{\pm}$	f, k		•	•	<u> </u>	<i>j</i> , <i>n</i>
0	6	1	анан Т	f, k	<i>l</i> + <i>l</i> -	2	1	$T^{-}T^{-}$	f, k f, k, R
				J, κ, R	$l^{\pm}l^{\pm}$	2	1	дндн	f, k

Channels and signatures (I)

final state			production	$\sigma_{8 \text{ TeV}}$	× Br (fb)	$\sigma_{14 \text{ TeV}} imes ext{Br} (ext{fb})$		
$\# l^{\pm}$	# jets	$\not\!\!\!E_T$	modes	k = 1.0	k = 0.4	k = 1.0	k = 0.4	
0	1	1	$q_H A_H$	0.24	1.1×10^2	2.1	$4.5\!\times\!10^2$	
0	2	1	<i>qнqн</i>	0.56	5.6×10^{3}	5.2	$3.2\!\times\!10^4$	
0	3	1	$q_H W_H^\pm q_H Z_H$	0.73 0.76	14 8.6	$\begin{array}{c} 8.0\\ 8.0\end{array}$	77 49	
0	4	1	$q_{H}q_{H}$ $W_{H}^{\pm}W_{H}^{\mp}$ $W_{H}^{\pm}Z_{H}$ $Z_{H}Z_{H}$	$ \begin{array}{c c} 4.0 \\ 1.9 \\ 4.8 \\ 0.56 \end{array} $	$\begin{array}{c c} 9.1 \times 10^2 \\ \text{low} \\ \text{low} \\ \text{low} \\ \text{low} \end{array}$	35 9.1 23 3.0	5.6×10^3 low low low	
0	4	X	T^+q	2.0	2.0	17	17	
0	5	1	$q_H W_H^\pm$ $q_H Z_H$	5.1 4.1	× ×	54 44	× ×	
0	6	1	$\begin{array}{c} q_H q_H \\ T^- T^- \end{array}$	1.6 2.5	$\begin{array}{c}9.7\!\times\!10^2\\2.5\end{array}$	$\begin{array}{r} 1.7\!\times\!10^2\\ 25\end{array}$	$\begin{array}{r} 6.0 \times 10^3 \\ 25 \end{array}$	

Channels and signatures (II)

f	inal state		production	$\sigma_{8 \text{ TeV}}$	× Br (fb)	$\sigma_{14{\rm TeV}} \times {\rm Br} ({\rm fb})$		
$\# l^{\pm}$	# jets	E_T	modes	k = 1.0	k = 0.4	k = 1.0	k = 0.4	
l±	2	1	$egin{array}{c} q_H q_H \ W_H^\pm W_H^\mp \ W_H^\pm Z_H \ T^+ q \end{array}$	$ \begin{array}{c c} 0.058 \\ 0.77 \\ 2.1 \\ 1.3 \end{array} $	9.0×10^2 low 1.2	$ \begin{array}{c c} 1.1 \\ 3.9 \\ 10 \\ 10 \\ 10 \\ \end{array} $	5.6×10^{3} low low 10	
l^{\pm}	3	1	$q_H W_H^\pm q_H Z_H$	3.5 0.99	x x	37 11	x x	
l^{\pm}	4	1	$\begin{array}{c} q_{H}q_{H}\\ T^{-}T^{-}\end{array}$	7.4	$\begin{array}{c} 9.7\!\times\!10^2\\ 2.2 \end{array}$	82 21	$\begin{array}{c} 6.0 \times 10^3 \\ 21 \end{array}$	
$l^{+}l^{-}$	0	1	$W_H^{\pm}W_H^{\mp}$	0.32	low	1.7	low	
l^+l^-	1	1	$q_H W_H^{\pm}$	0.54	×	5.8	×	
$l^{+}l^{-}$	2	1	$q_{H}q_{H}$ $T^{-}T^{-}$	1.1 0.47	X 0.47	11 4.6	x 4.6	
$l^{\pm}l^{\pm}$	2	1	qнqн	0.37	×	2.7	×	

Recasting results

JRR/Tonini/deVries,2013

- 95% CL from Monojets + \mathbb{E}_T from LHC8
- 1 hard jet, *E*_T, no leptons, 2nd jet w. *p*_T > 30 GeV signal regions: ATLAS (*p*_T, *E*_T) > 120/220/350/500 GeV, CMS: *E*_T > 250/300/350/400/450/500/550 GeV
- Dijet suppression: ATLAS $\Delta \phi(\not\!\!E_T, j_2) > 0.5$, CMS $\Delta \phi(j_1, j_2) < 2.5$
- $pp \to q_H q_H, pp \to q_H A_H$

Recasting results

JRR/Tonini/deVries,2013

- 95% CL from Jets + $\not\!\!\!E_T$ from LHC8
- ≥ 2 hard jets, $\not\!\!\!E_T$, no leptons
- signal regions: ATLAS $\not\!\!E_T > 200/300/350$ GeV, CMS:

 $(N_j, N_b) = (2 - 3, 0); (2 - 3, 1 - 2); (\ge 4, 1 - 2); (\ge 4, 0); (\ge 4, \ge 2)$

• QCD suppression: ATLAS $\Delta \phi(E_T, j_2) > 0.5$, E_T/m_{eff} , CMS $\Delta \phi(j_1, j_2) < 2.5$

• $pp \to q_H q_H \to (jA_H)(jA_H)$

Recasting results

JRR/Tonini/deVries,2013

- 95% CL from Leptons + Jets + $\not\!\!\!E_T$ from LHC8
- single isolated lepton, ≥ 2 hard jets, $\not\!\!E_T$,

- $pp \rightarrow q_H q_H$ with $q_H \rightarrow W_H q, Z_H q, t_H \rightarrow t A_H, Z_H \rightarrow H A_H$

Combined analysis

JRR/Tonini/deVries,2013

► Operator bounds: $\mathcal{O}_{4-f} = -\frac{k^2}{128 \pi^2 f^2} \bar{\psi}_L \gamma^\mu \psi_L \bar{\psi}'_L \gamma_\mu \psi'_L + O\left(\frac{g}{k}\right)$ Hubisz/Meade/Noble/Perelstein, 2005

• Bound from combined analysis: $f \gtrsim 638 \text{GeV}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular *Little Higgs* models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:

1. EWPO:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

 $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of ~ 10% of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:
 - 3. Higgs+EWPO:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

 $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$

 $f\gtrsim 694~{\rm GeV}@95\%\,{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular *Little Higgs* models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:
 - 3. Higgs+EWPO:
 - 4. Direct searches:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

- $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$
 - $f\gtrsim 694~{\rm GeV}@95\%~{\rm CL}$
 - $f\gtrsim 638~{\rm GeV}@95\%~{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of ~ 10% of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:
 - 3. Higgs+EWPO:
 - 4. Direct searches:
- We need more data!

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

- $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$
 - $f\gtrsim 694~{\rm GeV}@95\%~{\rm CL}$
 - $f\gtrsim 638~{\rm GeV}@95\%~{\rm CL}$

One Ring to Find them ... One Ring to Rule them Out

One Ring to Find them ... One Ring to Rule them Out

BACKUP SLIDES:

Direct Searches – Heavy Quark States

EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03

Direct Searches – Heavy Quark States

EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03

Characteristic branching ratios :

$$\Gamma(T \to th) \approx \Gamma(T \to tZ) \approx \frac{1}{2} \Gamma(T \to bW^+) \approx \frac{M_T \lambda_T^2}{64\pi}, \qquad \Gamma_T \sim 10{-}50 \,\mathrm{GeV}$$

▶ Proof of *T* as EW singlet; but: $T \rightarrow Z'T, W'b, t\eta$!

AIM: Determination of M_T , λ_T , $\lambda_{T'}$

 $\lambda_{T'}$ indirect ($T\bar{T}h$ impossible)

 $T \to Zt \to \ell^+ \ell^- \ell \nu b$

SN-ATLAS-2004-038

- ▶ $E_T > 100 \text{ GeV}, \ell \ell \ell, p_T > 100/30 \text{ GeV}, b, p_T > 30 \text{ GeV}$
- Bkgd.: WZ, ZZ, btZ
- Observation for $M_T \lesssim 1.4 \,\text{TeV}$

32/32 J. B. Beut

 $T \rightarrow Wb \rightarrow \ell \nu b$ SN-ATLAS-2004-038

- ▶ $E_T > 100 \text{ GeV}, \ell, p_T > 100 \text{ GeV}, b, p_T > 200 \text{ GeV}, max. <math>jj, p_T > 30 \text{ GeV}$
- Bkgd.: $t\bar{t}$, $Wb\bar{b}$, single t
- Observation for $M_T \lesssim 2.5 \,\text{TeV}$

Additional heavy quarks (Simple Group Models): U, C or D, S

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction

Han et al..

Additional heavy quarks (Simple Group Models): U, C or D, S Han et al., 05

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction

Additional heavy quarks (Simple Group Models): U, C or D, S Han et al., 05

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits ~ 500 – 600 GeV

- ▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$
- Discovery channel: $Z' \rightarrow \ell \ell, W' \rightarrow \ell \nu$
- $\Gamma_{Z'} \sim 10 50 \,\text{GeV}, \quad \Gamma_X \sim 0.1 10 \,\text{GeV}$

Events/20 GeV/100 fb⁻¹

10

1000

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

- ▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$
- Discovery channel: $Z' \rightarrow \ell \ell, W' \rightarrow \ell \nu$
- $\Gamma_{Z'} \sim 10 50 \,\text{GeV}, \quad \Gamma_X \sim 0.1 10 \,\text{GeV}$

Direct Searches – Heavy Scalars

Generally: Large model dependence no states complex singlet complex triplet

- Littlest Higgs, complex triplet: $\Phi^0, \Phi_P, \Phi^{\pm}, \Phi^{\pm\pm}$
- ► Cleanest channel: $q\bar{q} \rightarrow \Phi^{++}\Phi^{--} \rightarrow \ell\ell\ell\ell\ell$: Killer: PS
- WW-Fusion: $dd \rightarrow uu\Phi^{++} \rightarrow uuW^+W^+$
- > 2 hard forward jets, hard close $\ell^+ \ell^+ p_T$ -unbalanced

Alternative: Model-Independent search in WW fusion:

ILC: Beyer/Kilian/Krstonosic/Mönig/JRR/Schmidt/Schröder, 2006

LHC: Alboteanu/Kilian/JRR, 2008; Kilian/JRR/Sekulla, 2013

/32 J. R. Reuter

Little Higgs Models

Pseudo-Axions in Little Higgs

2007

- gauged U(1) group: $Z' \longleftrightarrow$ ungauged: η
- couples to fermions like a pseudoscalar
- $-m_\eta \lesssim 400 \,\mathrm{GeV}$
- SM singlet, couplings to SM particles v/F suppressed

- U(1) explicitly broken \Rightarrow Axion limits from astroparticle physics not applicable

Classification of Axions in Little Higgs Models Number of Pseudo-Axions: n = q - l

Mismatch between global (q) and local rank reduction (l)

Product Group Models Arkani-Hamed....

- Doubling of electroweak gauge group: $SU(2) \times SU(2) \rightarrow SU(2)_L$, $U(1) \times U(1) \rightarrow U(1)_Y$ (latter not necessary) $\Rightarrow l = 1$
 - Littlest Higgs, g: $SU(5) \rightarrow SO(5) \Rightarrow n = (4-2) 1 = 1$
 - antisymmetric, g: Sp(6)/SO(6), n = (3-2) 1 = 0

Simple Group Models Kaplan, Schmaltz, ...

- Simple gauge group: $SU(N) \times U(1) \rightarrow SU(2) \times U(1) \Rightarrow l = N 2$
- Higgs is distributed over several global symmetry multiplets
- Simplest Little Higgs, g: $[SU(3)]^2/[SU(2)]^2$ n = g l = 2 1 = 1
- Original Simple Group Model, g: $[SU(4)]^3/[SU(3)^3 \times SU(2)]$, $I: SU(4) \to SU(2)$ n = q - l = 4 - 2 = 2

Moose Models Arkani-Hamed, ...

- "Minimal" Moose: g $[SU(3)]^4 \rightarrow SU(3), I [SU(3) \times SU(2)]/SU(2)$ n = q - l = 6 - 2 = 4
- ▶ 3-site model: g $[SU(2)]^4/[SU(2)]^2$, $|[SU(2)]^2 \rightarrow SU(2), n = 2 1 = 1$

 $ZH\eta$ coupling as a discriminator

Kilian/Rainwater/JRR, 2006

• pseudo-axion: $\xi = \exp[i\eta/F]$, $\Sigma = \exp[i\Pi/F]$ non-linear representation of the remaining Goldstone multiplet Π

 $\mathcal{L}_{\text{kin.}} \sim F^2 \operatorname{Tr} \left[(D^{\mu}(\xi \Sigma)^{\dagger} (D_{\mu}(\xi \Sigma)) \right] = \dots - 2F(\partial_{\mu} \eta) \operatorname{Im} \operatorname{Tr} \left[(D^{\mu} \Sigma)^{\dagger} \Sigma \right] + O(\eta^2)$

Use special structure of covariant derivatives:

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma + A^{a}_{1,\mu} \left(T^{a}_{1}\Sigma + \Sigma(T^{a}_{1})^{T}\right) + A^{a}_{2,\mu} \left(T^{a}_{2}\Sigma + \Sigma(T^{a}_{2})^{T}\right),$$

 $\operatorname{Tr}\left[(D^{\mu}\Sigma)^{\dagger}\Sigma\right] \sim W^{a}_{\mu}\operatorname{Tr}\left[\Sigma^{\dagger}(T^{a}_{1}+T^{a}_{2})\Sigma + (T^{a}_{1}+T^{a}_{2})^{*}\right] = 0.$

- Little Higgs mechanism cancels this coupling
- Simple Group Models: $\Phi = \exp[i\Sigma/F]$, $\zeta = (0, \dots, 0, F)^T$ VEV directing in the *N* direction

$$\mathcal{L}_{\text{kin.}} \sim F^2 D^{\mu} (\zeta^{\dagger} \Phi^{\dagger}) D_{\mu} (\Phi \zeta) = \ldots + \frac{\imath}{F} (\partial_{\mu} \eta) \zeta^{\dagger} \left(\Phi^{\dagger} (D_{\mu} \Phi) - (D_{\mu} \Phi^{\dagger}) \Phi \right) \zeta$$
$$= \ldots + i F (\partial_{\mu} \eta) \left(\Phi^{\dagger} (D_{\mu} \Phi) - (D_{\mu} \Phi^{\dagger}) \Phi \right)_{N.N}$$

$$\Sigma = \begin{pmatrix} 0 & h \\ h^{\dagger} & 0 \end{pmatrix}, \qquad \qquad \mathbb{V}_{\mu} = \begin{pmatrix} \mathbb{W}_{\mu} & 0 \\ 0 & 0 \end{pmatrix} + \text{heavy vector fields}$$

$$\begin{aligned} & \mathbb{V}_{\mu} + \frac{i}{F} [\Sigma, \mathbb{V}_{\mu}] - \frac{1}{2F^2} [\Sigma, [\Sigma, \mathbb{V}_{\mu}]] + \dots \\ & = \begin{pmatrix} \mathbb{W}_{\mu} & 0 \\ 0 & 0 \end{pmatrix} + \frac{i}{F} \begin{pmatrix} 0 & -\mathbb{W}_{\mu}h \\ h^{\dagger}\mathbb{W}_{\mu} & 0 \end{pmatrix} - \frac{1}{2F^2} \begin{pmatrix} hh^{\dagger}\mathbb{W} + \mathbb{W}hh^{\dagger} & 0 \\ 0 & -2h^{\dagger}\mathbb{W}h \end{pmatrix} + \dots \end{aligned}$$

- Ist term cancels by multiple Goldstone multiplets
- 2st term cancels by EW symmetry
- 3rd term

$$(\partial^{\mu}\eta)h^{\dagger}W_{\mu}h \sim vHZ_{\mu}\partial^{\mu}\eta$$
.

More properties of Pseudo-Axions

- Take e.g. one specific model: Simplest Little Higgs Schmaltz, 2004
- Simple Group Model, two Higgs-triplets with a $\tan\beta$ -like mixing angle

- $\tan \beta \sim 1$: heavy Higgs, (very) light pseudoscalar
- Heavy top decays: Kilian/Rainwater/JRR, 2006

Discovery of Pseudo-axions

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC: $T \rightarrow t\eta$

ILC: $e^+e^- \rightarrow t\bar{t}\eta$

Discovery of Pseudo-axions

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC: $T \rightarrow t\eta$ ILC: $e^+e^- \rightarrow t\bar{t}\eta$

J. F

Discovery of Pseudo-axions

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$
Discovery of Pseudo-axions

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Discovery of Pseudo-axions

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Discovery of Pseudo-axions

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

If $ZH\eta$ coupling present: $H\eta$ production in analogy to HA:

Little Higgs Model

More detailed insights from photon collider option

If $ZH\eta$ coupling present: $H\eta$ production in analogy to HA:

Little Higgs Model

900 1000

 \sqrt{s} [GeV]

More detailed insights from photon collider option

SM 800 900 10 1000

 \sqrt{s} [GeV]

1000

SM

 \sqrt{s} [GeV]

Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM
 - (→ Mühlleitner et al. (2001))

Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM

 $(\hookrightarrow$ Mühlleitner et al. (2001))

Simplest Little Higgs ("µ Model")

Schmaltz '04, Kilian/Rainwater/JRR '04

Field content ($SU(3)_c \times SU(3)_w \times U(1)_X$ quantum numbers)

$$\begin{split} & \Phi_{1,2} : (1,3)_{-\frac{1}{3}} & \Psi_{\ell} : (1,3)_{-\frac{1}{3}} & u_{1,2}{}^{c} : (\bar{3},1)_{-\frac{2}{3}} \\ & \Psi_{Q} : (3,3)_{\frac{1}{3}} & d^{c} : (\bar{3},1)_{\frac{1}{3}} & e^{c}, n^{c} : (1,1)_{1,0} \end{split} \\ & \text{Lagrangian } \mathcal{L} = \mathcal{L}_{\text{kin.}} + \mathcal{L}_{\text{Yuk.}} + \mathcal{L}_{\text{pot.}} & \Psi_{Q,L} = (u,d,U)_{L}, \Psi_{\ell} = (\nu,\ell,N)_{L} \end{split} \\ & \mathcal{L}_{\text{Yuk.}} = -\lambda_{1}^{u} \overline{u}_{1,R} \Phi_{1}^{\dagger} \Psi_{T,L} - \lambda_{2}^{u} \overline{u}_{2,R} \Phi_{2}^{\dagger} \Psi_{T,L} - \frac{\lambda^{d}}{\Lambda} \epsilon^{ijk} \overline{d}_{R}^{b} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{T,L}^{k} \\ & -\lambda^{n} \overline{n}_{1,R} \Phi_{1}^{\dagger} \Psi_{Q,L} - \frac{\lambda^{e}}{\Lambda} \epsilon^{ijk} \overline{e}_{R} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{Q,L}^{k} + \text{h.c.}, \\ & \mathcal{L}_{\text{pot.}} = \mu^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \end{split}$$

$$Y = X - T^8 / \sqrt{3} \qquad \qquad D_\mu \Phi = \left(\partial_\mu - \frac{1}{3}g_X B^X_\mu \Phi + igW^w_\mu\right) \Phi$$

Partial decay widths in LH

1-loop decays

$$\begin{split} & \Gamma(h \to gg)_{LH} \quad \sim \quad \frac{\alpha_s^2 m_h^3}{32\pi^3 v^2} \Big| \sum_{\rm f,col} -\frac{1}{2} F_{\frac{1}{2}}(x_f) \, y_f \Big|^2 \\ & \Gamma(h \to \gamma \gamma)_{LH} \quad \sim \quad \frac{\alpha^2 m_h^2}{256\pi^3 v^2} \Big| \sum_{\rm f,ch} \frac{4}{2} F_{\frac{1}{2}}(x_f) \, y_f + \sum_{\rm v,ch} F_1(x_v) \, y_v + \sum_{\rm s,ch} F_0(x_s) \, y_s \Big|^2 \end{split}$$

where $x_i = \frac{4m_i^2}{m_h^2}$, $F_i(x_i)$ are loop functions, y_i the modified Yuk. coupl.

$$\Rightarrow \quad \text{narrow-width approximation: } \frac{\sigma_{LH}}{\sigma_{SM}}(gg \rightarrow h) = \frac{\Gamma(h \rightarrow gg)_{LH}}{\Gamma(h \rightarrow gg)_{SM}}$$

tree-level decays

$$\begin{split} \Gamma(h \to VV)_{LH} &\sim \quad \Gamma(h \to VV)_{SM} \left(\frac{g_{hVV}}{g_{hVV}^{SM}}\right)^2 \\ \Gamma(h \to f\bar{f})_{LH} &\sim \quad \Gamma(h \to f\bar{f})_{SM} \left(\frac{g_{hff}}{g_{hff}^{SM}}\right)^2 \end{split}$$
 where $g_{hVV} = \frac{m_V^2}{g_{V}} y_V$ and $g_{hff} = \frac{m_f}{g_{hff}} y_f$

Cancellations of Divergencies in Yukawa sector

Little Higgs global symmetry imposes relation

$$\frac{m_T}{F} = \frac{\lambda_t^2 + \lambda_T^2}{\lambda_T}$$

Collective Symm. breaking: $\lambda_t \propto \lambda_1 \lambda_2$, $\lambda_1 = 0$ or $\lambda_2 = 0 \Rightarrow SU(3) \rightarrow [SU(3)]^2$

Constraints from Oblique Corrections: S, T, U

 \diamond All low-energy effects order v^2/F^2 (Wilson coefficients)

 $\Delta S, \Delta T$ in the Littlest Higgs model, violation of Custodial SU(2): Csáki

et al., 2002; Hewett et al., 2002; Han et al., 2003; Chen/Dawson, 2003; Kilian/JRR, 2003

$$\frac{\Delta S}{8\pi} = -\left[\frac{c^2(c^2 - s^2)}{g^2} + 5\frac{c'^2(c'^2 - s'^2)}{g'^2}\right]\frac{v^2}{F^2} \to 0 \qquad \alpha \Delta T \to \frac{5}{4}\frac{v^2}{F^2} - \frac{2v^2\lambda_{2\phi}^2}{M_{\phi}^4} \gtrsim \frac{v^2}{F^2}$$

Constraints from contact IA: ($f_{JJ}^{(3)}$, $f_{JJ}^{(1)}$) 4.5 TeV $\lesssim F/c^2$ 10 TeV $\lesssim F/c'^2$

♦ Constraints evaded $\iff c, c' \ll 1$ B', Z', W'^{\pm} superheavy ($\mathcal{O}(\Lambda)$) decouple from fermions