Status of Little Higgs Models in 2014

Jürgen Reuter

DESY

JRR/Tonini/de Vries, **JHEP 1402** (2014) 053; arXiv:1307.5010; JRR/Tonini, **JHEP 1302** (2013) 077; Kilian/JRR/Rainwater **PRD 74** (2006), 095003; **PRD 71** (2005), 015008; Kilian/JRR **PRD 70** (2004), 015004

GK Seminar, KIT, Karlsruhe, 28.11.2014

Standard Model Triumph: • 2012: Discovery of a Higgs boson

... and what now?

		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)			
	NEUCON CHECKLO INT A REAL				
88	MOUGRA/CMOOM . 0 lep + js + ET,miss	L=5.815 ', 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV q = g mass		
	Dhana madal + 0 lan + i's + E _{7,miss}	L=5.815 , 8 TeV [ATLAS-CONF-2012-104]	1.24 lev q=g mass	ATLAS	
	Phone model : 0 lop + i's + E _{T,miss}	L=5.815 , 8 TeV [ATLAS-CONF-2012-109]	1.18 lev g mass (m(q) < 2 lev, lighty.)	Preliminary	
5	Choice mod \overline{u}^{\pm} (\overline{u} : \overline{u} : \overline{u}) : 4 log : \overline{u} : \overline{u}	LISSIB, STEV (ATLAS-CONF-2012-105)	1.38 TeV q mass (mg) < 2 TeV, igniz		
681	Giuno med. χ (g \rightarrow qq χ). Tiep + js + $E_{T,miss}$	LIN.7 ID , 7 IEV [1206.4688]	900 GeV g mass (m(x) < 200 GeV, m(x) = 20	m(X)+m(g))	
0	GMSB (I NLSP) : 2 IEP (US) + IS + E GMSB (7 NI SP) : 1.2 = + 0.1 Iop + i'c + E ^T miss	L=4.7 fb , 7 TeV [1208.4688]	1.24 TeV g ITTASS (tan) < 15)		
-Si	GGM (bino NI SP) : ny + E ^{T,miss}	L=4.7 fb , 7 TeV [1210.1314]	1.20 TeV g ITTASS (tan)/ > 20)	f	
10	GGM (wino NI SP) : v + len + E ^{7,miss}	ER4.615 , 7 164 [1209.0755]	1.07 lev g mass (m(g,) \$ 50 dev)	$Ldt = (2.1 - 13.0) \text{ fb}^{-1}$	
5	GGM (biggsing-bing NLSP) : x + b + E ^{T,miss}	L=4.81b , 7 TeV [ATLAS-CONF-2012-144]	eng deving mass		
	GGM (higgsino billo REb) : 7 + inte + E ^{7,miss}	L=4.815 , 7 TeV [1211.1167]	900 GeV g mass (m(y,) > 220 GeV)	S = 7,8 TeV	
	Gravitino I SP : 'monoiot' + F	L=5.815 ', 8 TeV [ATLAS-CONF-2012-152]	500 GeV G Mass (m(A) \$ 200 GeV)		
	Glaviulio LSP . monojet + ET,mina	L=10.5 fb ', 8 fev [ATLAS-CONF-2012-147]	645 GeV F SCAIE (m(G) > 10 ° eV)		
ed.	$g \rightarrow bby$ (virtual b): 0 lep + 3 b j s + $E_{T,miss}$	L=12.8 fb , 8 TeV [ATLAS-CONF-2012-145]	1.24 lev g mass (m(x,) < 200 GeV)		
9.8	$g \rightarrow tt \chi_1$ (virtual t) : 2 lep (SS) + JS + $E_{T,miss}$	L=5.815 .8 TeV [ATLAS-CONF-2012-105]	850 Gev g mass (m(χ) < 300 Gev)	8 TeV results	
g g	$g \rightarrow tt \chi_1$ (virtual t) : 3 lep + j's + $E_{T,miss}$	L=13.0 fb ', 8 TeV [ATLAS-CONF-2012-151]	860 GeV g mass (m(x,) < 300 GeV)		
g gg	$g \rightarrow tt \chi_{(virtual t)} = 0 \text{ lep + multi-j's + } E_{T,miss}$	L=5.815 ', 8 TeV [ATLAS-CONF-2012-103]	1.00 TeV g mass (m(\chi) < 300 GeV)	7 TeV results	
	$g \rightarrow tt \chi_{1}$ (virtualit) : 0 lep + 3 b-j s + $E_{T,miss}$	L=12.8 fb , 8 TeV [ATLAS-CONF-2012-145]	1.15 lev g mass $(m(\chi_1) < 200 \text{ GeV})$		
92 C	$DD, D_1 \rightarrow D_{\chi_1} : U = p + 2 - D - Jets + E_{T,miss}$	L=12.8 fb , 8 TeV [ATLAS-CONF-2012-165]	520 GeV D ITIASS (m(y_) < 120 GeV)		
quark	$\pm (b, b, b, \rightarrow t \chi : 3 \text{ lep } + j \text{ s } + E_{T, miss}$	L=13.0 fb ', 8 TeV [ATLAS-CONF-2012-151]	405 GeV D ITIASS $(m(\chi_1) = 2m(\chi_1))$		
	$(\text{IIgIn}), t \rightarrow 0\chi$, $1/2$ lep (+ b-jet) + $E_{T,\text{miss}}$	L=4.7 fb ', 7 TeV [1208.4305, 1209.2102]67 GeV	t mass $(m(\underline{y}_1) = 55 \text{ GeV})$		
S S	tt (medium), $t \rightarrow 0\chi$: 1 lep + b-jet + $E_{T,miss}$	L=13.0 fb ', 8 TeV [ATLAS-CONF-2012-166]	160-350 GeV t mass $(m(\chi_1) = 0 \text{ GeV}, m(\chi_1) = 150 \text{ GeV})$		
2.2	tt (medium), $t \rightarrow 0\chi$, 2 lep + $E_{T,miss}$	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-167]	160-440 GeV (ITTASS $(m(\chi_1) = 0 \text{ GeV}, m(t) \cdot m(\chi_1) = 10 \text{ GeV})$		
2 g	$tt, t \rightarrow t\chi$: 1 lep + b-jet + $E_{T,miss}$	L=13.0 fb ', 8 feV [ATLAS-CONF-2012-166]	230-560 GeV (ITTASS $(m(\chi_1) = 0)$		
68	$tt, t \rightarrow ty$: $U/1/2$ lep (+ D-jets) + $E_{T,miss}$	L=4.7 fb , 7 TeV [1208.1447,1208.2590,1209.418	$m(\chi_{1}) = 0$		
	$tt (fiatural GWOD) \cdot 2(\rightarrow ii) + 0 - jet + 2 - 7 mas$	L=2.1 fb ', 7 TeV [1204.6736]	310 GeV T TTASS (115 < m(x ₁) < 230 GeV)		
. 71	$I_{L}I_{U}$ $I \rightarrow I\chi_{0}$: 2 lep + $E_{T,miss}$	L=4.7 fb ', 7 TeV [1208.2884] 85-195 G	eV I mass $(m(\chi_1) = 0)$		
18 e	$_{\pm 0}\chi_1\chi_2,\chi_1 \rightarrow W(W) \rightarrow W\chi_1: 2 \text{ lep } + E_{T,\text{miss}}$	L=4.715 , 71eV [1208.2884]	110-340 GeV χ_1 ITIASS $(m(\chi_1) < 10 \text{ GeV}, m(\chi) = \frac{m(\chi_1) + m(\chi_1)}{2}$		
- 8	$\chi_1 \chi_2 \rightarrow \prod_{\pm=0}^{1} [V(\chi), V(\chi), V(\chi)] = 0$: 3 lep + E _{7,miss}	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-154]	580 GeV χ mass $(m(\chi_1) = m(\chi_2), m(\chi_1) = 0, m(1, v)$ as	above)	
	$\chi \chi \rightarrow W^* \chi Z^* \chi : 3 \text{ lep } + E_{T \text{ mas}}$	L=13.0 fb ', 8 TeV [ATLAS-CONF-2012-154] 14	0-295 GeV χ_1 findss $(m(\chi_1) = m(\chi_2), m(\chi_1) = 0$, sleptons decoupled)		
s od	Direct χ_1 pair prod. (AMSB) : long-lived χ_1	L=4.7 fb ', 7 TeV [1210.2852] 220	GeV X mass (1 < t(x) < tons)		
\$ 8	Stable g R-hadrons : low p, py (full detector)	L=4.7 fb , 7 TeV [1211.1597]	985 Gev g mass		
6 H	Stable t R-hadrons : low β, βγ (full detector)	L=4.7 fb , 7 TeV [1211.1597]	683 Gev T IIIdSS		
p g	GMSB : stable t	L=4.7 fb ', 7 TeV [1211.1597]	300 GeV 1 HidSS (5 < tanp < 20)		
	$\chi \rightarrow qq\mu (RPV) : \mu + neavy displaced vertex$	L=4.4 fb , 7 TeV [1210.7451]	700 Gev q mass (0.3x10 < A ₂₁₁ < 1.5x10 , 1 mm <	c ct < 1 m,g decoupled)	
	LFV : pp→V,+X, V,→e+µ resonance	L=4.6 fb , 7 TeV [Preliminary]	1.61 IEV V, IIIASS (X ₂₁₁ =0.10, X ₁₂₂	=0.05)	
~	Pilinear PDV CMSSM - 1 lop + 7 is + E	LINGTO , 7 Tev (Presiminary)	1.10 10V V 111833 (x ₂₁₁ =0.10, x ₃₂₂₃ =0.05)		
ē.	The state of the second	E14.7 15 , 7 164 [ATEAS-CONF-2012-140]	1.2 IEV q = g mass (ct _{LSP} < 1 mm)	-	
uL	$\chi_1 \chi_1 \chi_2 \rightarrow vv \chi_1, \chi_2 \rightarrow eev_\mu, e\mu v_1 + iep + E_{T,miss}$	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-153]	100 GeV X mass (m(x,) > 300 GeV, A121 or A122 :	S 0)	
	$l_{\mu}l_{\mu}, l_{\mu} \rightarrow i\chi_{1}, \chi_{1} \rightarrow eev_{\mu}, e\muv_{\mu} = 4 iep + E_{T,miss}$	L=13.0 fb , 8 TeV [ATLAS-CONF-2012-153]	430 Gev Titlass (m(y,) > 100 Gev, m(i_s)=m(i_s)=m(i_s), x_{121} or)	c ₁₂₂ > 0)	
	g → qqq : 3-jet resonance pair	LINE 10 , 7 104 [1210.4013]	coluon mach (and limit the store)		
WIN	IP interaction (D5, Dirac y) : 'monoiet' + F	100 10 10 10 10 10 10 10 10 10 10 10 10	The case Manual Manual and Case and Cas	(1 00)	
Lengs the Lands (Lot) billion					
		10 ⁻¹	1	10	
*Only a selection of the available mass limits on new states or phenomena shown. Mass scale [Te ¹]					

*Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

... and what now?

		ATLAS Exotics	Searches* - 95% CL Lo	wer Limits (Status: HC	CP 2012)
	Lorge ED (ADD) - monoiet + E			M (8-2)	
	Large ED (ADD) : monophoton + E	LIN. / ID , / IEV [1210.4491]	1.92 ToV M	(8-2) W _D (0-2)	
\$	Large ED (ADD) : diphoton & dilenton m	1 =4.7 fb ⁻¹ 7 TeV (1211 1150)	1.33 107 11	18 TeV M. (HI Z &= 3 NI O)	ATLAS
5	UED : diphoton + E_{τ}	1-4.8 fb ⁻¹ 7 TeV (AT) AS-CONE-2012-0721	141 TeV Compa	ct scale R ⁻¹	Preliminary
JSI	S ¹ /Z, ED dilepton m.	L=4.9-5.0 fb ¹ , 7 TeV [1209.2535]		4.71 TeV Mox ~ R-1	
Jel	RS1 : diphoton & dilepton, m	L=4.7-5.0 fb ⁻¹ , 7 TeV [1210.8389]	2.23 TeV	Graviton mass $(k/M_{\rm pl} = 0.1)$	
1	RS1 : ZZ resonance, m	L=1.0 fb ⁻¹ , 7 TeV [1203.0718]	845 GeV Graviton mass	(k/M _{p1} = 0.1)	
6	RS1 : WW resonance, m _{T.bbb}	L=4.7 fb ⁻¹ , 7 TeV [1208.2880]	1.23 TeV Graviton	mass $(k/M_{p_l} = 0.1)$ Ldt =	(1.0 - 13.0) fb ⁻¹
xtr	RS $g_{KK} \rightarrow tt$ (BR=0.925) : $tt \rightarrow l+jets$, $m_{threaded}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-138]	1.9 TeV 9	mass	- 7 8 ToV
ŵ	ADD BH (M _{TH} /M _D =3) : SS dimuon, N _{ch. part}	L=1.3 fb ⁻¹ , 7 TeV [1111.0080]	1.25 TeV M _D (8=6)		S = 7, 8 16V
	ADD BH $(M_{TH}/M_D=3)$: leptons + jets, Σp_T	L=1.0 fb ⁻¹ , 7 TeV [1204.4646]	1.5 TeV M _D (δ=	=6)	
	Quantum black hole : dijet, F ₂ (m _{ii})	L=4.7 fb ⁻¹ , 7 TeV [1210.1718]	4	1.11 TeV M _D (δ=6)	
_	qqqq contact interaction : $\chi(m)$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV A	
0	qqll Cl : ee & μμ, m	L=4.9-5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 TeV Λ (CON	structive int.)
	uutt CI : SS dilepton + jets + E _{T.misa}	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV Λ		
	$Z'(SSM) : m_{ea/\mu\mu}$	L=5.9-6.1 fb", 8 TeV [ATLAS-CONF-2012-12	9] 2.49 TeV	Z' mass	
	Z' (SSM) : m _{et}	L=4.7 fb ⁻ , 7 TeV [1210.6604]	1.4 TeV Z mass		
5	$W'(SSM): m_{T,e_{\mu}}$ $W'(\rightarrow ta, a, -1): m_{T,e_{\mu}}$	L=4.7 fb , 7 TeV [1209.4446]	2.55 TeV	w mass	
	$W' (\rightarrow th SSM) : m$	L=4.715 , 7 TeV [1209.6593]	430 GeV VV mass		
	WR (, 10, 0011)	201.010 / Tev [1205.1016]	1.13 lev w mass	W* mass	
	Scolar I O pair (8-1) : kin yare in opii opii	L 1 0 0 ⁻¹ 7 Tev [1202.4440]	550 GeV 1 th den LO mass	w mass	
O.	Scalar LQ pair (p=1) : kin vars in wii wii	1-1 0 fb ⁻¹ 7 Tev (1999 9179)	set day 2 nd den 10 mass		
1	Scalar I O pair (B=1) : kin vars in zzii zvii	I =4.7 fb ⁻¹ .7 TeV [Preliminary]	ste dev 3 rd den LO mass		
\$	4 th concration : t't→ WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	555 GeV t mass		
ž	4 th generation : b'b'(T, T _{en})→ WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T) mass		
na	New quark b' : b'b → Zb+X, m_	L=2.0 fb ⁻¹ , 7 TeV [1204,1265]	400 GeV b' mass		
6	Top partner : $TT \rightarrow tt + A_0A_0$ (dilepton, M_{c0}^{20})	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 Gev T mass (m(A_) < 100 G	eV)	
ev	Vector-like quark : CC, m	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass	(charge -1/3, coupling κ _{op} = v/m	J)
\geq	Vector-like quark : NC, mile	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass	(charge 2/3, coupling κ _{op} = v/m _n)	
ήt.	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV	q* mass	
XE	Excited quarks : dijet resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	30	B4 TeV q* mass	
Щ.«	Excited lepton : I-γ resonance, m	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV	* mass (A = m(l*))	
	Techni-hadrons (LSTC) : dilepton, mea/µµ	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ ₁ /ω ₇ mass (m	$(\rho_{\tau}/\omega_{\tau}) - m(\pi_{\tau}) = M_{W})$	
	Techni-hadrons (LSTC) : WZ resonance (VIII), m	L=1.0 fb ⁻⁰ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T})$	$+ m_W, m(a_\tau) = 1.1 m(\rho_\tau))$	
10	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb", 7 TeV [1203.5420]	1.5 TeV N mas	is (m(W _R) = 2 TeV)	
5	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻⁷ , 7 TeV [1203.5420]	2.4 TeV	W _R mass (m(N) < 1.4 TeV)	
0	H_{L} (DY prod., BR($H \rightarrow HJ=1$): SS ee ($\mu\mu$), m	L=4.7 fb ⁻⁷ , 7 TeV [1210.5070]	409 GeV H ⁻ mass (limit at 398 Ge	V for µµ)	
	Color actot coolar : dijet reconance m	L=4.7 fb , 7 TeV [1210.5070] 3	75 GeV H, mass		
	Color octet scalar : ujet resonance, m	204.010 7 TeV [1210.1718]	1.86 TeV Sci	alai resofiance mass	
		10 ⁻¹	1	10	10
		10	i.	Mod	
	1 2 22 NOV 10 10 10 10			IVIAS	S SCALE [IEV]

*Only a selection of the available mass limits on new states or phenomena shown

Doubts on the Standardmodel

- describes microcosm (too good?)
- 28 free parameters

- Higgs ?, form of Higgs potential ?

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

 Recent analysis: Metastable vacuum with lifetime longer than the age of the universe Degrassi et al., arXiv:1205.6497

 Could the Higgs field ever have fallen in the correct vacuum? Hertzberg, arXiv:1210.3624

Higgs as Pseudo-Goldstone boson

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

Old idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as (Pseudo)-Goldstone boson of a spontaneously broken global symmetry

Analogous: QCD <u>Scale Λ </u>: chiral symmetry breaking, quarks, $SU(3)_c$ Scale v: pions, kaons, ...

Higgs as Pseudo-Goldstone boson

Nambu-Goldstone Theorem: For each *spontaneously broken global symmetry generator* there is a massless boson in the spectrum.

Old idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984

Light Higgs as (Pseudo)-Goldstone boson of a spontaneously broken global symmetry

<u>Scale </u> Λ : global symmetry breaking, new particles, new (gauge) IA Scale <u>v</u>: Higgs, W/Z, ℓ^{\pm} , ...

Without Fine-Tuning: experimentally excluded

Collective symmetry breaking and 3-scale models

Collective symmetry breaking: Arkani-Hamed/Cohen/Georgi/Nelson/..., 2001

2 different global symmetries; one of them unbroken \Rightarrow Higgs exact Goldstone boson

Coleman-Weinberg: boson masses by radiative corrections, but: m_H only at 2-loop level

<u>Scale Λ </u>: global SB, new IA <u>Scale *F*</u>: Pseudo-Goldstone bosons, new vectors/fermions <u>Scale *v*</u>: Higgs, W/Z, ℓ^{\pm} , ...

Characteristics and Spectra

<u>Scale Λ </u>: "hidden sector", symmetry breaking

Scale F: new particles

<u>Scale v</u>: $h, W/Z, \ell^{\pm}, \ldots$

Terascale: new particles to stabilize the hierarchy

Generic properties of Little-Higgs models

- Extended global symmetry (extended scalar sector)
- Specific functional form of the potential
- Extended gauge symmetry: $\gamma' \equiv A_H, Z' \equiv Z_H, W'^{\pm} \equiv W_H$
- New heavy fermions: T, but also U, C, \ldots

(e.g. Littlest Higgs)

Simple Group Models

(e.g. Simplest Little Higgs)

discrete T(TeV) parity: pair production, cascades, DM

Generic properties of Little-Higgs models

- Extended global symmetry (extended scalar sector)
- Specific functional form of the potential
- Extended gauge symmetry: $\gamma' \equiv A_H, Z' \equiv Z_H, W'^{\pm} \equiv W_H$
- New heavy fermions: T, but also U, C, \ldots

Product Group Models

(e.g. Littlest Higgs)

Moose Models

(e.g. Minimal Moose Model)

discrete T(TeV) parity: pair production, cascades, DM

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_{1}|^{2} + |D_{\mu}\Phi_{2}|^{2} \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h^*\\0 & \eta & \\h^T & \eta \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

Prime Example: Simple Group Model

- ▶ enlarged gauge group: $SU(3) \times U(1)$; globally $U(3) \rightarrow U(2)$
- Two nonlinear Φ representations $\left| \mathcal{L} = |D_{\mu}\Phi_1|^2 + |D_{\mu}\Phi_2|^2 \right|$

$$\Phi_{1/2} = \exp\left[\pm i \frac{f_{2/1}}{f_{1/2}} \Theta\right] \begin{pmatrix} 0\\0\\f_{1/2} \end{pmatrix} \qquad \Theta = \frac{1}{\sqrt{f_1^2 + f_2^2}} \begin{pmatrix} \eta & 0 & h^*\\0 & \eta & \\h^T & \eta \end{pmatrix}$$

Coleman-Weinberg mechanism: Radiative generation of potential

but:
$$\frac{\Phi_1^{\dagger}}{\Phi_1} \bigvee \frac{\Phi_2^{\dagger}}{\Phi_2} = \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) |\Phi_1^{\dagger}\Phi_2|^2 \Rightarrow \frac{g^4}{16\pi^2} \log\left(\frac{\Lambda^2}{\mu^2}\right) f^2(h^{\dagger}h)$$

Cancellations of Divergencies in Yukawa sector

Little Higgs global symmetry imposes relation

$$\frac{m_T}{F} = \frac{\lambda_t^2 + \lambda_T^2}{\lambda_T}$$

Collective Symm. breaking: $\lambda_t \propto \lambda_1 \lambda_2$, $\lambda_1 = 0$ or $\lambda_2 = 0 \Rightarrow SU(3) \rightarrow [SU(3)]^2$

Constraints from Oblique Corrections: S, T, U

 \diamond All low-energy effects order v^2/F^2 (Wilson coefficients)

 $\Delta S, \Delta T$ in the Littlest Higgs model, violation of Custodial SU(2): Csáki

et al., 2002; Hewett et al., 2002; Han et al., 2003; Chen/Dawson, 2003; Kilian/JRR, 2003

$$\frac{\Delta S}{8\pi} = -\left[\frac{c^2(c^2 - s^2)}{g^2} + 5\frac{c'^2(c'^2 - s'^2)}{g'^2}\right]\frac{v^2}{F^2} \to 0 \qquad \alpha \Delta T \to \frac{5}{4}\frac{v^2}{F^2} - \frac{2v^2\lambda_{2\phi}^2}{M_{\phi}^4} \gtrsim \frac{v^2}{F^2}$$

Constraints from contact IA: ($f_{JJ}^{(3)}$, $f_{JJ}^{(1)}$) 4.5 TeV $\lesssim F/c^2$ 10 TeV $\lesssim F/c'^2$

 \diamond Constraints evaded $\iff c, c' \ll 1$ B', Z', W'^{\pm} superheavy ($\mathcal{O}(\Lambda)$) decouple from fermions

Motivation

How to constrain a generic model in HEP?

- direct searches of resonances
- electroweak precision tests
- flavour constraints
- nowadays: Higgs sector

Higgs sector is the key to understand EW-scale physics (and beyond?)

Statistical analysis

We considered the three most popular Little Higgs models:

- Simplest Little Higgs (SLH) [Schmaltz]
- ► Littlest Higgs (L²H) [Arkani-Hamed et al.]
- Littlest Higgs with T-parity (LHT) [Low et al.]

and realized a χ^2 analysis on their parameter spaces, taking into account the whole set of 7+8 TeV Higgs searches by *ATLAS* and *CMS*, and by fitting 21 different *EW* Precision Observables:

$$\chi^2 = \sum_{i} \frac{\left(\mathcal{O}_i - \mathcal{O}_i^{\mathsf{exp}}\right)^2}{\sigma_i^2}$$

where O_i depends on the free parameters of the model considered.

Data used: Higgs sector

the Higgs results are expressed in terms of a signal strength modifier

$$u_{i} = \frac{\sum_{p} \epsilon^{p}_{i} \sigma_{p}}{\sum_{p} \epsilon^{p}_{i} \sigma_{p}^{SM}} \cdot \frac{BR(h \to X_{i}X_{i})}{BR(h \to X_{i}X_{i})_{SM}}$$

we included in our χ^2 analysis the best-fit values of μ_i reported by the Collaborations for all the different 7+8 TeV channels *i*:

Data used: EWPD

every extension of *SM* has to satisfy at least the precision constraints of the electroweak sector:

Iow-energy observables

e.g. *v*-scattering, parity violation observables

Z-pole observables

e.g. m_Z , Γ_Z , Z-pole asymmetries...

LH Smoking guns

Where do the LH corrections to the SM quantities come from?

- new decay channels of the Higgs, e.g. $h \rightarrow A_H A_H$ in LHT
- modified Higgs couplings with SM fermions and vector bosons

e.g.
$$2 \frac{m_W^2}{v} y_W h W^+ W^-, \quad y_W = \begin{cases} 1 & SM \\ 1 + \mathcal{O}\left(v^2/f^2\right) & LH \end{cases}$$

interaction terms of Higgs with new fermions/vector bosons

e.g.
$$\frac{m_T}{v} y_T h \bar{T} T$$
 $m_T \sim f, y_T \sim \mathcal{O} \left(v^2 / f^2 \right)$

modified neutral- and charged-currents

e.g.
$$\frac{g}{c_W} \sum_f \bar{f} \gamma^{\mu} \Big((g_L^{SM} + \delta g_L) P_L + (g_R^{SM} + \delta g_R) P_R \Big) f Z_{\mu}$$

SLH results

=

1.048

 χ^2_{SM} /d.o.f.

 free parameters: f SSB scale, t_β ratio of vevs of scalar fields φ_{1,2}

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

 $f_{\rm min}^{99\%}=2.88~{\rm TeV},$ translates into lower bounds on new states' masses, e.g.

$m_{W'}$	\gtrsim	1.35 TeV
m_T	\gtrsim	2.81 TeV

- min. required fine tuning: $\sim 1\%,$ defined as

$$\Delta = \frac{|\delta \mu^2|}{\mu_{\rm obs}^2}$$

- results mainly driven by EWPD
- includes data from Moriond 2013

7/35 .

L²H results

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- free parameters: f SSB scale, c mixing angle in gauge sector
- ▶ f^{99%}_{min} = 3.20 TeV, translates into lower bounds on new states' masses, e.g.

 $m_{W'} \gtrsim 2.13 \text{ TeV}$ $m_T \gtrsim 4.50 \text{ TeV}$

min. required fine tuning: ~ 0.1%, defined as

$$\Delta = \frac{|\delta \mu^2|}{\mu_{\rm obs}^2}$$

- results mainly driven by EWPD
- includes data from Moriond 2013
- Exclusion gets weaker by Higgs data (d.o.f.)!

L^2H results

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- free parameters: f SSB scale, c mixing angle in gauge sector
- f^{99%}_{min} = 3.20 TeV, translates into lower bounds on new states' masses, e.g.

 $m_{W'} \gtrsim 2.13 \text{ TeV}$ $m_T \gtrsim 4.50 \text{ TeV}$

min. required fine tuning: ~ 0.1%, defined as

$$\Delta = \frac{|\delta \mu^2|}{\mu_{\rm obs}^2}$$

- results mainly driven by EWPD
- includes data from Moriond 2013
- Exclusion gets weaker by Higgs data (d.o.f.)!

Partial decay widths in LH

1-loop decays

$$\begin{split} & \Gamma(h \to gg)_{LH} \quad \sim \quad \frac{\alpha_s^2 m_h^3}{32\pi^3 v^2} \Big| \sum_{\rm f,col} -\frac{1}{2} F_{\frac{1}{2}}(x_f) \, y_f \Big|^2 \\ & \Gamma(h \to \gamma\gamma)_{LH} \quad \sim \quad \frac{\alpha^2 m_h^2}{256\pi^3 v^2} \Big| \sum_{\rm f,ch} \frac{4}{2} F_{\frac{1}{2}}(x_f) \, y_f + \sum_{\rm v,ch} F_1(x_v) \, y_v + \sum_{\rm s,ch} F_0(x_s) \, y_s \Big|^2 \end{split}$$

where $x_i = \frac{4m_i^2}{m_h^2}$, $F_i(x_i)$ are loop functions, y_i the modified Yuk. coupl.

$$\Rightarrow \quad \text{narrow-width approximation: } \frac{\sigma_{LH}}{\sigma_{SM}}(gg \to h) = \frac{\Gamma(h \to gg)_{LH}}{\Gamma(h \to gg)_{SM}}$$

tree-level decays

$$\begin{split} \Gamma(h \to VV)_{LH} &\sim \quad \Gamma(h \to VV)_{SM} \left(\frac{g_{hVV}}{g_{hVV}^{SM}}\right)^2 \\ \Gamma(h \to f\bar{f})_{LH} &\sim \quad \Gamma(h \to f\bar{f})_{SM} \left(\frac{g_{hff}}{g_{hff}^{SM}}\right)^2 \end{split}$$
 where $g_{hVV} = \frac{m_V^2}{g_{V}} y_V$ and $g_{hff} = \frac{m_f}{g_{hff}} y_f$

LHT: Littlest Higgs with T parity

Goldstone boson matrix:

$$\Sigma = e^{2\,i\,\Pi/f} \qquad \Pi = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 0 & H & \sqrt{2}\Phi \\ H^{\dagger} & 0 & H^t \\ \sqrt{2}\Phi^{\dagger} & H^* & 0 \end{array} \right) \qquad \Phi \propto \left(\begin{array}{ccc} \sqrt{2}\phi^{++} & \phi^+ \\ \phi^+ & \phi^0 + i\,\phi^P \end{array} \right)$$

Discrete T parity:

 $T: \quad \Pi \to -\Omega \,\Pi \,\Omega \qquad \Omega = {\rm diag}(1,1,-1,1,1)$

$$\begin{split} V_{CW} &= \lambda_{\phi^2} f^2 \operatorname{Tr}(\phi^{\dagger} \phi) + i \lambda_{h\phi h} f \left(H \phi^{\dagger} H^t - H^* \phi H^{\dagger} \right) - \mu^2 H H^{\dagger} + \lambda_{h^4} (H H^{\dagger})^2 + \\ &+ \lambda_{h\phi\phi h} H \phi^{\dagger} \phi H^{\dagger} + \lambda_{h^2 \phi^2} H H^{\dagger} \operatorname{Tr}(\phi^{\dagger} \phi) + \lambda_{\phi^2 \phi^2} \left[\operatorname{Tr}(\phi^{\dagger} \phi) \right]^2 + \lambda_{\phi^4} \operatorname{Tr}(\phi^{\dagger} \phi \phi^{\dagger} \phi). \end{split}$$

- $\begin{array}{ll} \lambda_{\phi^2} = 2(g^2 + {g'}^2) + 8\lambda_1^2 & \lambda_{h^4} = \frac{1}{4}\lambda_{\phi^2} & \lambda_{h\phi\phi h} = -\frac{4}{3}\lambda_{\phi^2} \\ \lambda_{h^2\phi^2} = -16\,\lambda_1^2 & \lambda_{\phi^4} = -\frac{8}{3}(g^2 + {g'}^2) + \frac{16}{3}\lambda_1^2 \end{array}$
- Yukawa couplings $k,R\equiv\lambda_1/\lambda_2$

$$\begin{split} \mathcal{L}_{k} &= -kf\left(\bar{\Psi}_{2}\xi\Psi_{c} + \bar{\Psi}_{1}\langle\Sigma\rangle\Omega\xi^{\dagger}\Omega\Psi_{c}\right) - m_{q}\,\bar{u}_{c}^{\prime}\,u_{c} - m_{q}\,\bar{d}_{c}^{\prime}\,d_{c} - m_{\chi}\,\bar{\chi}_{c}^{\prime}\,\chi_{c} + \text{h.c.}\\ \mathcal{L}_{t} &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\,\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\,\Sigma_{ky}^{\prime}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\,\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\,\Sigma_{ky}^{\prime}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\,\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\,\Sigma_{ky}^{\prime}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\,\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\,\Sigma_{ky}^{\prime}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky} - \left(\bar{\Psi}_{2,t}\,\langle\Sigma\rangle\right)_{i}\Sigma_{jx}^{\prime}\,\Sigma_{ky}\right]t_{R}^{\prime} - \lambda_{2}f\left(\bar{T}_{L_{1}}T_{R_{1}} + \bar{T}_{L_{2}}T_{R_{2}}\right)\right] \\ &= -\frac{\lambda_{1}f}{2\sqrt{2}}\,\epsilon_{ijk}\,\epsilon_{xy}\left[\left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{jx}\,\Sigma_{ky}\right]t_{R}^{\prime} - \left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}^{\prime} - \left(\bar{\Psi}_{1,t}\right)_{i}\Sigma_{ky}^{$$

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on F MUCH relaxed, F ~ 0.5 1 TeV but: Pair production!, typical cascade decays
- Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

2013

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on F MUCH relaxed, F ~ 0.5 1 TeV but: Pair production!, typical cascade decays
- Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

```
Littlest Higgs: A' LTP

W', Z' \sim 650 GeV, \Phi \sim 1 TeV

T, T' \sim 0.7-1 TeV

Annihilation: A'A' \rightarrow h \rightarrow WW, ZZ, hh
```

Hubisz/Meade, 2005

0/10/50/70/100

2013

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on F MUCH relaxed, F ~ 0.5 1 TeV but: Pair production!, typical cascade decays
- Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

```
Littlest Higgs: A' LTP
W', Z' \sim 650 GeV, \Phi \sim 1 TeV
T, T' \sim 0.7-1 TeV
```

Annihilation: $A'A' \rightarrow h \rightarrow WW, ZZ, hh$

Wang/Yang/Zhu, 2013

Relic density/SI cross section

2013

- ▶ *T* parity: $T^a \to T^a$, $X^a \to -X^a$, automorphism of coset space analogous to *R* parity in SUSY, KK parity in extra dimensions
- Bounds on F MUCH relaxed, F ~ 0.5 1 TeV but: Pair production!, typical cascade decays
- Lightest T-odd particle (LTP) ⇒ Candidate for Cold Dark Matter

```
Littlest Higgs: A' LTP
W', Z' \sim 650 GeV, \Phi \sim 1 TeV
T, T' \sim 0.7-1 TeV
```

```
Annihilation: A'A' \rightarrow h \rightarrow WW, ZZ, hh
```

Wang/Yang/Zhu, 2013

Relic density/SI cross section

- T parity Simplest LH: Pseudo-Axion η LTP
 Z' remains odd: good or bad (?) Martin,
- T parity might be anomalous (???)

Martin, 2006; JRR/Tonini, in prep.

Hill/Hill, 2007

JRR/Tonini, JHEP 1302 (2013) 077; JRR/Tonini/de Vries, JHEP 1402 (2014) 053

- free parameters: f SSB scale, R ratio of Yukawa couplings in top sector
- ▶ f^{99%}_{min} = 405.9 GeV, translates into lower bounds on new states' masses, e.g.

 $m_{W'} \gtrsim 269.6 \text{ GeV}$ $m_T \gtrsim 553.6 \text{ GeV}$

- min. required fine tuning: $\sim 10\%$, defined as

$$\Delta = \frac{|\delta\mu^2|}{\mu_{\rm obs}^2}$$

results mainly driven by EWPD (see next slide)

$$\mathsf{EWPT} \Rightarrow$$

$$f \gtrsim 405 \; \mathrm{GeV}$$

- the shape of result driven by EW constraints (much smaller uncertainties)
- Higgs data only: for $v/f \gtrsim 0.6$ decay $h \rightarrow A_H A_H$ open and dominant
- Higgs data only: subdominant dependence on R w.r.t. f is a consequence of the Collective Symmetry Breaking mechanism

EWPT and Higgs data \Rightarrow

$$f \gtrsim 694 \text{ GeV}$$

Direct searches: Drell-Yan mainly

Reach in the gauge boson sector: depends on mixing angle
Direct Searches: Focus on LHT

Defining two benchmark scenarios: 1. heavy quarks

Direct Searches: Focus on LHT

Defining two benchmark scenarios: 2. heavy top/vectors

LHT Mass Spectrum (R=1.0, k=0.4)

Direct Searches: Focus on LHT

• Defining two benchmark scenarios: 1. k = 1.5, 2. k = 0.4

Branching Ratios

Decay patterns:

Particle	Decay	$BR_{k=1.0}$	$BR_{k=0.4}$	Particle	Decay	$BR_{k=1.0}$	$BR_{k=0.4}$
l_H^{\pm}	$ \begin{array}{c} W_H^\pm \ \nu \\ Z_H \ l^\pm \\ A_H \ l^\pm \end{array} $	62% 31% 6%	0% 0% 100%	d_H	$W_H^- u Z_H d A_H d$	62% 30% 6%	0% 0% 100%
ν_H^{\pm}	$ \begin{array}{c} W_{H}^{\pm} \ l^{\mp} \\ Z_{H} \ \nu \\ A_{H} \ \nu \end{array} $	61% 30% 9%	0% 0% 100%	u_H	$W_H^+ d \\ Z_H u \\ A_H u$	58% 30% 9%	0% 0% 100%
T_H^+	$W^+ b Z t$	46% 22%	45% 22%	T_{H}^{-}	$\begin{array}{c} A_H t \\ Z_H t \end{array}$	100% 0%	100% 0%
	H t $T_H^- A_H$	21% 11%	21% 11%	$\Phi^{0/P}$	$A_H H$	100%	100%
A _H	stable			Φ^{\pm}	$A_H W^{\pm}$	100%	100%
Z_H	$A_H H$	100%	2%	$\Phi^{\pm\pm}$	$A_H (W^{\pm})^2$	100%	96%
	$d_H d u_H u u_H u l_H^\pm l_H^\mp u_H u$	0% 0% 0%	41% 30% 14% 14%	W_H^{\pm}	$egin{array}{lll} A_H W^\pm \ u_H d \ d_H u \ l_H^\pm u \ u_H d \ d_H u \ l_H^\pm u \ u_H l^\pm \end{array}$	100% 0% 0% 0%	2% 44% 27% 16.5% 16.5%

Cross Sections (I)

Heavy Quarks

IRI

27/24

Channels and signatures: Parameters

fir	nal state		madaa	narama	fir	nal state		modes	params
leptons	# jets	₿ _T		params	leptons	# jets	$\not\!\!\!E_T$		
0	1	1	$ q_H A_H$	f,k	1±	2	1	$W_H^{\pm}W_H^{\mp}$ $W^{\pm}Z$	f, k
0	2	1	<i>анан</i>	f,k	-			₩ _Н 2н 4н4н	f, k
0	3	1	$ q_H W_H^{\pm}$	f,k		3	1	$q_H W_H^{\pm}$	f,k
			<u>анан</u>	f,k		-	-	T^+q	f, k, R
0	4	1	$\begin{bmatrix} W_H^{\pm} W_H^{+} \\ W_H^{\pm} Z_H \end{bmatrix}$	$egin{array}{c} f,k \ f,k \end{array}$	l^{\pm}	4	1	$q_{H}q_{H}$ $T^{-}T^{-}$	f, k f, k, R
			$Z_H Z_H$	f, k	- 1+1-	0	1	$W_H^{\pm} W_H^{\mp}$	f, k
0	4	X	$ T^+q$	f, k, R	$l^{+}l^{-}$	1	1	$a_{\mu}W^{\pm}_{\mu}$	f, k
0	5	1	$ q_H W_H^{\pm}$	f,k			-	лн Н	
0	6	1		f, k	<i>l</i> + <i>l</i> -	2	1	$q_H q_H T^- T^-$	f, k f, k, R
				J, κ, R	$l^{\pm}l^{\pm}$	2	1	<i>qнqн</i>	f,k

Channels and signatures (I)

f	inal state		production	$\sigma_{8 { m TeV}}$	× Br (fb)	$\sigma_{14{ m TeV}}$:	× Br (fb)
$\# l^{\pm}$	# jets	$\not\!\!\!E_T$	modes	k = 1.0	k = 0.4	k = 1.0	k = 0.4
0	1	1	$q_H A_H$	0.24	1.1×10^2	2.1	4.5×10^2
0	2	1	<i>qнqн</i>	0.56	5.6×10^3	5.2	$3.2\!\times\!10^4$
0	3	1	$q_H W_H^\pm q_H Z_H$	0.73 0.76	$\begin{array}{c} 14 \\ 8.6 \end{array}$	8.0 8.0	77 49
0	4	1	$q_{H}q_{H}$ $W_{H}^{\pm}W_{H}^{\mp}$ $W_{H}^{\pm}Z_{H}$ $Z_{H}Z_{H}$	$ \begin{array}{c c} 4.0 \\ 1.9 \\ 4.8 \\ 0.56 \end{array} $	$\begin{array}{c} 9.1 \times 10^2 \\ \text{low} \\ \text{low} \\ \text{low} \end{array}$	35 9.1 23 3.0	5.6×10^3 low low low
0	4	×	T^+q	2.0	2.0	17	17
0	5	1	$q_H W_H^\pm q_H Z_H$	5.1 4.1	x x	$54\\44$	× ×
0	6	1	$\begin{array}{c} q_{H}q_{H} \\ T^{-}T^{-} \end{array}$	1.6 2.5	$\begin{array}{r} 9.7 \times 10^2 \\ 2.5 \end{array}$	$\begin{array}{r} 1.7 \times 10^2 \\ 25 \end{array}$	$\begin{array}{r} 6.0 \times 10^3 \\ 25 \end{array}$

Channels and signatures (II)

f	inal state		production	$\sigma_{8 \text{ TeV}}$	$\sigma_{8 \text{ TeV}} \times \text{Br} (\text{fb})$		$\sigma_{14~{\rm TeV}} imes {\rm Br}~({\rm fb})$	
$\# l^{\pm}$	# jets	$\not\!\!\!E_T$	modes	k = 1.0	k = 0.4	k = 1.0	k = 0.4	
l^{\pm}	2	1	$\begin{vmatrix} q_H q_H \\ W_H^{\pm} W_H^{\mp} \\ W_H^{\pm} Z_H \\ T^{\pm} q \end{vmatrix}$	$\begin{array}{c c} 0.058 \\ 0.77 \\ 2.1 \\ 1.3 \end{array}$	9.0×10^2 low 1.2	$ \begin{array}{c c} 1.1 \\ 3.9 \\ 10 \\ 10 \\ 10 \\ \end{array} $	5.6×10^3 low low 10	
l^{\pm}	3	1	$\left egin{array}{c} q_H W_H^\pm \ q_H Z_H \end{array} ight $	3.5 0.99	x x	37 11	x x	
l^{\pm}	4	1	$\begin{vmatrix} q_H q_H \\ T^- T^- \end{vmatrix}$	7.4 2.2	$\begin{array}{c} 9.7\!\times\!10^2\\ 2.2\end{array}$	82 82	$\begin{array}{c} 6.0 \times 10^3 \\ 21 \end{array}$	
$l^{+}l^{-}$	0	1	$ W_H^{\pm} W_H^{\mp}$	0.32	low	1.7	low	
l^+l^-	1	1	$ q_H W_H^{\pm}$	0.54	×	5.8	×	
$l^{+}l^{-}$	2	1	$\begin{vmatrix} q_H q_H \\ T^- T^- \end{vmatrix}$	1.1 0.47	x 0.47	11 4.6	x 4.6	
$l^{\pm}l^{\pm}$	2	1	дндн	0.37	×	2.7	×	

Recasting results

JRR/Tonini/deVries,2013

- 95% CL from Monojets + \mathbb{E}_T from LHC8
- 1 hard jet, *E*_T, no leptons, 2nd jet w. *p*_T > 30 GeV signal regions: ATLAS (*p*_T, *E*_T) > 120/220/350/500 GeV, CMS: *E*_T > 250/300/350/400/450/500/550 GeV
- Dijet suppression: ATLAS $\Delta \phi(\not\!\!E_T, j_2) > 0.5$, CMS $\Delta \phi(j_1, j_2) < 2.5$
- $pp \to q_H q_H, pp \to q_H A_H$

Recasting results

JRR/Tonini/deVries,2013

- 95% CL from Jets + $\not\!\!\!E_T$ from LHC8
- ≥ 2 hard jets, E_T , no leptons
- signal regions: ATLAS $\not\!\!E_T > 200/300/350$ GeV, CMS:

 $(N_j, N_b) = (2 - 3, 0); (2 - 3, 1 - 2); (\ge 4, 1 - 2); (\ge 4, 0); (\ge 4, \ge 2)$

• QCD suppression: ATLAS $\Delta \phi(E_T, j_2) > 0.5$, E_T/m_{eff} , CMS $\Delta \phi(j_1, j_2) < 2.5$

• $pp \to q_H q_H \to (jA_H)(jA_H)$

Recasting results

JRR/Tonini/deVries,2013

- 95% CL from Leptons + Jets + $\not\!\!\!E_T$ from LHC8
- single isolated lepton, ≥ 2 hard jets, $\not\!\!E_T$,
- Cuts: $E_T > 250 \text{ GeV}, m_T(l, E_T) > 250 \text{ GeV}, E_T/m_{\text{eff}} > 0.2, m_{\text{eff}}^{\text{inc}} > 800 \text{ GeV}$
- $pp \to q_H q_H$ with $q_H \to W_H q, Z_H q, t_H \to tA_H, Z_H \to HA_H$

Combined analysis

JRR/Tonini/deVries,2013

► Operator bounds: $\mathcal{O}_{4-f} = -\frac{k^2}{128 \pi^2 f^2} \bar{\psi}_L \gamma^\mu \psi_L \bar{\psi}'_L \gamma_\mu \psi'_L + O\left(\frac{g}{k}\right)$ Hubisz/Meade/Noble/Perelstein, 2005

• Bound from combined analysis: $f \gtrsim 638 \text{GeV}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular *Little Higgs* models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

 $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:
 - 3. Higgs+EWPO:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

 $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$

 $f\gtrsim 694~{\rm GeV}@95\%\,{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:
 - 3. Higgs+EWPO:
 - 4. Direct searches:

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

- $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$
 - $f\gtrsim 694~{\rm GeV}@95\%~{\rm CL}$
 - $f\gtrsim 638~{\rm GeV}@95\%~{\rm CL}$

- Little Higgs models are an appealing solution to the hierarchy problem, alternative to weakly coupled solutions like SUSY
- most of the parameter space of three popular Little Higgs models is still compatible at $\sim 99\%~CL$ with the early results of the 7+8 TeV Higgs searches
- electroweak precision data represent still the most severe constraints
- fine-tuning as a guideline to understand the naturalness of a model: Little Higgs models require a minimum level of $\sim 10\%$ of fine tuning
- Limits on the LHT:
 - 1. EWPO:
 - 2. Higgs:
 - 3. Higgs+EWPO:
 - 4. Direct searches:
- We need more data!

 $f\gtrsim 405~{\rm GeV}@95\%\,{\rm CL}$

- $f\gtrsim 607~{\rm GeV}@95\%\,{\rm CL}$
 - $f\gtrsim 694~{\rm GeV}@95\%~{\rm CL}$
 - $f\gtrsim 638~{\rm GeV}@95\%~{\rm CL}$

35/35 J B Be	_	_	_	_	-
	35/35	_	_	L R.	Re

euter

Little Higgs Models

KIT. Karlsruhe 28.11.2014

Lessons from Lepton Photon 2013 ...

There are either colored exotics ...

Lessons from Lepton Photon 2013 ...

... or the world is fine tuned

35/35 J B Be	_	_	_	_	-
	35/35	_	_	L R.	Re

euter

Little Higgs Models

KIT. Karlsruhe 28.11.2014

Direct Searches – Heavy Quark States

• EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03

Direct Searches – Heavy Quark States

EW single dominates QCD pair production: Perelstein/Peskin/Pierce, '03

Characteristic branching ratios :

$$\Gamma(T \to th) \approx \Gamma(T \to tZ) \approx \frac{1}{2} \Gamma(T \to bW^+) \approx \frac{M_T \lambda_T^2}{64\pi}, \qquad \Gamma_T \sim 10{-}50 \,\mathrm{GeV}$$

• Proof of T as EW singlet; but: $T \rightarrow Z'T, W'b, t\eta$!

AIM: Determination of M_T , λ_T , $\lambda_{T'}$

 $\lambda_{T'}$ indirect ($T\bar{T}h$ impossible)

SN-ATLAS-2004-038

- ▶ $E_T > 100 \text{ GeV}, \ell \ell \ell, p_T > 100/30 \text{ GeV}, b, p_T > 30 \text{ GeV}$
- Bkgd.: WZ, ZZ, btZ
- Observation for $M_T \lesssim 1.4 \,\text{TeV}$

35/35 J. B. Bei

 $T \rightarrow Wb \rightarrow \ell \nu b$ SN-ATLAS-2004-038

- ▶ $E_T > 100 \text{ GeV}, \ell, p_T > 100 \text{ GeV}, b, p_T > 200 \text{ GeV}, max. <math>jj, p_T > 30 \text{ GeV}$
- Bkgd.: $t\bar{t}$, $Wb\bar{b}$, single t
- Observation for $M_T \lesssim 2.5 \,\text{TeV}$

Additional heavy quarks (Simple Group Models): U, C or D, S

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction

Han et al..

Additional heavy quarks (Simple Group Models): U, C or D, S

Han et al.,

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction

Additional heavy quarks (Simple Group Models): U, C or D, S Han et al., 05

- Large cross section: u or d PDF
- Huge final state l charge asymmetry
- Good mass reconstruction

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits ~ 500 – 600 GeV

▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits ~ 500 – 600 GeV

- ▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$
- Discovery channel: $Z' \rightarrow \ell \ell, W' \rightarrow \ell \nu$
- $\Gamma_{Z'} \sim 10 50 \,\text{GeV}, \quad \Gamma_X \sim 0.1 10 \,\text{GeV}$

Events/20 GeV/100 fb⁻¹

10

1000

Direct Searches – Heavy Vectors Drell-Yan Production: Tevatron Limits $\sim 500 - 600$ GeV

- ▶ Dominant decays: Product group: $Z' \rightarrow Zh, WW$, $W' \rightarrow Wh, WZ$ Simple group: $Z' \rightarrow qq$, $X \rightarrow fF$
- Discovery channel: $Z' \to \ell \ell, W' \to \ell \nu$
- $\Gamma_{Z'} \sim 10 50 \,\text{GeV}, \quad \Gamma_X \sim 0.1 10 \,\text{GeV}$

Direct Searches – Heavy Scalars

Generally: Large model dependence no states complex singlet complex triplet

- Littlest Higgs, complex triplet: $\Phi^0, \Phi_P, \Phi^{\pm}, \Phi^{\pm\pm}$
- ► Cleanest channel: $q\bar{q} \rightarrow \Phi^{++}\Phi^{--} \rightarrow \ell\ell\ell\ell\ell$: Killer: PS
- WW-Fusion: $dd \rightarrow uu\Phi^{++} \rightarrow uuW^+W^+$
- > 2 hard forward jets, hard close $\ell^+ \ell^+ p_T$ -unbalanced

Alternative: Model-Independent search in WW fusion:

ILC: Beyer/Kilian/Krstonosic/Mönig/JRR/Schmidt/Schröder, 2006

LHC: Alboteanu/Kilian/JRR, 2008; Kilian/JRR/Sekulla, 2013

сē

u⁺u

Pseudo-Axions in Little Higgs

2007

- gauged U(1) group: $Z' \longleftrightarrow$ ungauged: η
- couples to fermions like a pseudoscalar
- $-m_\eta \lesssim 400 \,\mathrm{GeV}$
- SM singlet, couplings to SM particles v/F suppressed

- U(1) explicitly broken \Rightarrow Axion limits from astroparticle physics not applicable

BR [ŋ]

0.1

0.01 d gg

0.001

10

Classification of Axions in Little Higgs Models Number of Pseudo-Axions: n = q - l

Mismatch between global (q) and local rank reduction (l)

Product Group Models Arkani-Hamed....

- Doubling of electroweak gauge group: $SU(2) \times SU(2) \rightarrow SU(2)_L$, $U(1) \times U(1) \rightarrow U(1)_Y$ (latter not necessary) $\Rightarrow l = 1$
 - Littlest Higgs, g: $SU(5) \rightarrow SO(5) \Rightarrow n = (4-2) 1 = 1$
 - antisymmetric, g: Sp(6)/SO(6), n = (3-2) 1 = 0

Simple Group Models Kaplan, Schmaltz, ...

- Simple gauge group: $SU(N) \times U(1) \rightarrow SU(2) \times U(1) \Rightarrow l = N 2$
- Higgs is distributed over several global symmetry multiplets
- Simplest Little Higgs, g: $[SU(3)]^2/[SU(2)]^2$ n = g l = 2 1 = 1
- Original Simple Group Model, g: $[SU(4)]^3/[SU(3)^3 \times SU(2)]$, $I: SU(4) \to SU(2)$ n = q - l = 4 - 2 = 2

Moose Models Arkani-Hamed, ...

- "Minimal" Moose: g $[SU(3)]^4 \rightarrow SU(3), I [SU(3) \times SU(2)]/SU(2)$ n = q - l = 6 - 2 = 4
- ▶ 3-site model: g $[SU(2)]^4/[SU(2)]^2$, $|[SU(2)]^2 \rightarrow SU(2), n = 2 1 = 1$
$ZH\eta$ coupling as a discriminator

Kilian/Rainwater/JRR, 2006

• pseudo-axion: $\xi = \exp[i\eta/F]$, $\Sigma = \exp[i\Pi/F]$ non-linear representation of the remaining Goldstone multiplet Π

 $\mathcal{L}_{\text{kin.}} \sim F^2 \operatorname{Tr} \left[(D^{\mu}(\xi \Sigma)^{\dagger} (D_{\mu}(\xi \Sigma)) \right] = \dots - 2F(\partial_{\mu} \eta) \operatorname{Im} \operatorname{Tr} \left[(D^{\mu} \Sigma)^{\dagger} \Sigma \right] + O(\eta^2)$

Use special structure of covariant derivatives:

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma + A^{a}_{1,\mu} \left(T^{a}_{1}\Sigma + \Sigma(T^{a}_{1})^{T}\right) + A^{a}_{2,\mu} \left(T^{a}_{2}\Sigma + \Sigma(T^{a}_{2})^{T}\right),$$

 $\operatorname{Tr}\left[(D^{\mu}\Sigma)^{\dagger}\Sigma\right] \sim W^{a}_{\mu}\operatorname{Tr}\left[\Sigma^{\dagger}(T^{a}_{1}+T^{a}_{2})\Sigma + (T^{a}_{1}+T^{a}_{2})^{*}\right] = 0.$

- Little Higgs mechanism cancels this coupling
- Simple Group Models: $\Phi = \exp[i\Sigma/F]$, $\zeta = (0, \dots, 0, F)^T$ VEV directing in the *N* direction

$$\begin{aligned} \mathcal{L}_{\text{kin.}} \sim F^2 D^{\mu}(\zeta^{\dagger} \Phi^{\dagger}) D_{\mu}(\Phi \zeta) &= \ldots + \frac{\imath}{F} (\partial_{\mu} \eta) \zeta^{\dagger} \left(\Phi^{\dagger}(D_{\mu} \Phi) - (D_{\mu} \Phi^{\dagger}) \Phi \right) \zeta \\ &= \ldots + i F (\partial_{\mu} \eta) \left(\Phi^{\dagger}(D_{\mu} \Phi) - (D_{\mu} \Phi^{\dagger}) \Phi \right)_{N,N} \end{aligned}$$

$$\Sigma = \begin{pmatrix} 0 & h \\ h^{\dagger} & 0 \end{pmatrix}, \qquad \qquad \mathbb{V}_{\mu} = \begin{pmatrix} \mathbb{W}_{\mu} & 0 \\ 0 & 0 \end{pmatrix} + \text{heavy vector fields}$$

$$\begin{aligned} \mathbb{V}_{\mu} &+ \frac{i}{F} [\Sigma, \mathbb{V}_{\mu}] - \frac{1}{2F^2} [\Sigma, [\Sigma, \mathbb{V}_{\mu}]] + \dots \\ &= \begin{pmatrix} \mathbb{W}_{\mu} & 0 \\ 0 & 0 \end{pmatrix} + \frac{i}{F} \begin{pmatrix} 0 & -\mathbb{W}_{\mu}h \\ h^{\dagger}\mathbb{W}_{\mu} & 0 \end{pmatrix} - \frac{1}{2F^2} \begin{pmatrix} hh^{\dagger}\mathbb{W} + \mathbb{W}hh^{\dagger} & 0 \\ 0 & -2h^{\dagger}\mathbb{W}h \end{pmatrix} + \dots \end{aligned}$$

- Ist term cancels by multiple Goldstone multiplets
- 2st term cancels by EW symmetry
- 3rd term

$$(\partial^{\mu}\eta)h^{\dagger}W_{\mu}h \sim vHZ_{\mu}\partial^{\mu}\eta$$
.

More properties of Pseudo-Axions

- Take e.g. one specific model: Simplest Little Higgs Schmaltz, 2004
- Simple Group Model, two Higgs-triplets with a $\tan\beta$ -like mixing angle

- $\tan \beta \sim 1$: heavy Higgs, (very) light pseudoscalar
- Heavy top decays: Kilian/Rainwater/JRR, 2006

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC: $T \rightarrow t\eta$

ILC: $e^+e^- \rightarrow t\bar{t}\eta$

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC: $T \rightarrow t\eta$ ILC: $e^+e^- \rightarrow t\bar{t}\eta$

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \rightarrow \left\{ \begin{array}{ll} H \rightarrow Z\eta & \rightarrow \ell\ell bb \\ \eta \rightarrow ZH & \rightarrow \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

Kilian/Rainwater/JRR, 2004, 2006

LHC: Gluon fusion, diphoton signal for $m_\eta\gtrsim 200\,{\rm GeV},\,7\sigma$ possible

LHC:
$$T \to t\eta$$

ILC: $e^+e^- \to t\bar{t}\eta$

 $ZH\eta$ coupling

forbidden in Product Group Models

Discriminator of diff. model classes

$$gg \to \left\{ \begin{array}{ll} H \to Z\eta & \to \ell\ell bb \\ \eta \to ZH & \to \ell\ell bb, \ell\ell\ell jj \end{array} \right\}$$

5 J

η pheno at ILC

Kilian/Rainwater/JRR, 2006

If $ZH\eta$ coupling present: $H\eta$ production in analogy to HA:

Little Higgs Model

More detailed insights from photon collider option

η pheno at ILC

Kilian/Rainwater/JRR, 2006

If $ZH\eta$ coupling present: $H\eta$ production in analogy to HA:

Little Higgs Model

More detailed insights from photon collider option

Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM
 - (→ Mühlleitner et al. (2001))

Pseudo Axions at the Photon Collider

 Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling)

- S/B analogous to LC
- η in the μ model with (almost) identical parameters as A in MSSM

(→ Mühlleitner et al. (2001))

Simplest Little Higgs ("µ Model")

Schmaltz '04, Kilian/Rainwater/JRR '04

Field content ($SU(3)_c \times SU(3)_w \times U(1)_X$ quantum numbers)

$$\begin{split} & \Phi_{1,2} : (1,3)_{-\frac{1}{3}} & \Psi_{\ell} : (1,3)_{-\frac{1}{3}} & u_{1,2}{}^{c} : (\bar{3},1)_{-\frac{2}{3}} \\ & \Psi_{Q} : (3,3)_{\frac{1}{3}} & d^{c} : (\bar{3},1)_{\frac{1}{3}} & e^{c}, n^{c} : (1,1)_{1,0} \end{split} \\ & \text{Lagrangian } \mathcal{L} = \mathcal{L}_{\text{kin.}} + \mathcal{L}_{\text{Yuk.}} + \mathcal{L}_{\text{pot.}} & \Psi_{Q,L} = (u,d,U)_{L}, \Psi_{\ell} = (\nu,\ell,N)_{L} \vdots \\ & \mathcal{L}_{\text{Yuk.}} = -\lambda_{1}^{u} \overline{u}_{1,R} \Phi_{1}^{\dagger} \Psi_{T,L} - \lambda_{2}^{u} \overline{u}_{2,R} \Phi_{2}^{\dagger} \Psi_{T,L} - \frac{\lambda^{d}}{\Lambda} \epsilon^{ijk} \overline{d}_{R}^{b} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{T,L}^{k} \\ & -\lambda^{n} \overline{n}_{1,R} \Phi_{1}^{\dagger} \Psi_{Q,L} - \frac{\lambda^{e}}{\Lambda} \epsilon^{ijk} \overline{e}_{R} \Phi_{1}^{i} \Phi_{2}^{j} \Psi_{Q,L}^{k} + \text{h.c.}, \\ & \mathcal{L}_{\text{pot.}} = \mu^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \end{split}$$
Hypercharge embedding
$$(\text{diag}(1,1,-2)/(2\sqrt{3})): \end{split}$$

$$Y = X - T^8 / \sqrt{3} \qquad \qquad D_\mu \Phi = (\partial_\mu - \frac{1}{3}g_X B^X_\mu \Phi + igW^w_\mu) \Phi$$