Hints of Exceptional Grand Unification at the LHC

Jürgen R. Reuter

DESY Hamburg

Seminar, TU München, 20. Jan. 2012

The Standard Model of Particle Physics – Doubts

	Measurement	Fit	(Omea	$^{s}-O^{ft} /\sigma^{meas}$
$\Delta \alpha_{\text{had}}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02768	-	
m, [GeV]	91.1875 ± 0.0021	91.1875		
F ₇ [GeV]	2.4952 ± 0.0023	2.4957		
σ ⁰ had [nb]	41.540 ± 0.037	41.477		
R,	20.767 ± 0.025	20.744		
Am	0.01714 ± 0.00095	0.01645		
A _I (P _z)	0.1465 ± 0.0032	0.1481		
R _b	0.21629 ± 0.00066	0.21586		
R _c	0.1721 ± 0.0030	0.1722		
A ^{0,b}	0.0992 ± 0.0016	0.1038		
A ^{0,c}	0.0707 ± 0.0035	0.0742		
Ab	0.923 ± 0.020	0.935		
A _c	0.670 ± 0.027	0.668		
A(SLD)	0.1513 ± 0.0021	0.1481		
sin ² 0 ^{lept} (Q _{fb})	0.2324 ± 0.0012	0.2314		
m _w [GeV]	80.398 ± 0.025	80.374	_	
Г _w [GeV]	2.140 ± 0.060	2.091		
m, [GeV]	170.9 ± 1.8	171.3	F	
			<u> </u>	

- describes microcosm (too well?)

The Standard Model of Particle Physics – Doubts

- 28 free parameters

- Form of Higgs potential?

Hierarchy Problem

chiral symmetry: $\delta m_f \propto v \ln(\Lambda^2/v^2)$ no symmetry for quantum corrections to Higgs mass

$$\delta M_H^2 \propto \Lambda^2 \sim M_{\rm Planck}^2 = (10^{19})^2 \, {\rm GeV}^2$$

Open Questions

- Unification of all Forces (?)
- Baryon asymmetry $\Delta N_B \Delta N_{\bar{B}} \sim 10^{-9}$ missing CP violation
- Flavour: three generations
- Tiny neutrino masses $m_{
 u} \sim rac{v^2}{M}$
- Dark matter:
 - stable
 - weakly interacting
 - $m_{DM} \sim 100 \, \mathrm{GeV}$
- Quantum theory of gravitation
- Cosmic inflation
- Cosmological constant/ Dark Energy

Ideas for New Physics since 1970

(1) Symmetry for Elimination of Quantum Corrections

- Supersymmetry: Spin Statistics \Rightarrow corrections from bosons and fermions cancel each other
- Little-Higgs Models: Global symmetries ⇒ corrections from particles of like statistics cancel each other

(2) New Building Blocks, Substructure

- Technicolor/Topcolor: Higgs bound state of strongly interacting particles

(3) Nontrivial Space-time Structure eliminates Hierarchy

- Additional space dimensions: Gravitation appears only weak
- Noncommutative Space-time: Space-time coarse-grained

(4) Ignoring the Hierarchy

 Anthropic principle: Values are the way they are, <u>because</u> we measure them

Supersymmetry (SUSY)

Gelfand/Likhtman, 1971; Akulov/Volkov, 1973; Wess/Zumino, 1974

- combines gauge and spacetime symmetries
- Multiplets of equal-mass fermions and bosons
- ⇒ SUSY broken in Nature

- Extend every particle by a superpartner
- Minimal Supersymmetric Standard Model (MSSM)
- Mass eigenstates: Charginos: $\tilde{\chi}^{\pm} = \tilde{H}^{\pm}, \tilde{W}^{\pm}$ Neutralinos: $\tilde{\chi}^{0} = \tilde{H}, \tilde{Z}, \tilde{\gamma}$

Hate-Love SUSY: Successes and By-Products

spontaneous SUSY breaking in the MSSM £ (MeV SUSY partners)

Breaking in "hidden sector", induces 100 free parameters

solves hierarchy problem: $\delta M_H \propto F \log(\Lambda^2)$

- Existence of fundamental scalars
- Form of the Higgs potential
- Light Higgs ($M_H = 90 \pm 50 \,\text{GeV}$)
- ► discrete *R* parity
 - SM particles even, SUSY partners odd
 - prevents too rapid proton decay
 - ► lightest SUSY partner (LSP) stable Dark Matter $\tilde{\chi}_1^0$
- Unification of coupling constants

Hate-Love SUSY: Successes and By-Products

spontaneous SUSY breaking in the MSSM £ (MeV SUSY partners)

Breaking in "hidden sector", induces 100 free parameters

solves hierarchy problem: $\delta M_H \propto F \log(\Lambda^2)$

- Existence of fundamental scalars
- Form of the Higgs potential
- Light Higgs ($M_H = 90 \pm 50 \,\text{GeV}$)
- ► discrete *R* parity
 - SM particles even, SUSY partners odd
 - prevents too rapid proton decay
 - ► lightest SUSY partner (LSP) stable Dark Matter $\tilde{\chi}_1^0$
- Unification of coupling constants

Hate-Love SUSY: Successes and By-Products

spontaneous SUSY breaking in the MSSM Ź (MeV SUSY partners)

Breaking in "hidden sector", induces 100 free parameters

solves hierarchy problem: $\delta M_H \propto F \log(\Lambda^2)$

- Existence of fundamental scalars
- Form of the Higgs potential
- Light Higgs ($M_H = 90 \pm 50 \,\text{GeV}$)
- ► discrete *R* parity
 - SM particles even, SUSY partners odd
 - prevents too rapid proton decay
 - ► lightest SUSY partner (LSP) stable Dark Matter $\tilde{\chi}_1^0$
- Unification of coupling constants

Supersymmetric Grand Unification

Prime Example: (SUSY) SU(5)

$$SU(5) \xrightarrow{M_X} SU(3)_c \times SU(2)_w \times U(1)_Y \xrightarrow{M_Z} SU(3)_c \times U(1)_{em}$$

 $SU(5)$ has $5^2 - 1 = 24$ generators:

$$\mathbf{24} \to \underbrace{(\mathbf{8},\mathbf{1})_0}_{G^{\beta}_{\alpha}} \oplus \underbrace{(\mathbf{1},\mathbf{3})_0}_W \oplus \underbrace{(\mathbf{1},\mathbf{1})_0}_B \oplus \underbrace{(\mathbf{3},\mathbf{2})_{\frac{5}{3}}}_{X,Y} \oplus \underbrace{(\overline{\mathbf{3}},\mathbf{2})_{-\frac{5}{3}}}_{\bar{X},\bar{Y}}$$

Prime Example: (SUSY) SU(5)

$$SU(5) \xrightarrow{M_X} SU(3)_c \times SU(2)_w \times U(1)_Y \xrightarrow{M_Z} SU(3)_c \times U(1)_{em}$$

 $SU(5)$ has $5^2 - 1 = 24$ generators:

$$24 \rightarrow \underbrace{(\mathbf{8}, \mathbf{1})_{0}}_{G_{\alpha}^{\beta}} \oplus \underbrace{(\mathbf{1}, \mathbf{3})_{0}}_{W} \oplus \underbrace{(\mathbf{1}, \mathbf{1})_{0}}_{B} \oplus \underbrace{(\mathbf{3}, \mathbf{2})_{\frac{5}{3}}}_{X,Y} \oplus \underbrace{(\overline{\mathbf{3}}, \mathbf{2})_{-\frac{5}{3}}}_{\bar{X},\bar{Y}}$$

$$A = g \sum_{a=1}^{24} A^{a} \frac{\lambda^{a}}{2} = \frac{g}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^{a} \frac{\lambda^{a}_{\text{GM}}}{2} & \begin{vmatrix} \bar{X} & \bar{Y} \\ \bar{X} & \bar{X} & \bar{X} \\ Y & Y & Y \end{vmatrix} \begin{vmatrix} \bar{X} & \bar{Y} \\ \sqrt{2}W^{a} \frac{\sigma}{2} \end{pmatrix}$$

$$- \frac{g}{2\sqrt{15}} B \begin{pmatrix} -2 & & & \\ -2 & & & \\ & & -2 & \\ & & & & +3 \end{pmatrix}$$

Fermionen (Matter superfields)

Only possible way to combine matter:

$$\overline{\mathbf{5}} = \ (\overline{\mathbf{3}}, \mathbf{1})_{rac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1} \qquad \mathbf{10} = \ (\mathbf{3}, \mathbf{2})_{rac{1}{3}} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-rac{4}{3}} \oplus (\mathbf{1}, \mathbf{1})_2$$

Remarks

- ▶ $\mathbf{2} = \Box = \overline{\mathbf{2}}, \qquad (\mathbf{5} \otimes \mathbf{5})_a = \mathbf{10}, \quad (\mathbf{3} \otimes \mathbf{3})_a = \overline{\mathbf{3}}, \quad (\Box \otimes \Box)_a = \Box$
- Quarks and leptons in the same multiplet
- ► Condition of tracelessness ⇒ (color!)
- $\overline{5}$ and 10 have equal and opposite anomalies
- ν^c must be SU(5) singlet

Interactions

ENABRA ENAEN E ORO

Interactions

 $\begin{array}{l} \label{eq:proton Lifetime with $\alpha(M_{GUT}) \sim \frac{1}{24}$ and $M_{GUT} \sim 2 \times 10^{16}$ GeV:} \\ \tau(p \rightarrow e^+ \pi^0) \sim \ \frac{M_{GUT}^4}{[\alpha(M_{GUT})]^2 m_p^5} \rightarrow 10^{31\pm1}$ years \end{array}$

The Doublet-Triplet Splitting

SU(5) breaking: Higgs Σ in adjoint 24 rep.

$$\langle \mathbf{\Sigma} \rangle = w \times \operatorname{diag}(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}) \qquad M_X = M_Y = \frac{5}{2\sqrt{2}} g w$$

other breaking mechanisms possible (e.g. orbifold)

The Doublet-Triplet Splitting

SU(5) breaking: Higgs Σ in adjoint 24 rep.

$$\langle \mathbf{\Sigma} \rangle = w \times \operatorname{diag}(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}) \qquad M_X = M_Y = \frac{5}{2\sqrt{2}} g w$$

other breaking mechanisms possible (e.g. orbifold) (MS)SM Higgs(es) in ${\bf 5}\oplus\overline{{\bf 5}}$

$$\mathbf{5} = \Box: \begin{pmatrix} \mathbf{D} \\ D \\ \mathbf{D} \\ h^+ \\ h^0 \end{pmatrix} \qquad \overline{\mathbf{5}} = \boxed{\Box}: \begin{pmatrix} \mathbf{D}^c \\ D^c \\ D^c \\ h^- \\ -h^0 \end{pmatrix}$$
$$\mathbf{5} = (\mathbf{3}, \mathbf{1})_{-\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_1 \qquad \overline{\mathbf{5}} = (\overline{\mathbf{3}}, \mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1}$$

- D, D^c coloured triplets with charges $\pm \frac{1}{3}$
- induce proton decay, too $m_H \sim 100 \text{ GeV}, m_D \sim 10^{16} \text{ GeV}$
- Doublet-Triplet Splitting Problem

/39 J. R. Reuter

Proton Decay experimentum crucis for GUTs

- Tracking calorimeter (SOUDAN) or RICH Cerenkov counter
- Super-Kamiokande: 50 kt water RICH
- For reconstruction: measure time and location

Proton Decay experimentum crucis for GUTs

- Tracking calorimeter (SOUDAN) or RICH Cerenkov counter
- Super-Kamiokande: 50 kt water RICH
- For reconstruction: measure time and location

Kanal	$ au_p(10^{30}{ m years})$		
$p \rightarrow invisible$	0.21		
$p \rightarrow e^+ \pi^0$	1600		
$p \rightarrow \mu^+ \pi^0$	473		
$p \rightarrow \nu \pi^+$	25		
$p \rightarrow \nu K^+$	670		
$p \rightarrow e^+ \eta^0$	312		
$p \rightarrow \mu^+ \eta^0$	126		
$p \rightarrow e^+ \rho^0$	75		
$p \to \mu^+ \rho^0$	110		
$p \rightarrow \nu \rho^+$	162		
$p ightarrow e^+ \omega^0$	1000		
$p \rightarrow \mu^+ \omega^0$	117		
$p \rightarrow e^+ K^0$	150		
$p \to \mu^+ K^0$	1300		
$p \rightarrow \nu K^+$	2300		
$p \rightarrow e^+ \gamma$	670		
$p \to \mu^+ \gamma$	478		

New experiments: HyperK (1 Mt), UNO (650 kt), European project Fréjus (1 Mt)

Precision: 10 years running $\implies 10^{34} - 10^{35}$ years

Why chiral exotics?

JRR/Kilian, PLB 642 (2006), 81, JRR 0709.4202

Proof of Unification only with megatons? What about colliders?

- SPA: Super precision accurately
- Alternative: Search for chiral exotics
- · Physics beyond the MSSM as lever-arm to GUT scale

μ problem

- NMSSM trick
- Singlett Superfield with TeV-scale vacuum expectation value

Doublet-Triplet Splitting Problem; Longevity of the Proton

- Keep D, D^c superfields at the TeV scale
- New mechanism against proton decay
- Different unification scenario

Proton Decay

- Flavour symmetry can save the proton
- Discrete parity eliminates either LQ/DQ couplings

Exceptional Lie Algebras

Lie, 1881; Dynkin, 1957

E_6 SUSY Grand Unification

Supersymmetry: allows consistent extrapolation to (very) high scales

- \Rightarrow Two Higgs doublets H^u, H^d
- \Rightarrow SM superpartners at the TeV scale

Bottom-Up approach: only MSSM

- Matter-Higgs unification
- Ansatz: all new particles at the TeV scale

$$egin{aligned} & \mathcal{L}_L = & (\mathbf{1},\mathbf{2})_{-rac{1}{2},Q'_L} \ &
u^c = & (\mathbf{1},\mathbf{1})_{0,Q'_
u=0} \ & e^c = & (\mathbf{1},\mathbf{1})_{1,Q'_e} \end{aligned}$$

$$D = (\mathbf{3}, \mathbf{1})_{-\frac{1}{3}, Q'_D}$$
$$D^c = (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}, -Q'_D}$$

Running With Triplets

Bottom-up approach: MSSM with one generation of triplets

10¹⁵ GeV: crossing of $SU(2)_L$ and $U(1)_Y$ \Rightarrow unification to LR symmetry $SU(2)_L \times SU(2)_R$, requires ν_R^c $SU(3)_c$ crosses at 10²¹ GeV: too high Kilian/JR, 2006

Running With Triplets

Bottom-up approach: MSSM with one generation of triplets

10¹⁵ GeV: crossing of $SU(2)_L$ and $U(1)_Y$ \Rightarrow unification to LR symmetry $SU(2)_L \times SU(2)_R$, requires ν_R^c $SU(3)_c$ crosses at 10²¹ GeV: too high

 \Rightarrow extend to $SU(4)_C$: unification possible at 10^{18} GeV

Kilian/JR, 2006

Running With Triplets

Kilian/JR, 2006

Complete Model:

Full SUSY E_6/G_{Tri} matter spectrum above 10^3 GeV, except ν^c

• PS symmetry with ν_R above 10^{15} GeV

$$\begin{aligned} \mathbf{Q}_L &= (Q, L) = \ (\mathbf{4}, \mathbf{2}, \mathbf{1}) & \mathbf{D} = (D, D^c) = \ (\mathbf{6}, \mathbf{1}, \mathbf{1}) \\ \mathbf{Q}_R &= ((u^c, d^c), (\nu^c, \ell^c)) = \ (\overline{\mathbf{4}}, \mathbf{1}, \mathbf{2}) & \mathbf{S} = \ (\mathbf{1}, \mathbf{1}, \mathbf{1}) \\ \mathbf{H} &= (H_u, H_d) = \ (\mathbf{1}, \mathbf{2}, \mathbf{2}) \end{aligned}$$

► E₆ symmetry (and possibly extra fields) at 10¹⁸ GeV

Intermediate Pati-Salam symmetry

JRR et al. 2006-9, King et al. 2008

- Additional particles destroy MSSM unification
- Unification below Λ_{Planck} with intermediate

 $SU(4) \times SU(2)_L \times SU(2)_R[\times U(1)_{\chi}]$ Pati-Salam symmetry at $\sim 10^{15-16}$ GeV

- SU(2)_R and SU(2)_L:
 identical content/running
- ► Crossing of SU(4) with SU(2)_{L/R} couplings determines E₆ scale
- Lepton number: 4. colour

•
$$T_{SU(4)}^{15} \propto \frac{B-L}{2}$$

$$\blacktriangleright Y = \frac{B-L}{2} + T_R^3$$

- ► U(1) Matching condition $\frac{1}{g_Y^2} = \frac{2}{5} \frac{1}{g_{B-L}^2} + \frac{3}{5} \frac{1}{g_R^2}$
- Integrating out ν^c: (see-saw)
- ⇒ correct breaking

U(1) Mixing

Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009, Braam/JRR, 1107.2806

- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i \, g_i \, Q_i^a \, A_i^\mu \, \bar{\psi}^a \, \gamma_\mu \, \psi^a \, - \frac{1}{4} \, F_i^{\mu\nu} \, \delta_{ij} \, F_{\mu\nu,j} \, - \frac{1}{4} \, F_i^{\mu\nu} \, \Delta Z_{ij} \, F_{\mu\nu,j} \, .$$

- U(1) 50 40 $J(1)_{B-I}$ -α₁ 30 a, 31 SU(2)₁ SU(2)1 U(I) $U(1)_{\chi/B-L}$ 20 SU(3) SU(3) 1014 1010 μ/GeV µ/GeV
- Effects for the running:

U(1) Mixing

Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009, Braam/JRR, 1107.2806

- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i \, g_i \, Q_i^a \, A_i^\mu \, \bar{\psi}^a \, \gamma_\mu \, \psi^a \, - \frac{1}{4} \, F_i^{\mu\nu} \, \delta_{ij} \, F_{\mu\nu,j} \, - \frac{1}{4} \, F_i^{\mu\nu} \, \Delta Z_{ij} \, F_{\mu\nu,j} \, .$$

- 60 50 40 a1 3 a, 30 SU(2) SU(2) $U(1)_{\chi/H-I}$ $U(1)_{B-L/\chi}$ 20 21 SU(3) SU(3) 10 10^{2} 10^{4} 106 108 1010 1012 1010 10² 10^{4} 108 1012 1014 1016 µ/GeV μ/GeV
- Effects for the running:

U(1) Mixing

Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009, Braam/JRR, 1107.2806

- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i \, g_i \, Q_i^a \, A_i^{\mu} \, \bar{\psi}^a \, \gamma_{\mu} \, \psi^a \, - \frac{1}{4} \, F_i^{\mu\nu} \, \delta_{ij} \, F_{\mu\nu,j} - \frac{1}{4} \, F_i^{\mu\nu} \, \Delta Z_{ij} \, F_{\mu\nu,j} \, .$$

• Effects for the running:

Same effect for soft-breaking terms: interesting singlino mixing

The Superpotential / Sketch of a Model

Kilian/JR, 2006

Superpotential:
$$\begin{split} \mathcal{W} &= \mathcal{W}_{\text{MSSM}} + \mathcal{W}_D + \mathcal{W}_N \\ \mathcal{W}_{\text{MSSM}} &= Y^u u^c Q H_u + Y^d d^c Q H_d + Y^e e^c L H_d \\ \mathcal{W}_D &= Y^D D u^c e^c + Y^{D^c} D^c Q L \\ \mathcal{W}_S &= Y^{S_H} S H_u H_d + Y^{S_D} S D D^c \end{split}$$

- Corresponding soft-breaking terms
- t/\tilde{t} drive $m_{H_u}^2$ negative
- D/\tilde{D} drive m_S^2 negative
- U(1)' D-terms provide large enough S quartics (and H quartics)
- Configuration drives system to large $\langle S \rangle \sim 1-2$ TeV
- *R* parity is not sufficient to protect proton: discrete parity to distinguish LQ/DQ couplings (or flavor symmetry)

• Flavored Higgs sector: additional parity to beware of FCNCs \Rightarrow *H* parity Griest/Sher, 1989

Problems and *E*₆/Pati-Salam breaking

JRR et al., 2012

- *E*⁶ superpotential vanishes ⇒ *E*⁶ operators generate PS superpotential Power suppression: top Yukawa?
- discrete symmetry to discriminate lepto-/diquark couplings/*H*-Parity violate GUT multiplet structure
- strong constraints from perturbativity above Λ_{PS}
- Difficulties to find representations for PS breaking
 - ▶ 27, 351, and 351' break E₆ to rank 5 U(1)_χ broken, no quartic singlet potential
 - No rank reduction: adjoint breaking
 - $\blacktriangleright \ \, \text{Breaking through } \langle (\mathbf{27})(\overline{\mathbf{27}})\rangle \text{ or } \langle \mathbf{27}\rangle \langle \overline{\mathbf{27}}\rangle \qquad \mathbf{27}\times\overline{\mathbf{27}}=\mathbf{1}+\mathbf{78}+\mathbf{650}$
 - 650 smallest rep for $E_6 \rightarrow G_{PS} \times U(1)$
 - Possible to construct superpotential which does the breaking and allows leptoquark couplings

Problems and *E*₆/Pati-Salam breaking

JRR et al., 2012

- *E*⁶ superpotential vanishes ⇒ *E*⁶ operators generate PS superpotential Power suppression: top Yukawa?
- discrete symmetry to discriminate lepto-/diquark couplings/*H*-Parity violate GUT multiplet structure
- strong constraints from perturbativity above Λ_{PS}
- Difficulties to find representations for PS breaking
 - ► 27, 351, and 351' break E_6 to rank 5 $U(1)_{\chi}$ broken, no quartic singlet potential
 - No rank reduction: adjoint breaking
 - $\blacktriangleright \ \, \text{Breaking through } \langle (27)(\overline{27})\rangle \text{ or } \langle 27\rangle \, \overline{\langle 27}\rangle \qquad 27\times\overline{27}=1+78+650$
 - 650 smallest rep for $E_6 \rightarrow G_{PS} \times U(1)$
 - Possible to construct superpotential which does the breaking and allows leptoquark couplings

Automatic Irrep Decomposition

Mallot/JRR; Horst/JRR: CleGo, CPC (2011)

Automatic Irrep Decomposition

Mallot/JRR; Horst/JRR: CleGo, CPC (2011)

Automatic Irrep Decomposition

Mallot/JRR; Horst/JRR: CleGo, CPC (2011)

351'

Automatic Irrep Decomposition

Mallot/JRR; Horst/JRR: CleGo, CPC (2011)

2925

Asaki/Buchmüller/Covi, 01-02; Hebecker/Ratz, 03; Kobayashi/Raby/Zhang, 04; Förste/Nilles/Wingerter, 05;

Buchmüller/Hamaguchi/Lebedev/Ratz, 07; Lebedev/Nilles/Raby/Ramos-Sanchez/Ratz/Vaudrevange, 07-08; Groot

Nibbelink/Held/Ruehle/Trapletti/Vaudrevange, 09

 $SO(10) \times U(1)_{\nu}$

PS models from 5D orbifolds

Braam/Knochel/JRR, JHEP 1006:013

- ▶ LQ/DQ couplings from: 10 16 16, 6 6 $\overline{15}$, $\overline{15} \overline{15} \overline{15} \Rightarrow$ no way to forbid either of them
- ► Anomalies: SU(6) × SU(2) fixed point only vector-like matter
- Gauge shifts: $\overline{V} = (\frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0), \quad \overline{V}' = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0)$
- ▶ 5D E_6 78 vector multiplet $\longrightarrow 16_{-3/2} + \overline{16}_{3/2}$, (20, 2)
- ▶ 4 bulk 5D E_6 27 hypermultiplet with $\mathbb{Z}_2 \times \mathbb{Z}'_2$ parities $(++), (--), (-+), (+-) \longrightarrow (6, 1, 1)_{-1} + (1, 1, 1)_2, (4, 2, 1)_{\frac{1}{2}}, (\overline{4}, 1, 2)_{\frac{1}{2}}, (1, 2, 2)_{-1}$
- ► 3rd gen. from 2 bulk hypermultiplets + a brane-localized $16'_{\frac{1}{2}} + 16^{3}_{\frac{1}{2}}$
- LQ-/DQ couplings generated (only simultaneously), but must be rendered small by hand

LR Models from 6D Orbifolds

Braam/Knochel/JRR, JHEP 1006:013

- Consider: $\mathbb{R}^4 \times (\mathbb{R}^2/\Gamma)$, Γ one of the 17 crystallographic groups
- Use shifts of the bulk E_6 root lattice + discrete Wilson lines on the tori
- E₆ ⊃ SU(3) × SU(2)² × U(1)² breakings through Z₂, Z₃, Z₄, Z₆:

- *H* Parity: at least one fixed point to distinguish Higgs/Matter
- at least one fixed point to discriminate LQ/DQ couplings
- \mathbb{Z}_n Orbifold compactification breaks SUSY $\left(\xi_1, \overline{\xi}_2\right) \stackrel{\theta}{\longrightarrow} \left(e^{-i\pi/n}\xi_1, e^{i\pi/n}\overline{\xi}_2\right)$
- 4D $\mathcal{N} = 1$ SUSY conserved by either:
 - Using 10D Lorentz phases:

$$\theta = \exp\left[\frac{A}{4}[\Gamma^5, \Gamma^6] + \frac{B}{4}[\Gamma^7, \Gamma^8] + \frac{C}{4}[\Gamma^9, \Gamma^{10}]\right]$$

• Non-trivial embedding of SU(2) R symmtry

$$\theta = \exp\left[\frac{2\pi}{n}\frac{1}{4}([\Gamma^5, \Gamma^6] + c_R i I^{3R})\right]$$

Classification of Models

► $E_6 \supset H \supset SU(3) \times SU(2)^2 \times U(1)^2$ Breaking through \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 .

\mathbb{Z}_2	Subgroup H	Shift $2\overline{V}$
	$SO(10) \times U(1)_{\chi}$	(1, 1, 0, 1, 1, 0)
	$SU(6) \times SU(2)_R$	(0, 0, 1, 0, 0, 0)
	$SU(6) \times SU(2)_L$	(1, 1, 1, 1, 1, 0)
\mathbb{Z}_3	Subgroup H	Shift $3\overline{V}$
	$SU(3)_C \times SU(3)_L \times SU(3)_R$	(0, 0, 1, -1, 0, 0)
\mathbb{Z}_4	Subgroup H	Shift $4\overline{V}$
	$SU(3)_C \times SU(3)_L \times SU(2)_R \times U(1)$	(0, 0, 1, 2, 0, 0)
	$SU(3)_C \times SU(3)_R \times SU(2)_L \times U(1)$	(-1, 1, 1, 1, 1, 0)

► non-trivial (H_i ⊈ H_j) common invariant subgroups H_i ∩ H_j under two combined shifts

$\mathbb{Z}_2 \times \mathbb{Z}_2$	$SU(4)_C \times SU(2)_L \times SU(2)_R \times U(1)_\chi$
$\mathbb{Z}_2 \times \mathbb{Z}_3$	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_{\chi}$
	$SU(3)_C \times SU(3)_L \times SU(2)_R \times U(1)$
	$SU(3)_C \times SU(3)_R \times SU(2)_L \times U(1)$
$\mathbb{Z}_2 \times \mathbb{Z}_4$	$SU(4)_C \times SU(2)_L \times SU(2)_R \times U(1)_\chi$
	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_{\chi}$
$\mathbb{Z}_3 \times \mathbb{Z}_4$	$SU(3)_C \times SU(3)_L \times SU(2)_R \times U(1)$
	$SU(3)_C \times SU(3)_R \times SU(2)_L \times U(1)$
$\mathbb{Z}_4 \times \mathbb{Z}_4$	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_{\chi}$

Braam/Knochel/JRR, JHEP 1006:013

A specific Model

- Use T^2/\mathbb{Z}_6 (a.k.a. $\mathbb{R}^2/632$ or p6)
- Shift vector $\overline{v}(r_6) = (\frac{1}{6}, -\frac{1}{6}, -\frac{1}{3}, -\frac{1}{2}, -\frac{1}{6}, 0)$ (in \overline{Q}_{B-L} direction)
- No discrete Wilson lines allowed
- Anomalies from bulk 78 chiral modes after projection

 $(16_{-3/2} + \overline{16}_{3/2}, (\overline{3}, 2, 1) + (\overline{3}, 1, 2), (3, 3, \overline{3}))$ cancel against 78 bulk hypermultiplet

3 gen. of 27 as brane-localized matter

$SU(3)^3 \setminus SO(10)Q\chi$	$16\frac{1}{2}$	10-1	¹ 2
$\mathbf{A}~=~(\overline{3},1,3)$	$(\overline{\bf 3},{\bf 1},{\bf 2})_{(-{1\over 3},-{1\over 2})}$	$(\overline{3},1,1)_{(2,3,\mathbf{-1})}$	×
B = (3, 3, 1)	$(3,2,1)_{(-\frac{1}{3},-\frac{1}{2})}$	$(3,1,1)_{(-rac{2}{3},-1)}$	Х
$\mathbf{C} = (1, \overline{3}, \overline{3})$	$\begin{array}{c} (1,2,1) \\ (\mathbf{-1},\ \ \mathbf{\frac{1}{2}}) \\ (1,1,2) \\ (1,\ 1,\ \mathbf{\frac{1}{2}}) \end{array}$	(1, 2, 2)(0, -1)	(1, 1, 1)(0, 2)

▶ Trinification FP SU(3)³ (*H*-even!) to discriminate LQ/DQ couplings (3rd gen.):

 $\mathbf{27}^3 \rightarrow (\overline{\mathbf{3}},\mathbf{1},\mathbf{3})^3 + (\mathbf{3},\mathbf{3},\mathbf{1})^3 + (\mathbf{1},\overline{\mathbf{3}},\overline{\mathbf{3}})^3 + (\overline{\mathbf{3}},\mathbf{1},\mathbf{3})(\mathbf{3},\mathbf{3},\mathbf{1})(\mathbf{1},\overline{\mathbf{3}},\overline{\mathbf{3}})$

- ▶ 1.+2. gen. on SO(10) FP. (allows for LQ couplings)
- LR symmetry breaking by brane-localized matter:

i) $L, l^c, \langle \nu^c \rangle + c.c. \sim (\mathbf{1}, \overline{\mathbf{3}}, \overline{\mathbf{3}}) \cap \mathbf{16} + c.c.$

ii) $L, l^c, \langle \nu^c \rangle, H_u, H_d, S + c.c. \sim (\mathbf{1}, \overline{\mathbf{3}}, \overline{\mathbf{3}}) + c.c.$

Model Building ⇒ Phenomenology

Scan of Parameter Space

Braam/JRR/Wiesler, 0909.3081; JRR et al., 2012

- # free parameters ~ $\mathcal{O}(100)$, additional assumptions:
 - Unified Soft-Breaking terms Flavour structure
 - \Rightarrow Restriction to 14 parameters
- Constraints:
 - (1) Experimental search limits for new particles
 - (2) Running couplings perturbative up to Λ_{E_6}
 - (3) Scalar (non-Higgs) mass terms positive (⇔ No false vacua)
 - 14-dim. parameter space
 - \Rightarrow Grid Scan: $\rightarrow 10^{28}$ points
 - $\blacktriangleright \quad \mbox{Investigation per point (RGE, Higgs potential minimisation, Calculation of masses)} \sim 10-100 \ \mbox{ms}$
- Lsg.: Monte-Carlo Markov chain through parameter space
 - ⇒ Effective search for relevant parameter tuples

Generic Properties of Spectra

- Vanishing 1-loop QCD β function \Rightarrow Light Gluino
- Higgs- and neutralino sector different because of singlet superfield admixture
- light Z' (peculiar asymmetries)
- Flavoured Higgs sector: Unhiggses, Unhiggsinos
- Leptoquarks/Leptoquarkinos

$H_{\text{int}}, \bar{H}_{\text{int}}$	<i>i</i>)	ii)	3ii)	i) + 2ii)
Λ _{int} /GeV	1.6×10^{10}	3.0×10^{13}	1.3×10^{14}	4.9×10^{13}
Λ _{GUT} /GeV	1.3×10^{18}	1.5×10^{17}	7.2×10^{15}	7.2×10^{15}
$g' _{M_{Z'}}$	0.471	0.467	0.476	0.482
Q'_X				
Q	0.224	0.231	0.234	0.232
<i>u^c</i>	0.283	0.261	0.250	0.257
d^{c}	0.055	0.067	0.073	0.069
D	-0.449	-0.462	-0.468	-0.464
D^{c}	-0.339	-0.328	-0.322	-0.326
L	0.114	0.097	0.089	0.094
e ^c	0.165	0.201	0.218	0.208
H^{u}	-0.508	-0.492	-0.484	-0.489
H^d	-0.279	-0.298	-0.307	-0.301
S	0.787	0.790	0.790	0.790

$H_{\text{int}}, \bar{H}_{\text{int}}$	<i>i</i>)	ii)	3ii)	i) + 2ii)
Λ _{int} /GeV	1.6×10^{10}	3.0×10^{13}	1.3×10^{14}	4.9×10^{13}
A _{GUT} /GeV	1.3×10^{18}	1.5×10^{17}	7.2×10^{15}	7.2×10^{15}
$g' _{M_{Z'}}$	0.471	0.467	0.476	0.482
Q'_X				
Q	0.224	0.231	0.234	0.232
<i>u^c</i>	0.283	0.261	0.250	0.257
d^{c}	0.055	0.067	0.073	0.069
D	-0.449	-0.462	-0.468	-0.464
D^{c}	-0.339	-0.328	-0.322	-0.326
L	0.114	0.097	0.089	0.094
e ^c	0.165	0.201	0.218	0.208
H^{u}	-0.508	-0.492	-0.484	-0.489
H^d	-0.279	-0.298	-0.307	-0.301
S	0.787	0.790	0.790	0.790

	Scenario A	Scenario B	Scenario C
y_lq	0.106	0.145	0.210
y_lqc	0.082	0.075	0.230
y_sd	0.397	0.856	0.655
y_sh	0.214	0.321	0.052
y_nmssm	0.173	0.145	0.150
M_g	1105	-1452	-1359
M_gluino	-820	-875	-841

	h_sm	-764	-1261	-749
	h_lq	372	-446	-376
D C	h_lqc	-224	-0.9	-897
)	h_sd	-264	500	307
	h_sh	351	-767	19
	h_nmssm	22.5	-185	73
	m_sfer	1689	814	1690
	m_dh	1234	1154	1936
)	m_H	1959	1921	1465
	m_D	816	805	826
	m_S	1201	1921	1357
	m_int	-1459	-1050	-845

- ► Higgs boson: A,C $m_h \approx 110 \text{ GeV}$ B $m_h \approx 107 \text{ GeV}$
- ▶ Z': A, B $m_{Z'} \approx 2480 \text{ GeV}$ C $m_{Z'} \approx 2090 \text{ GeV}$ (R-odd and H-odd)
- ► Dark Matter: lightest dark Higgsino, $m_{\chi^{\pm}} \sim \mathcal{O}(.1 1 \text{GeV})$

New Particles at the Large Hadron Collider

LHC @ CERN: from March 2010 7 TeV pp-Collider $\sqrt{s} = 14$ TeV

The Challenge of LHC

Partonic subprocesses *qq*, *qg*, *gg* No fixed partonic energy

$$R = \sigma \mathcal{L} \qquad \mathcal{L} = 10^{34} \,\mathrm{cm}^{-1} \mathrm{s}^{-1}$$

High rates for $t, W/Z, H, \Rightarrow$ huge backgrounds

31/39 J. R. Reuter

The Challenge of LHC

Partonic subprocesses *qq*, *qg*, *gg* No fixed partonic energy

$$R = \sigma \mathcal{L}$$
 $\mathcal{L} = 10^{34} \,\mathrm{cm}^{-1}\mathrm{s}^{-1}$
High rates for $t, W/Z, H, \Rightarrow$ huge backgrounds

Search & Model Discrimination

Decay products of heavy particles

high-p_T jets, many hard leptons
Production of coloured particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- new particles only in pairs \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in the detector ($\not\!\!E_T$)

Different models/decay chains — identical signatures

Mass of new particles: endpoints of decay spectra

- Spin of new particles: Angular correlations, asymmetries, ...
- Model discrimination: Measuring coupling constants

Search & Model Discrimination

Decay products of heavy particles

• high- p_T jets, many hard leptons

Production of coloured particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- new particles only in pairs \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in the detector ($\not\!\!\!E_T$)

Different models/decay chains — identical signatures

Mass of new particles: endpoints of decay spectra

- Spin of new particles: Angular correlations, asymmetries, ...
- Model discrimination: Measuring coupling constants

32/39 J. R. Reuter

Search & Model Discrimination

- Decay products of heavy particles
 - high- p_T jets, many hard leptons

Production of coloured particles

weakly interacting particles only in decays

Dark Matter \Leftrightarrow discrete parity (R, T, KK)

- new particles only in pairs \Rightarrow high energies, long decay chains
- Dark Matter \Rightarrow large missing energy in the detector ($\not\!\!E_T$)

Different models/decay chains — identical signatures

Mass of new particles: endpoints of decay spectra

- Spin of new particles: Angular correlations, asymmetries, ...
- Model discrimination: Measuring coupling constants

WHIZARD

Kilian/Ohl/JRR: DESY/Freiburg/Siegen/Würzburg, hep-ph/0102195, 0708.4233

- Multi-Purpose event generator for collider and astroparticle physics
- Acronym: W, HIggs, Z, And Respective Decays (deprecated)
 - Fast adaptive multi-channel Monte-Carlo integration
 - Very efficient phase space and event generation
 - Optimized/-al matrix elements
 - Recent version: 2.0.6 (07.12.2011) http://projects.hepforge.org/whizard und http://whizard.event-generator.org
 - Parton shower (k[⊥]-ordered and analytical)
 - Underlying Event: preliminary (for 2.1)
 - Arbitrary processes: matrix element generator (O'Mega)
 - 2.0 Features: ME/PS matching, cascades, versatile new steering syntax, WHIZARD as shared library
- ► Interface to FeynRules Christensen/Duhr/Fuks/JRR/Speckner, 1010.3215
- Prime example: LHC pheno of HEIDI models

Fuks/JRR/Speckner/van der Bij

WHIZARD

Kilian/Ohl/JRR: DESY/Freiburg/Siegen/Würzburg, hep-ph/0102195, 0708.4233

- Multi-Purpose event generator for collider and astroparticle physics
- ► Focus: LHC, ILC, CLIC, SM, QCD, BSM

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	-	QED
QCD with d, u, s, c, b, t, g	-	QCD
Standard model	SM_CKM	SM
SM with anomalous couplings	SM_ac_CKM	SM_ac
SM with anomalous top couplings	_	SM_top
SM with K matrix	-	SM_KM
MSSM	MSSM_CKM	MSSM
MSSM with Gravitinos	-	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	-	PSSSM
Littlest Higgs	-	Littlest
Littlest Higgs with ungauged $U(1)$	-	Littlest.Eta
Littlest Higgs with T parity	-	Littlest_Tpar
Simplest Little Higgs (anomaly free)	-	Simplest
Simplest Little Higgs (universal)	-	Simplest_univ
UED	-	UED
3-Site Higgsless Model	-	Threeshl
Noncommutative SM (inoff.)	-	NCSM
SM with Z'	-	Zprime
SM with Gravitino and Photino	—	GravTest
Augmentable SM template	—	Template

easy to implement new models

Interface to FeynRules

Christensen/Duhr/Fuks/JRR/Speckner, 1010.3215

Prime example: LHC pheno of HEIDI models

Fuks/JRR/Speckner/van der Bij

Z': Drell-Yan and Asymmetry

- > Z', typical mass: 2-2.5 TeV, typical width: ~ 40 GeV
- ▶ Drell-Yan cross section: $\sigma(pp \rightarrow Z' \rightarrow \mu\mu; 14 \text{ TeV}) = 1.5 2.5 \text{ fb}$ Cuts: $|\eta| < 2.5$ (acceptance), $p_T(\mu) > 50 \text{ GeV}$, $M_{\mu\mu} > 1.5 \text{ TeV}$ Z' line shape; simulation with WHIZARD for 100 fb⁻¹:

Forward-backward Asymmetry: $A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$ where

$$\sigma_F \equiv \int_0^1 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^* \qquad \sigma_B \equiv \int_{-1}^0 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta$$

Z': Drell-Yan and Asymmetry

- > Z', typical mass: 2-2.5 TeV, typical width: ~ 40 GeV
- ▶ Drell-Yan cross section: $\sigma(pp \rightarrow Z' \rightarrow \mu\mu; 14 \text{ TeV}) = 1.5 2.5 \text{ fb}$ Cuts: $|\eta| < 2.5$ (acceptance), $p_T(\mu) > 50 \text{ GeV}$, $M_{\mu\mu} > 1.5 \text{ TeV}$ Z' line shape; simulation with WHIZARD for 100 fb⁻¹:

Forward-backward Asymmetry: $A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$ where

$$\sigma_F \equiv \int_0^1 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^* \qquad \sigma_B \equiv \int_{-1}^0 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$$

Predictions from E_6 GUTs for LHC

Simulations for the E_6 model with WHIZARD

- Implementation of Leptoquark/Leptoquarkino + Higgs/weak ino sector (now FeynRules impl.)
- Analyses: BRs, cross sections for scalar leptoquarks, S/B
- Leptoquarkino phenomenology

D Route

Hints of Exceptional Grand Unification at the LHC

C	Cuts	Background	$m_D =$	= 0.6 TeV	$m_D =$	= 0.8 TeV	$m_D =$	= 1.0 TeV
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Predictions from E_6 GUTs for LHC

- Simulations for the E₆ model with WHIZARD
- Implementation of Leptoquark/Leptoquarkino + Higgs/weak ino sector (now FeynRules impl.)
- Analyses: BRs, cross sections for scalar leptoquarks, S/B

B Reute

Leptoquarkino phenomenology

Hints of Exceptional Grand Unification at the LHC

C	uts	Background	$m_D =$	= 0.6 TeV	$m_D =$	= 0.8 TeV	$m_D =$	= 1.0 TeV
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Braam/JRR/Wiesler, 0909.3081; Braam/Horst/Knochel/JRR/Wiesler , 2010/11

- Backgrounds: tt + nj, W/Z + nj
- Cuts: $p_T > 150 \text{ GeV}, -1.0 < \cos \theta_{\ell j} < 0.7$

Mass Edges for Leptoquarkinos

JRR/Wiesler, 1010.4215

Properties of Leptoquarkinos:

Identical exclusive final states

Mass Edges for Leptoquarkinos

JRR/Wiesler, 1010.4215

Mass edges more dominant because of missing spin correlations

 $m_{ql,high} = \max\{m_{ql^+}, m_{ql^-}\} \qquad m_{ql,low} = \min\{m_{ql^+}, m_{ql^-}\}$

► Combinatorial backgrounds, combine softest jet and hardest lepton: m^{*}_{ql} = m(min_E{q₁, q₂}, max_E {l⁺, l⁻})

Discrimination from standard SUSY

JRR/Wiesler, 2010/11

- Look at dilepton spectrum: standard SUSY \Rightarrow same cascade, Leptoquarkinos \Rightarrow different cascades
- Cut on kinematic edge in standard dilepton spectra

• S/B estimate, 100 fb $^-1$, 2 OSSF, 2 hard jets, $\not\!\!E_T$

$m_{\tilde{D}}$	# N(LQino) & N(SUSY)	# N _{cut}	$S / \sqrt{S+B}$
400	8763	5061	54
600	1355	540	15
800	684	102	4
1000	594	24	1

More pheno to come..... stay tuned...

Proton Decay in the PSSSM

Mallot/JRR, 2010

- Superpotential (and soft breaking) do not induce proton decay
- Investigate exchange of E₆ gauge bosons/gauginos
- Steps from top down:
 - 1. Group-theoretical weights from Clebsch-Gordan decomposition Horst/Mallot/JRR, 2009
 - 2. Calculation of proton-decay Wilson coefficients at Λ_{GUT}
 - 3. Short-distance (SUSY) renormalisation group factor
 - 4. Matching to SM dimension-6 Fermi operators
 - 5. Long-distance (SM/QCD) renormalisation group factor
 - 6. Matching to mesonic/baryonic operators (analogue to chiral perturbation theory)
 - 7. Calculation of baryon decay matrix element and width
- Yields very conservative estimate:

$$1/\Gamma_{tot}(p \to X) \approx 10^{40} - 10^{46}$$
 Jahre

Summary SUSY GUTs

- Grand Unified Theories with intermediate breaking
- Viable scenarios: $E_6 \rightarrow SU(3/4) \times SU(2)_L \times SU(2)_R \times U(1)^2$
- Possible breaking mechanisms: Higgs vs. Orbifold boundary conditions
- Proton decay beyond experimental reach
- Direct hints through chiral exotics at LHC
- Interesting, but intricate phenomenology at LHC
- Embedding into heterotic string/F theory (if someone is interested)
- Flavour plays important role: continuous vs. discrete symmetries
- Open questions: flavour, dark matter, SUSY breaking mechanisms
- LHC: new era of physics
- · New particles, new symmetries, new interactions, dark matter
- Model Building, Phenomenology, Tools
- Interesting times!

- LHC: new era of physics
- · New particles, new symmetries, new interactions, dark matter
- Model Building, Phenomenology, Tools
- Interesting times!

ההנענום ה נעהצעים הנלעל

- LHC: new era of physics
- · New particles, new symmetries, new interactions, dark matter
- Model Building, Phenomenology, Tools
- Some Unification Needs Time

"Though this be madness, yet there is method in 't.". -(Hamlet, Act II, Scene II).

ההנענום ה מהצצעם הנלעל

- LHC: new era of physics
- · New particles, new symmetries, new interactions, dark matter
- Model Building, Phenomenology, Tools
- Some Unification Needs Time

"Though this be madness, yet there is method in 't.". -(Hamlet, Act II, Scene II).