Auf den Spuren exzeptioneller Grand Unification am LHC

Jürgen Reuter

DESY Hamburg

Seminar, Freiburg, 30.01.2012

Das Standardmodell der Teilchenphysik

– beschreibt Mikrokosmos (zu gut?)

Das Standardmodell der Teilchenphysik

- beschreibt Mikrokosmos (zu gut?)
- 28 freie Parameter

Hierarchie-Problem

Diskrepanz: elektroschwache/Planck-Skala

Sensitivität der Quantenkorrekturen skalarer Teilchen auf hohe Skalen

$$\delta M_H^2 \propto \Lambda^2 \left| \Lambda \sim M_{\rm Planck} = 10^{19} \, {\rm GeV} \right|$$

Offene Fragen der Teilchen-/Hochenergie-Physik

- Vereinigung aller Wechselwirkungen (?)
- Baryonasymmetrie $\Delta N_B \Delta N_{\bar{B}} \sim 10^{-9}$ fehlende CP-Verletzung
- Flavour: drei Generationen
- Winzige Neutrino-Massen: $m_{
 u} \sim rac{v^2}{M}$
- Dunkle Materie:
 - stabil
 - schwach wechselwirkend
 - $m_{DM} \sim 100 \, \mathrm{GeV}$
- Quantentheorie der Gravitation
- Kosmische Inflation
- Kosmologische Konstante

Ideen für Neue Physik seit 1970

(1) Symmetrie zur Eliminierung der Quantenkorrekturen

- Supersymmetrie: Spin-Statistik \Rightarrow Korrekturen von Bosonen und Fermionen heben sich weg
- Little-Higgs-Modelle: Globale Symmetrien \Rightarrow Korrekturen durch Teilchen gleicher Statistik heben sich weg

(2) Neue Bausteine, Sub-Struktur

 Technicolor/Topcolor: Higgs gebundener Zustand stark wechselwirkender Teilchen

(3) Nichttriviale Raumzeitstruktur eliminiert Hierarchie

- Zusätzl. Raumdimensionen: Gravitation erscheint nur schwach
- Nichtkommutative Raumzeit: Körnigkeit der Raumzeit

(4) Ignorieren der Hierarchie

- Anthropisches Prinzip: Werte sind so, weil wir sie beobachten

Ideen für Neue Physik seit 1970

(1) Symmetrie zur Eliminierung der Quantenkorrekturen

- Supersymmetrie: Spin-Statistik \Rightarrow Korrekturen von Bosonen und Fermionen heben sich weg
- Little-Higgs-Modelle: Globale Symmetrien ⇒ Korrekturen durch Teilchen gleicher Statistik heben sich weg

(2) Neue Bausteine, Sub-Struktur

 Technicolor/Topcolor: Higgs gebundener Zustand stark wechselwirkender Teilchen

(3) Nichttriviale Raumzeitstruktur eliminiert Hierarchie

- Zusätzl. Raumdimensionen: Gravitation erscheint nur schwach
- Nichtkommutative Raumzeit: Körnigkeit der Raumzeit

(4) Ignorieren der Hierarchie

- Anthropisches Prinzip: Werte sind so, weil wir sie beobachten

Grand Unification, z.B. SU(5)

$$SU(5) \xrightarrow{M_X} SU(3)_c \times SU(2)_w \times U(1)_Y \xrightarrow{M_Z} SU(3)_c \times U(1)_{em}$$

 $SU(5)$ hat $5^2 - 1 = 24$ Generatoren:

$$\mathbf{24} \to \underbrace{(\mathbf{8},\mathbf{1})_0}_{G^{\beta}_{\alpha}} \oplus \underbrace{(\mathbf{1},\mathbf{3})_0}_{W} \oplus \underbrace{(\mathbf{1},\mathbf{1})_0}_{B} \oplus \underbrace{(\mathbf{3},\mathbf{2})_{\frac{5}{3}}}_{X,Y} \oplus \underbrace{(\overline{\mathbf{3}},\mathbf{2})_{-\frac{5}{3}}}_{\bar{X},\bar{Y}}$$

Grand Unification, z.B. SU(5)

$$SU(5) \xrightarrow{M_X} SU(3)_c \times SU(2)_w \times U(1)_Y \xrightarrow{M_Z} SU(3)_c \times U(1)_{em}$$

 $SU(5)$ hat $5^2 - 1 = 24$ Generatoren:

$$24 \rightarrow \underbrace{(\mathbf{8}, \mathbf{1})_{0}}_{G_{\alpha}^{\beta}} \oplus \underbrace{(\mathbf{1}, \mathbf{3})_{0}}_{W} \oplus \underbrace{(\mathbf{1}, \mathbf{1})_{0}}_{B} \oplus \underbrace{(\mathbf{3}, \mathbf{2})_{\frac{5}{3}}}_{X,Y} \oplus \underbrace{(\overline{\mathbf{3}}, \mathbf{2})_{-\frac{5}{3}}}_{\bar{X},\bar{Y}}$$

$$A = g \sum_{a=1}^{24} A^{a} \frac{\lambda^{a}}{2} = \frac{g}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^{a} \frac{\lambda^{a}_{\mathsf{GM}}}{2} & \frac{\bar{X} & \bar{Y}}{\bar{X} & \bar{Y}} \\ \frac{\bar{X} & X & X}{Y} & \sqrt{2}W^{a} \frac{\sigma}{2} \end{pmatrix}$$

$$- \frac{g}{2\sqrt{15}} B \begin{pmatrix} -2 & & & \\ -2 & & & \\ & & -2 & \\ & & & & +3 \end{pmatrix}$$

Wechselwirkungen

Vektorbosonen induzieren z.B. Zerfall $p \rightarrow e^+ \pi^0$

Wechselwirkungen

Proton-Lebensdauer mit $\alpha(M_{GUT}) \sim \frac{1}{24}$ und $M_{GUT} \sim 2 \times 10^{16}$ GeV: $\tau(p \rightarrow e^+ \pi^0) \sim \frac{M_{GUT}^4}{[\alpha(M_{GUT})]^2 m_p^5} \rightarrow 10^{31\pm 1}$ Jahre

Exzeptionelle Lie-Algebren

Lie, 1881; Dynkin, 1957

E₆ SUSY Grand Unification

Supersymmetrie: erlaubt konsistente Extrapolation zu (sehr) hohen Skalen

- ⇒ Keine Split Multiplets
- ⇒ Chirale Exotika an der TeV-Skala
- \Rightarrow kein μ -Problem
- Higgs-Materie-Vereinigung
- Ansatz: Alle neue Teilchen an der TeV-Skala

Kilian/JRR, PLB 2006

$$egin{aligned} & \mathcal{L}_L = & (\mathbf{1},\mathbf{2})_{-rac{1}{2},Q'_L} \ &
u^c = & (\mathbf{1},\mathbf{1})_{0,Q'_
u=0} \ & e^c = & (\mathbf{1},\mathbf{1})_{1,Q'_e} \end{aligned}$$

$$D = (\mathbf{3}, \mathbf{1})_{-\frac{1}{3}, Q'_D}$$
$$D^c = (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}, -Q'_D}$$

E_6 SUSY Grand Unification

Supersymmetrie: erlaubt konsistente Extrapolation zu (sehr) hohen Skalen

- \Rightarrow Keine Split Multiplets
- ⇒ Chirale Exotika an der TeV-Skala
- \Rightarrow kein μ -Problem
- Higgs-Materie-Vereinigung
- Ansatz: Alle neue Teilchen an der TeV-Skala

$$D = (\mathbf{3}, \mathbf{1})_{-\frac{1}{3}, Q'_D}$$
$$D^c = (\bar{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}, -Q'_D}$$

 E_6 -Darstellung 27 :

Kilian/JRR, PLB 2006

6D Orbifolds: $\mathbb{R}^4 \times (\mathbb{R}^2/\Gamma)$, Γ eine der 17 kristallographischen Gruppen

6D Orbifolds: $\mathbb{R}^4 \times (\mathbb{R}^2/\Gamma)$, Γ eine der 17 kristallographischen Gruppen

6D Orbifolds: $\mathbb{R}^4 \times (\mathbb{R}^2/\Gamma)$, Γ eine der 17 kristallographischen Gruppen

Gauge Twists in Orbifolds

- ► Gauge Twist an den Fixpunkten bricht Eichgruppe $E_6 \rightarrow SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_\chi$
- Herausprojizieren durch "Gauge Twist Vectors" eliminiert bestimmte Wurzeln (Generatoren) aus dem Wurzelgitter

$$\Phi \to \exp\left[2\pi i \ V \cdot \alpha\right]$$

 Diskrete Wilson-Linie: diskrete interne Symmetrie, entspricht Shift des Wurzelgitters

Gauge Twists in Orbifolds

- ► Gauge Twist an den Fixpunkten bricht Eichgruppe $E_6 \rightarrow SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{\chi}$
- Herausprojizieren durch "Gauge Twist Vectors" eliminiert bestimmte Wurzeln (Generatoren) aus dem Wurzelgitter

$$\Phi \to \exp\left[2\pi i \ V \cdot \alpha\right]$$

 Diskrete Wilson-Linie: diskrete interne Symmetrie, entspricht Shift des Wurzelgitters

LR-Modelle aus 6D-Orbifolds

- H-Parität: mindestens ein Fixpunkt unterscheidet Higgs/Materie
- mindestens ein Fixpunkt unterscheidet LQ/DQ-Kopplungen
 - Benutze T^2/\mathbb{Z}_6 (a.k.a. $\mathbb{R}^2/632$ or p6)
 - Twist-Vektor $\overline{V}(r_6) = (\frac{1}{6}, -\frac{1}{6}, -\frac{1}{3}, -\frac{1}{2}, -\frac{1}{6}, 0) (\overline{Q}_{B-L}$ -Richtung)
 - Keine diskreten Wilson-Linien erlaubt
- Anomalien auf Fixpunkten verschwinden!
- ► 3. Generation auf Trinification FP SU(3)³ unterscheidet LQ/DQ Kopplungen:

$SU(3)^3 \setminus SO(10)_{Q\chi}$	$16_{\frac{1}{2}}$	10_{-1}	$\mathbf{1_2}$
$\mathbf{A}=(\overline{3},1,3)$	Q_R	D^c	—
$\mathbf{B} = (3, 3, 1)$	Q_L	D	—
$\mathbf{C} = (1, \overline{3}, \overline{3})$	L_L, L_R	(H_u, H_d)	S

$$\mathsf{E}_{6}$$

$$SU(3)^{3}$$

$$\mathsf{E}_{6}$$

$$SO(10) \times U(1)_{\chi}$$

Braam/Knochel/JRR, JHEP 1006:013

 $\mathbf{27}^3 \rightarrow A^3 + B^3 + C^3 + ABC$

- 1.+2. Generation auf LR Fixpunkt (erlaubt LQ-Kopplungen)
- ► LR-Symmetriebrechung durch Brane-lokalisierte Materie $\langle \nu^c \rangle$ (Trinific./SO(10) FP.)
- \mathbb{Z}_n Orbifold bricht 4D $\mathcal{N} = 1$ SUSY $(\xi_1, \overline{\xi}_2) \xrightarrow{\theta} (e^{-i\pi/n}\xi_1, e^{i\pi/n}\overline{\xi}_2)$, erhalten durch:
 - ▶ 10D Lorentz-Phasen: $\theta = \exp\left[\frac{A}{4}[\Gamma^5, \Gamma^6] + \frac{B}{4}[\Gamma^7, \Gamma^8] + \frac{C}{4}[\Gamma^9, \Gamma^{10}]\right]$
 - ▶ Nicht-triviale Einbettung der SU(2) R-Symmetrie $\theta = \exp\left[\frac{c}{4}([\Gamma^5, \Gamma^6] + c_R i I^{3R})\right]$

Model Building ⇒ Phänomenologie

Allg. Eigenschaften

Braam/Knochel/JRR, JHEP 1006:013 + '12; Braam/JRR, EPJC 1107.2806

Superpot.: $\mathcal{W} = Y^u u^c Q H_u + Y^d d^c Q H_d + Y^e e^c L H_d + Y^D D u^c e^c + Y^{D^c} D^c Q L$ + $Y^{S_H} S H_u H_d + Y^{S_D} S D D^c$

- Verschwindende 1-loop QCD β -Funktion \Rightarrow Leichtes Gluino
- Higgs-/Neutralino-Sektor versch. zu MSSM (Singlett-Beimischung)
- U(1)' D-Terme ergeben ausreichend S^4 -Terme (und H^4 -Terme)
- D/\tilde{D} -Schleifen \Rightarrow negatives m_S^2 , t/\tilde{t} -Schleifen \Rightarrow negatives $m_{H_n}^2$
- Konfiguration läuft in großen $\langle S \rangle \sim 3-7~{
 m TeV}$
- Flavoured Higgs-Sektor: Unhiggses, Unhiggsinos
- Leptoquarks/Leptoquarkinos

Allg. Eigenschaften

Braam/Knochel/JRR, JHEP 1006:013 + '12; Braam/JRR, EPJC 1107.2806

Superpot.: $\mathcal{W} = Y^u u^c Q H_u + Y^d d^c Q H_d + Y^e e^c L H_d + Y^D D u^c e^c + Y^{D^c} D^c Q L$ + $Y^{S_H} S H_u H_d + Y^{S_D} S D D^c$

- Verschwindende 1-loop QCD β -Funktion \Rightarrow Leichtes Gluino
- Higgs-/Neutralino-Sektor versch. zu MSSM (Singlett-Beimischung)
- U(1)' D-Terme ergeben ausreichend S^4 -Terme (und H^4 -Terme)
- D/\tilde{D} -Schleifen \Rightarrow negatives m_S^2 , t/\tilde{t} -Schleifen \Rightarrow negatives $m_{H_u}^2$
- Konfiguration läuft in großen $\langle S \rangle \sim 3-7~{\rm TeV}$
- Flavoured Higgs-Sektor: Unhiggses, Unhiggsinos
- Leptoquarks/Leptoquarkinos

Allg. Eigenschaften; Spektren

Braam/Knochel/JRR/Wiesler, '12

- Higgs-Boson: $m_h \approx 110 130 \text{ GeV}$
- ► Z': $m_{Z'} \approx 2.0 2.5$ TeV, $\Gamma_{Z'} \approx 40$ GeV (Asymmetrien!)
- $\tan \beta \approx 40$ (top-bottom-Unification)
- ► Dunkle Materie: leichtestes Unhiggsino, m_{χ±} ~ O(.1 1GeV) (*R*-ungerade und *H*-ungerade)

WHIZARD

- Vielzweck-Eventgenerator f
 ür Teilchen- und Astroteilchenphysik
- Fokus: LHC, ILC, CLIC, SM, QCD, BSM
 - Schnelle adaptive Vielkanal-Monte Carlo-Integration
 - Sehr effiziente Phasenraum- und Ereigniserzeugung
 - Optimierte Matrix-Elemente
 - Aktuelle Version: 2.0.6 (07.12.2011) http://projects.hepforge.org/whizard und http://whizard.event-generator.org
 - ► Parton-Shower (k[⊥]-geordnet und analytisch)
 - Underlying Event: vorläufig (für 2.1)
 - Beliebige Prozesse: Matrix-Elementgenerator (O'Mega)
 - Features: ME/PS-Matching, Kaskaden, omnipotente Steuersyntax
- ► Interface zu FeynRules Christensen/Duhr/Fuks/JRR/Speckner, 1010.3215
- SUSY-Jetstudien am LHC durch irreduzible ISR

Hagiwara/.../JRR/..., PRD 2005

WHIZARD

Kilian/Ohl/JRR: DESY/Freiburg/Siegen/Würzburg, hep-ph/0102195, 0708.4233

- Vielzweck-Eventgenerator f
 ür Teilchen- und Astroteilchenphysik
- Fokus: LHC, ILC, CLIC, SM, QCD, BSM

MODEL TYPE	mit CKM-Matrix	triviale CKM
QED mit e, μ, τ, γ	-	QED
QCD mit d, u, s, c, b, t, g	-	QCD
Standard model	SM_CKM	SM
SM mit anomalen Kopplungen	SM_ac_CKM	SM_ac
SM mit anomalens top couplings	-	SM_top
SM mit K matrix	—	SM_KM
MSSM	MSSM_CKM	MSSM
MSSM mit Gravitinos	-	MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models	—	PSSSM
Littlest Higgs	_	Littlest
Littlest Higgs mit ungeeichter $U(1)$	—	Littlest_Eta
Littlest Higgs mit T-Parität	-	Littlest_Tpar
Simplest Little Higgs (anomalie-frei)	—	Simplest
Simplest Little Higgs (universell)	—	Simplest_univ
UED	-	UED
3-Site Higgsless Model	—	Threeshl
Nichtkommutatives SM (inoff.)	—	NCSM
SM mit Z'	_	Zprime
SM mit Gravitino und Photino	_	GravTest
Erweiterbares SM-Template	—	Template

leicht, neue Modelle zu implementieren

Interface zu FeynRules

Christensen/Duhr/Fuks/JRR/Speckner, 1010.3215

SUSY-Jetstudien am LHC durch irreduzible ISR

Hagiwara/.../JRR/..., PRD 2005

Vorhersagen aus E_6 GUTs für LHC

JRR/Wiesler, PRD 2011

Eigenschaften der Leptoquarkinos:

Identische exklusive Endzustände:

Vorhersagen aus E_6 GUTs für LHC

JRR/Wiesler, PRD 2011

Eigenschaften der Leptoquarkinos:

Massenkanten in invarianten Verteilungen:

m(II) (GeV)

Massenkanten für Leptoquarkinos

JRR/Wiesler, PRD 2011

Massenkanten dominanter wegen fehlender Spinkorrelationen

 $m_{ql,high} = \max\{m_{ql^+}, m_{ql^-}\}$ $m_{ql,low} = \min\{m_{ql^+}, m_{ql^-}\}$

► Kombinatorische Untergründe: kombiniere weichsten Jet und härtestes Lepton: m^{*}_{ql} = m(min_E{q₁, q₂}, max_E {l⁺, l⁻})

Unterscheidung von Standard-SUSY

JRR/Wiesler, PRD 2011

- Dilepton-Spektrum: Standard SUSY ⇒ selbe Kaskade, Leptoquarkinos ⇒ verschiedene Kaskaden
- Schnitt auf kinematische Kante in Standard-Dileptonspektren

• S/B-Abschätzung, 100 fb $^{-1}$, 2 OSSF, 2 harte Jets, $mathbb{E}_T$

$m_{\tilde{D}}$	# N(LQino) & N(SUSY)	$\# N_{cut}$	$S/\sqrt{S+B}$
400	8763	5061	54
600	1355	540	15
800	684	102	4
1000	594	24	1

Freiburg, 30.01.2012

Massenkanten in inklusiven 4-Jet-Observablen

- kinematische Variable zur Massebestimmung in inklusiven Multijet-Endzuständen
- ► Benutze Liste *p*_{*T*}-geordneter Jets:

Pietsch/JRR/Sakurai/Wiesler, 2012

$$\begin{array}{ll} m_{\min}^{\log,1} &= \min\left[m(j(1),j(-1))\;,\; m(j(2),j(-1))\right] \\ m_{\min}^{\log,2} &= \min\left[m(j(1),j(4))\;,\; m(j(2),j(4))\right] \\ m_{\min}^{\log h,1} &= \min\left[m(j(1),j(-1))\;,\; m(j(1),j(-2))\right] \\ m_{\min}^{\log h,2} &= \min\left[m(j(1),j(4))\;,\; m(j(1),j(3))\right] \\ m_{\tilde{a}} = 797\; \mathrm{GeV}, m_{z^0} = 123\; \mathrm{GeV}, m_{\tilde{a}} = 1.3 - 1.6\; \mathrm{TeV},\; \mathrm{anti-}k_T \; \mathrm{mit}\; \mathrm{60\; GeV} \end{array}$$

Massenkante ist gegen irreduziblen Background und ISR stabil!

Going Beyond...

- ... nicht nur BSM ... nicht nur SUSY ...
- Off-Shell-Interferenzeffekte in BSM-Suchen
- Little Higgs-Modelle: Model Building (Large N-Limes), Schranken aus LHC Daten Killan/JRR, 2004-2008I; JRR, 2012; JRR/Tonini
- Elektroschwacher Sektor: WW-Streuung

JRR et al., 2006; Alboteanu/Kilian/JRR, 2008; JRR et al., 2012

Analytische Parton-Shower

JRR/Schmidt/Wiesler, JHEP 2012

Präzisionsrechnungen, Automatisierung NLO und Monte Carlo

Binoth/.../JRR/..., 2009; Greiner/Guffanti/Reiter/JRR, 2011

- terra incognita ... (LHC-Daten!!!)
- Planung neuer Experimente: ILC, CLIC

ILC DBD, Peskin/.../JRR et al., 2012

JBB/Wiesler, 2012

Zusammenfassung/Ausblick

- LHC: neue Ära der Physik
- Neue Teilchen, neue Symmetrien, neue Wechselwirkungen, Dunkle Materie
- Model Building, Phänomenologie, Tools
- Spannende Zeiten!

Zusammenfassung/Ausblick

- LHC: neue Ära der Physik
- Neue Teilchen, neue Symmetrien, neue Wechselwirkungen, Dunkle Materie
- Model Building, Phänomenologie, Tools
- Spannende Zeiten!

"The undiscovered country...." (Hamlet, Act III, Scene I). "Though this be madness, yet there is method in 't.". -(Hamlet, Act II, Scene II).

Supersymmetrie (SUSY)

- verknüpft Eich- und Raumzeit-Symmetrien
- Multipletts mit Fermionen und Bosonen gleicher Masse
- ⇒ SUSY in der Natur gebrochen
- Existenz fundamentaler Skalare
- löst Hierarchieproblem: $\delta M_H \propto F \log(\Lambda^2)$

Gelfand/Likhtman, 1971; Akulov/Volkov, 1973; Wess/Zumino, 1974

- Form des Higgs-Potentials
- leichtes Higgs $(M_H = 90 \pm 50 \,\text{GeV})$
- diskrete R-Parität
 - verhindert Protonzerfall
 - ▶ leichtester SUSY-Partner (LSP) stabil ⇒ Dunkle Materie
- Kopplungsvereinigung

Supersymmetrie (SUSY)

- verknüpft Eich- und Raumzeit-Symmetrien
- Multipletts mit Fermionen und Bosonen gleicher Masse
- \Rightarrow SUSY in der Natur gebrochen
- Existenz fundamentaler Skalare
- löst Hierarchieproblem: $\delta M_H \propto F \log(\Lambda^2)$

Form des Higgs-Potentials

Gelfand/Likhtman, 1971; Akulov/Volkov, 1973; Wess/Zumino, 1974

- leichtes Higgs $(M_H = 90 \pm 50 \,\text{GeV})$
- diskrete R-Parität
 - verhindert Protonzerfall
 - ▶ leichtester SUSY-Partner (LSP) stabil ⇒ Dunkle Materie
- Kopplungsvereinigung

Modell-Diskriminierung

Masse neuer Teilchen: Endpunkte von Zerfallsspektren

- Spin neuer Teilchen: Spin neuer Teilchen: Winkelverteilungen, ...
- Modellbestimmung: Messung von Kopplungskonstanten
- ⇒ Präzise Vorhersagen für Signal und Untergründe
 - Berücksichtigung von kinematischen Schnitten
 - Exklusive Vielteilchen-Endzustände: $2 \rightarrow 4$ bis $2 \rightarrow 10$
 - Quantenkorrekturen: Reelle und virtuelle Korrekturen

The Doublet-Triplet Splitting

SU(5) breaking: Higgs Σ in adjoint 24 rep.

$$\langle \mathbf{\Sigma} \rangle = w \times \operatorname{diag}(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}) \qquad M_X = M_Y = \frac{5}{2\sqrt{2}} g w$$

other breaking mechanisms possible (e.g. orbifold)

The Doublet-Triplet Splitting

SU(5) breaking: Higgs $\pmb{\Sigma}$ in adjoint 24 rep.

$$\langle \mathbf{\Sigma} \rangle = w \times \operatorname{diag}(1, 1, 1, -\frac{3}{2}, -\frac{3}{2}) \qquad M_X = M_Y = \frac{5}{2\sqrt{2}} g w$$

other breaking mechanisms possible (e.g. orbifold) (MS)SM Higgs(es) in ${\bf 5}\oplus\overline{{\bf 5}}$

$$\mathbf{5} = \Box : \begin{pmatrix} \mathbf{D} \\ D \\ \mathbf{D} \\ h^+ \\ h^0 \end{pmatrix} \qquad \mathbf{\overline{5}} = \boxed{\Box} : \begin{pmatrix} \mathbf{D}^c \\ D^c \\ D^c \\ h^- \\ -h^0 \end{pmatrix}$$
$$\mathbf{5} = (\mathbf{3}, \mathbf{1})_{-\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_1 \qquad \mathbf{\overline{5}} = (\mathbf{\overline{3}}, \mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1}$$

- D, D^c coloured triplets with charges $\pm \frac{1}{3}$
- induce proton decay, too $m_H \sim 100 \, {\rm GeV}, \, m_D \sim 10^{16} \, {\rm GeV}$
- Doublet-Triplet Splitting Problem

Klassifikation der Modelle

► $E_6 \supset H \supset SU(3) \times SU(2)^2 \times U(1)^2$ Brechung durch \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 .

\mathbb{Z}_2	Subgroup H	Shift $2\overline{V}$
	$SO(10) \times U(1)\chi$	(1, 1, 0, 1, 1, 0)
	$SU(6) \times SU(2)_R$	(0, 0, 1, 0, 0, 0)
	$SU(6) \times SU(2)_L$	(1, 1, 1, 1, 1, 0)
\mathbb{Z}_3	Subgroup H	Shift 3V
	$SU(3)_C \times SU(3)_L \times SU(3)_R$	(0, 0, 1, -1, 0, 0)
\mathbb{Z}_4	Subgroup H	Shift $4\overline{V}$
	$SU(3)_C \times SU(3)_L \times SU(2)_R \times U(1)$	(0, 0, 1, 2, 0, 0)
	$SU(3)_C \times SU(3)_R \times SU(2)_L \times U(1)$	(-1, 1, 1, 1, 1, 0)

► nicht-triviale (H_i ⊈ H_j) gemeinsame invariante Untergruppen H_i ∩ H_j unter zwei kombinierten Shifts

$\mathbb{Z}_2 \times \mathbb{Z}_2$	$SU(4)_C \times SU(2)_L \times SU(2)_R \times U(1)_\chi$
$\mathbb{Z}_2 \times \mathbb{Z}_3$	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_\chi$
	$SU(3)_C \times SU(3)_L \times SU(2)_R \times U(1)$
	$SU(3)_C \times SU(3)_R \times SU(2)_L \times U(1)$
$\mathbb{Z}_2 \times \mathbb{Z}_4$	$SU(4)_C \times SU(2)_L \times SU(2)_R \times U(1)_\chi$
	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_\chi$
$\mathbb{Z}_3 \times \mathbb{Z}_4$	$SU(3)_C \times SU(3)_L \times SU(2)_R \times U(1)$
	$SU(3)_C \times SU(3)_R \times SU(2)_L \times U(1)$
$\mathbb{Z}_4 \times \mathbb{Z}_4$	$SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times U(1)_\chi$

Fermionen (Materie-Superfelder)

Einzig möglicher Weg für Materie:

$$\overline{\mathbf{5}} = \ (\overline{\mathbf{3}}, \mathbf{1})_{\frac{2}{3}} \oplus (\mathbf{1}, \mathbf{2})_{-1} \qquad \mathbf{10} = \ (\mathbf{3}, \mathbf{2})_{\frac{1}{3}} \oplus (\overline{\mathbf{3}}, \mathbf{1})_{-\frac{4}{3}} \oplus (\mathbf{1}, \mathbf{1})_{2}$$

Bemerkungen

- ▶ $\mathbf{2} = \Box = \overline{\mathbf{2}}, \qquad (\mathbf{5} \otimes \mathbf{5})_a = \mathbf{10}, \quad (\mathbf{3} \otimes \mathbf{3})_a = \overline{\mathbf{3}}, \quad (\Box \otimes \Box)_a = \Box$
- Quarks und Leptonen im selben Multiplett
- ► Bedingung der Spurfreiheit⇒ (Farbe!)
- ▶ 5 und 10 haben gleiche und entgegengesetzte Anomalien
- ν^c muss ein SU(5)-Singlett sein

Analyse des Parameterraums

Braam/JRR/Wiesler, 0909.3081; JRR et al., 2012

- # free parameters ~ $\mathcal{O}(100)$, additional assumptions:
 - Unified Soft-Breaking terms Flavour structure
 - \Rightarrow Restriction to 14 parameters
- Constraints:
 - (1) Experimental search limits for new particles
 - (2) Running couplings perturbative up to Λ_{E_6}
 - (3) Scalar (non-Higgs) mass terms positive (⇔ No false vacua)
 - 14-dim. parameter space
 - \Rightarrow Grid Scan: $\rightarrow 10^{28}$ points
 - $\blacktriangleright \quad \mbox{Investigation per point (RGE, Higgs potential minimisation, Calculation of masses)} \sim 10-100 \ \mbox{ms}$
- Lsg.: Monte-Carlo Markov chain through parameter space
 - ⇒ Effective search for relevant parameter tuples

Why chiral exotics?

JRR/Kilian, PLB 642 (2006), 81, JRR 0709.4202

Proof of Unification only with megatons? What about colliders?

- SPA: Super precision accurately
- Alternative: Search for chiral exotics
- Physics beyond the MSSM as lever-arm to GUT scale

μ problem

- NMSSM trick
- Singlett Superfield with TeV-scale vacuum expectation value

Doublet-Triplet Splitting Problem; Longevity of the Proton

- Keep D, D^c superfields at the TeV scale
- New mechanism against proton decay
- Different unification scenario

Proton Decay

- Flavour symmetry can save the proton
- Discrete parity eliminates either LQ/DQ couplings

U(1) Mixing

Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009, Braam/JRR, EPJC 1107.2806

- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i \, g_i \, Q_i^a \, A_i^\mu \, \bar{\psi}^a \, \gamma_\mu \, \psi^a \, - \frac{1}{4} \, F_i^{\mu\nu} \, \delta_{ij} \, F_{\mu\nu,j} \, - \frac{1}{4} \, F_i^{\mu\nu} \, \Delta Z_{ij} \, F_{\mu\nu,j} \, .$$

- 50 U(1)-40 α₁ 30 1(1)₈₋₁ a, 31 SU(2) SU(2) $U(1)_{\chi/B-L}$ U(I) 20 SU(3) SU(3) 10 1012 1014 1014 10 10⁶ 10 1010 104 108 10¹ μ/GeV µ/GeV
- Effects for the running:

U(1) Mixing

Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009, Braam/JRR, EPJC 1107.2806

- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i \, g_i \, Q_i^a \, A_i^{\mu} \, \bar{\psi}^a \, \gamma_{\mu} \, \psi^a \, - \frac{1}{4} \, F_i^{\mu\nu} \, \delta_{ij} \, F_{\mu\nu,j} - \frac{1}{4} \, F_i^{\mu\nu} \, \Delta Z_{ij} \, F_{\mu\nu,j}.$$

- 60 50 40 a1 31 a, 30 SU(2) SU(2) $U(1)_{\chi/H-I}$ $U(1)_{B-L/\chi}$ 20 SU(3) SU(3) 10 10^{2} 10^{4} 106 108 1012 1010 10² 10^{4} 108 1012 1014 1016 µ/GeV µ/GeV
- Effects for the running:

U(1) Mixing

Braam/Knochel/JRR, JHEP 1006:013; King et al., 2009, Braam/JRR, EPJC 1107.2806

- Two U(1) factors below the intermediate scale
- Kinetic mixing: non-rational coefficients (gauge couplings)

$$\mathcal{L} = i \, g_i \, Q_i^a \, A_i^{\mu} \, \bar{\psi}^a \, \gamma_{\mu} \, \psi^a - \frac{1}{4} \, F_i^{\mu\nu} \, \delta_{ij} \, F_{\mu\nu,j} - \frac{1}{4} \, F_i^{\mu\nu} \, \Delta Z_{ij} \, F_{\mu\nu,j}.$$

• Effects for the running:

Same effect for soft-breaking terms: interesting singlino mixing

Ein konkretes Modell

Braam/Knochel/JRR, JHEP 1006:013

- Benutze T^2/\mathbb{Z}_6 (a.k.a. $\mathbb{R}^2/632$ or p6)
- Twist-Vektor $\overline{V}(r_6) = (\frac{1}{6}, -\frac{1}{6}, -\frac{1}{3}, -\frac{1}{2}, -\frac{1}{6}, 0) (\overline{Q}_{B-L}$ -Richtung)
- Keine diskreten Wilson-Linien erlaubt
- Anomalien der Bulk-78 chiralen Moden nach Projektion

g) $G_{LR} \times U(1)_{\chi}$ $SO(10) \times U(1)_{\chi}$

 $({\bf 16}_{-3/2}+\overline{\bf 16}_{3/2},(\overline{\bf 3},{\bf 2},{\bf 1})+(\overline{\bf 3},{\bf 1},{\bf 2}),({\bf 3},{\bf 3},\overline{\bf 3})) \text{ heben 78-Bulk-Hypermultiplett weg}$

3 Generationen 27 als Brane-lokalisierte Materie

$SU(3)^3 \setminus SO(10)_{Q\chi}$	$16\frac{1}{2}$	10-1	1 ₂
$A\ =\ (\overline{3},1,3)$	$(\overline{\bf 3},{\bf 1},{\bf 2})_{(-{1\over 3},-{1\over 2})}$	$(\overline{3},1,1)_{(-\frac{2}{3},-1)}$	Х
B = (3, 3, 1)	$(3,2,1)_{(-\frac{1}{3},-\frac{1}{2})}$	$(3,1,1)_{(-rac{2}{3},-1)}$	Х
$\mathbf{C} = (1, \overline{3}, \overline{3})$	$\begin{array}{c} (1,2,1)_{(-1,\ \ 1}\\ (1,1,2)_{(-1,\ \ 1}) \end{array}$	(1, 2, 2) (0, -1)	(1, 1, 1)(0,2)

► Trinification FP *SU*(3)³ unterscheidet LQ/DQ Kopplungen:

 $\mathbf{27}^3 \rightarrow (\overline{\mathbf{3}},\mathbf{1},\mathbf{3})^3 + (\mathbf{3},\mathbf{3},\mathbf{1})^3 + (\mathbf{1},\overline{\mathbf{3}},\overline{\mathbf{3}})^3 + (\overline{\mathbf{3}},\mathbf{1},\mathbf{3})(\mathbf{3},\mathbf{3},\mathbf{1})(\mathbf{1},\overline{\mathbf{3}},\overline{\mathbf{3}})$

- 1.+2. Generation auf LR Fixpunkt (erlaubt LQ-Kopplungen)
- LR-Symmetriebrechung durch Brane-lokalisierte Materie:

 $i) \qquad L, l^c, \langle \nu^c \rangle + c.c. \sim ({\bf 1}, \overline{\bf 3}, \overline{\bf 3}) \cap {\bf 16} + c.c.$

ii) $L, l^c, \langle \nu^c \rangle, H_u, H_d, S + c.c. \sim (\mathbf{1}, \overline{\mathbf{3}}, \overline{\mathbf{3}}) + c.c.$

$H_{\text{int}}, \bar{H}_{\text{int}}$	<i>i</i>)	ii)	3ii)	i) + 2ii)
Λ _{int} /GeV	1.6×10^{10}	3.0×10^{13}	1.3×10^{14}	4.9×10^{13}
Λ _{GUT} /GeV	1.3×10^{18}	1.5×10^{17}	7.2×10^{15}	7.2×10^{15}
$g' _{M_{Z'}}$	0.471	0.467	0.476	0.482
Q'_X				
Q	0.224	0.231	0.234	0.232
<i>u^c</i>	0.283	0.261	0.250	0.257
d^{c}	0.055	0.067	0.073	0.069
D	-0.449	-0.462	-0.468	-0.464
D^{c}	-0.339	-0.328	-0.322	-0.326
L	0.114	0.097	0.089	0.094
e ^c	0.165	0.201	0.218	0.208
H^{u}	-0.508	-0.492	-0.484	-0.489
H^d	-0.279	-0.298	-0.307	-0.301
S	0.787	0.790	0.790	0.790

H_{int}, \bar{H}_{int}	<i>i</i>)	ii)	3ii)	i) + 2ii)
Λ _{int} /GeV	1.6×10^{10}	3.0×10^{13}	1.3×10^{14}	4.9×10^{13}
Λ _{GUT} /GeV	1.3×10^{18}	1.5×10^{17}	7.2×10^{15}	7.2×10^{15}
$g' _{M_{Z'}}$	0.471	0.467	0.476	0.482
Q'_X				
Q	0.224	0.231	0.234	0.232
<i>u^c</i>	0.283	0.261	0.250	0.257
d^{c}	0.055	0.067	0.073	0.069
D	-0.449	-0.462	-0.468	-0.464
D^{c}	-0.339	-0.328	-0.322	-0.326
L	0.114	0.097	0.089	0.094
e ^c	0.165	0.201	0.218	0.208
H^{u}	-0.508	-0.492	-0.484	-0.489
H^d	-0.279	-0.298	-0.307	-0.301
S	0.787	0.790	0.790	0.790

	Szenario A	Szenario B	Szenario C
y_lq	0.106	0.145	0.210
y_lqc	0.082	0.075	0.230
y_sd	0.397	0.856	0.655
y_sh	0.214	0.321	0.052
y_nmssm	0.173	0.145	0.150
M_g	1105	-1452	-1359
M_gluino	-820	-875	-841

h_sm	-764	-1261	-749
h_lq	372	-446	-376
h_lqc	-224	-0.9	-897
h_sd	-264	500	307
h_sh	351	-767	19
h_nmssm	22.5	-185	73
m_sfer	1689	814	1690
m_dh	1234	1154	1936
m_H	1959	1921	1465
m_D	816	805	826
m_S	1201	1921	1357
m_int	-1459	-1050	-845

- Higgs-Boson: $m_h \approx 110 130 \text{ GeV}$
- ► Z': $m_{Z'} \approx 2.0 2.5 \text{ TeV}$ $\Gamma_{Z'} 40 \text{ GeV}$
- ► Dunkle Materie: leichtestes Unhiggsino, m_{χ[±]} ~ O(.1 1GeV) (*R*-ungerade und *H*-ungerade)

Z': Drell-Yan und Asymmetrie

- ▶ Z', typische Masse: 2-2.5 TeV, typische Breite: ~ 40 GeV
- ▶ Drell-Yan Wirkungsquerschn.: $\sigma(pp \rightarrow Z' \rightarrow \mu\mu; 14 \text{ TeV}) = 1.5 2.5 \text{ fb}$ Cuts: $|\eta| < 2.5$ (Akzeptanz), $p_T(\mu) > 50 \text{ GeV}$, $M_{\mu\mu} > 1.5 \text{ TeV}$ Z' Lineshape; Simulation mit WHIZARD für 100 fb⁻¹:

Vorwärts-Rückwärts-Asymmetrie:

$$\sigma_F \equiv \int_0^1 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$$

$$A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

 σ

$$_{B} \equiv \int_{-1}^{0} \frac{d\sigma(q\bar{q} \to \mu^{+}\mu^{-})}{d\cos\theta^{*}} d\cos\theta^{*}$$

Z': Drell-Yan und Asymmetrie

- ▶ Z', typische Masse: 2-2.5 TeV, typische Breite: ~ 40 GeV
- ▶ Drell-Yan Wirkungsquerschn.: $\sigma(pp \rightarrow Z' \rightarrow \mu\mu; 14 \text{ TeV}) = 1.5 2.5 \text{ fb}$ Cuts: $|\eta| < 2.5$ (Akzeptanz), $p_T(\mu) > 50 \text{ GeV}$, $M_{\mu\mu} > 1.5 \text{ TeV}$ Z' Lineshape; Simulation mit WHIZARD für 100 fb⁻¹:

Vorwärts-Rückwärts-Asymmetrie:

 $A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$

$$\sigma_F \equiv \int_0^1 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^* \qquad \sigma_B \equiv \int_{-1}^0 \frac{d\sigma(q\bar{q} \to \mu^+ \mu^-)}{d\cos\theta^*} d\cos\theta^*$$

Die Herausforderung des LHC

Partonische Subprozesse: *qq*, *qg*, *gg* Keine feste partonische Energie

$$R = \sigma \mathcal{L} \qquad \mathcal{L} = 10^{34} \,\mathrm{cm}^{-1} \mathrm{s}^{-1}$$

Hohe Raten für $t, W/Z, H, \Rightarrow$ große Untergründe

Die Herausforderung des LHC

17/17

L Reute

Partonische Subprozesse: *qq*, *qg*, *gg* Keine feste partonische Energie

$$R = \sigma \mathcal{L} \qquad \mathcal{L} = 10^{34} \,\mathrm{cm}^{-1} \mathrm{s}^{-1}$$

Hohe Raten für $t, W/Z, H, \Rightarrow$ große Untergründe

Suche nach neuen Teilchen

Zerfallsprodukte schwerer Teilchen:

- ▶ high-p_T Jets
- viele harte Leptonen

Produktion farbiger Teilchen

schwach ww. Teilchen nur in Zerfällen

Dunkle Materie ⇔ diskrete Parität (R, T, KK)

- nur Paare neuer Teilchen \Rightarrow hohe Energien, lange Zerfallsketten
- Dunkle Materie \Rightarrow große fehlende Energie im Detektor ($\not\!\!E_T$)

Unterschiedliche Modelle/Zerfallsketten — gleiche Signaturen

TITT J. Heuler

Suche nach neuen Teilchen

Zerfallsprodukte schwerer Teilchen:

- high-p_T Jets
- viele harte Leptonen

Produktion farbiger Teilchen

schwach ww. Teilchen nur in Zerfällen

Dunkle Materie ⇔ diskrete Parität (R, T, KK)

- $\blacktriangleright \ \ \text{nur Paare neuer Teilchen} \quad \Rightarrow \quad \text{hohe Energien, lange Zerfallsketten}$
- Dunkle Materie \Rightarrow große fehlende Energie im Detektor ($\not\!\!E_T$)

Unterschiedliche Modelle/Zerfallsketten — gleiche Signaturen

Intermediäre Pati-Salam-Symmetrie

Kilian/JRR, PLB 2006

- Zusätzliche Teilchen zerstören Additional particles destroy MSSM unification
- Vereinigung unterhalb Λ_{Planck} mit intermediärer

 $SU(4) \times SU(2)_L \times SU(2)_R [\times U(1)_{\chi}]$ Pati-Salam symmetrie bei $\sim 10^{15-16}$ GeV

- SU(2)_R and SU(2)_L:
 identischer content/running
- Vereinigung von SU(4) und $SU(2)_{L/R}$ bestimmt E_6 -Skala
- Leptonzahl: 4. Farbe

$$\blacktriangleright T_{SU(4)}^{15} \propto \frac{B-L}{2}$$

$$\blacktriangleright Y = \frac{B-L}{2} + T_R^3$$

- U(1) Matching-Bedingung $\frac{1}{g_Y^2} = \frac{2}{5} \frac{1}{g_{B-L}^2} + \frac{3}{5} \frac{1}{g_R^2}$
- Integriere v^c aus: (See-Saw)
- ⇒ korrekte Brechung

Probleme und *E*₆/Pati-Salam-Brechung

JRR et al., 2012

- E_6 -Superpotential verschwindet $\Rightarrow E_6$ -Operatoren erzeugen PS-Superpotential Power Suppression: top Yukawa?
- diskrete Symmetrie zur Diskriminierung von Lepto-/Diquark Kopplungen/*H*-Parität verletzt GUT-Multiplettstruktur
- Starke Schranken von Perturbativität oberhalb Λ_{PS}
- Kompliziert, Darstellungen für PS-Brechung zu finden
 - ► 27, 351, und 351' brechen E_6 zu Rang 5 $U(1)_{\chi}$ gebrochen, kein quartisches Singlett-Potential
 - Keine Rang-Reduktion: adjungierte Brechung
 - $\blacktriangleright \ \, \text{Brechung durch } \langle (\mathbf{27})(\overline{\mathbf{27}})\rangle \ \, \text{oder } \langle \mathbf{27}\rangle \ \, \overline{\mathbf{27}}\rangle \qquad \mathbf{27}\times\overline{\mathbf{27}}=\mathbf{1}+\mathbf{78}+\mathbf{650}$
 - ▶ 650 kleinste Darstellung für $E_6 \rightarrow G_{PS} \times U(1)$
 - Superpotential f
 ür korrekte Brechung, das LQ-Kopplungen erlaubt, ist möglich

Probleme und *E*₆/Pati-Salam-Brechung

JRR et al., 2012

- E_6 -Superpotential verschwindet $\Rightarrow E_6$ -Operatoren erzeugen PS-Superpotential Power Suppression: top Yukawa?
- diskrete Symmetrie zur Diskriminierung von Lepto-/Diquark Kopplungen/*H*-Parität verletzt GUT-Multiplettstruktur
- Starke Schranken von Perturbativität oberhalb Λ_{PS}
- Kompliziert, Darstellungen für PS-Brechung zu finden
 - ► 27, 351, und 351' brechen E_6 zu Rang 5 $U(1)_{\chi}$ gebrochen, kein quartisches Singlett-Potential
 - Keine Rang-Reduktion: adjungierte Brechung
 - $\blacktriangleright \ \, \text{Brechung durch } \langle (\mathbf{27})(\overline{\mathbf{27}})\rangle \ \, \text{oder} \ \, \langle \mathbf{27}\rangle \ \, \overline{\mathbf{27}}\rangle \qquad \mathbf{27}\times\overline{\mathbf{27}}=\mathbf{1}+\mathbf{78}+\mathbf{650}$
 - ▶ 650 kleinste Darstellung für $E_6 \rightarrow G_{PS} \times U(1)$
 - Superpotential f
 ür korrekte Brechung, das LQ-Kopplungen erlaubt, ist möglich

Vorhersagen aus *E*₆ GUTs für LHC

Braam/JRR/Wiesler, 0909.3081; 2012

- Simulationen f
 ür das E₆-Modell mit WHIZARD
- Vollständige Implementierung mit FeynRules
- Analysen: BRs, Wirkungsquerschnitte f
 ür skalare Leptoquarks, S/B
- Leptoquarkino-Phänomenologie

Scl	hnitte	Untergrund	$m_D =$	= 0.6 TeV	$m_D =$	= 0.8 TeV	$m_D =$	= 1.0 TeV
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Vorhersagen aus *E*₆ GUTs für LHC

Braam/JRR/Wiesler, 0909.3081; 2012

- Simulationen f
 ür das E₆-Modell mit WHIZARD
- Vollständige Implementierung mit FeynRules
- Analysen: BRs, Wirkungsquerschnitte f
 ür skalare Leptoquarks, S/B
- Leptoquarkino-Phänomenologie

Sch	nnitte	Untergrund	$m_D =$	= 0.6 TeV	$m_D =$	= 0.8 TeV	$m_D =$	= 1.0 TeV
p_T	$M_{\ell\ell}$	N_{BG}	N_1	S_1/\sqrt{B}	N_2	S_2/\sqrt{B}	N_3	S_3/\sqrt{B}
50	10	413274	64553	93	14823	23	4819	7
100	150	3272	40749	194	10891	92	3767	45
200	150	198	12986	113	5678	74	2405	47

Braam/JRR/Wiesler, 0909.3081; Braam/Horst/Knochel/JRR/Wiesler , 2012

- Untergründe: tt + nj, W/Z + nj
- Schnitte: $p_T > 150 \text{ GeV}, -1.0 < \cos \theta_{\ell j} < 0.7$

Analytische Parton-Shower

- Analytischer Parton-Shower:
 - kein Shower-Veto: Shower-Gewichte exakt bekannt
 - erlaubt Reweighting und verlässlichere Fehlerabschätzung
- Neuer Algorithmus f
 ür Initial State Radiation

Matching mit harten Matrixelementen, kein Power-Shower

Verknüpfung mit Multiple Interactions:

Boschmann/Kilian/JRR/Schmidt, 2012

JRR/Schmidt/Wiesler, JHEP 2012

Analytische Parton-Shower

- Analytischer Parton-Shower:
 - kein Shower-Veto: Shower-Gewichte exakt bekannt
 - erlaubt Reweighting und verlässlichere Fehlerabschätzung
- Neuer Algorithmus f
 ür Initial State Radiation

- Matching mit harten Matrixelementen, kein Power-Shower
- Verknüpfung mit Multiple Interactions:

Boschmann/Kilian/JRR/Schmidt, 2012

JRR/Schmidt/Wiesler, JHEP 2012